शूर गुणक

From Vigyanwiki
Revision as of 11:24, 26 April 2023 by alpha>Indicwiki (Created page with "{{Group theory sidebar |Finite}} गणितीय समूह सिद्धांत में, शूर गुणक या शूर गुणक दूसरा [...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणितीय समूह सिद्धांत में, शूर गुणक या शूर गुणक दूसरा समूह समरूपता है एक समूह जी के द्वारा पेश किया गया था Issai Schur (1904) अनुमानित प्रतिनिधित्व पर अपने काम में।

उदाहरण और गुण

शूर गुणक एक परिमित समूह G का एक परिमित एबेलियन समूह है जिसका आवधिक समूह G के क्रम को विभाजित करता है। p से विभाज्य नहीं है। विशेष रूप से, यदि सभी साइलो उपसमूह | जी के साइलो पी-उपसमूह चक्रीय हैं, तो तुच्छ है।

उदाहरण के लिए, क्रम 6 के नॉनबेलियन समूह का शूर गुणक तुच्छ समूह है क्योंकि प्रत्येक सिलो उपसमूह चक्रीय है। क्रम 16 के प्राथमिक एबेलियन समूह का शूर गुणक क्रम 64 का एक प्राथमिक एबेलियन समूह है, जो दर्शाता है कि गुणक समूह से सख्ती से बड़ा हो सकता है। चतुष्कोणीय समूह का शूर गुणक तुच्छ है, लेकिन डायहेड्रल समूह के शूर गुणक | डायहेड्रल 2-समूहों का क्रम 2 है।

परिमित सरल समूहों के शूर गुणक परिमित सरल समूहों की सूची में दिए गए हैं। वैकल्पिक और सममित समूहों के कवरिंग समूह काफी हालिया रुचि के हैं।

प्रक्षेप्य अभ्यावेदन से संबंध

जी के एक अनुमानित प्रतिनिधित्व को जी के केंद्रीय विस्तार (गणित) सी के एक रैखिक प्रतिनिधित्व के लिए वापस खींचा जा सकता है।

गुणक का अध्ययन करने के लिए शूर की मूल प्रेरणा एक समूह के प्रक्षेपी अभ्यावेदन को वर्गीकृत करना था, और उनकी परिभाषा का आधुनिक सूत्रीकरण दूसरा समूह कोहोलॉजी है . एक अनुमानित प्रतिनिधित्व एक समूह प्रतिनिधित्व की तरह है, सिवाय इसके कि सामान्य रैखिक समूह में समरूपता के बजाय , एक समरूपता को प्रक्षेपी सामान्य रैखिक समूह में ले जाता है . दूसरे शब्दों में, एक अनुमानित प्रतिनिधित्व एक समूह का केंद्र एक प्रतिनिधित्व मॉड्यूल है।

Schur (1904, 1907) ने दिखाया कि प्रत्येक परिमित समूह जी ने कम से कम एक परिमित समूह सी को जोड़ा है, जिसे 'शूर कवर' कहा जाता है, इस गुण के साथ कि जी के प्रत्येक प्रक्षेप्य प्रतिनिधित्व को सी के सामान्य प्रतिनिधित्व के लिए उठाया जा सकता है। शूर कवर को भी जाना जाता है एक 'कवरिंग ग्रुप' या 'डार्स्टेलुंग्सग्रुप' के रूप में। परिमित सरल समूहों की सूची के शूर कवर ज्ञात हैं, और प्रत्येक अर्ध-सरल समूह का एक उदाहरण है। एक आदर्श समूह का शूर कवर विशिष्ट रूप से आइसोमोर्फिज़्म तक निर्धारित होता है, लेकिन एक सामान्य परिमित समूह का शूर कवर केवल isoclinism तक ही निर्धारित होता है।

केंद्रीय एक्सटेंशन से संबंध

ऐसे कवरिंग समूहों के अध्ययन ने स्वाभाविक रूप से केंद्रीय विस्तार (गणित) और स्टेम एक्सटेंशन के अध्ययन का नेतृत्व किया।

समूह 'जी' का एक केंद्रीय विस्तार (गणित) एक विस्तार है

कहाँ C के केंद्र (समूह सिद्धांत) का एक उपसमूह है।

समूह G का एक 'तना विस्तार' एक विस्तार है

कहाँ C के केंद्र और C के व्युत्पन्न उपसमूह के प्रतिच्छेदन का एक उपसमूह है; यह केंद्रीय की तुलना में अधिक प्रतिबंधात्मक है।[1] यदि समूह जी सीमित है और कोई केवल स्टेम एक्सटेंशन पर विचार करता है, तो ऐसे समूह सी के लिए सबसे बड़ा आकार होता है, और उस आकार के प्रत्येक सी के लिए उपसमूह के जी के शूर गुणक के लिए आइसोमोर्फिक होता है। यदि परिमित समूह जी है इसके अलावा पूर्ण समूह, तो सी समरूपता तक अद्वितीय है और स्वयं ही परिपूर्ण है। ऐसे C को अक्सर G का 'यूनिवर्सल परफेक्ट सेंट्रल एक्सटेंशन' या 'कवरिंग ग्रुप' कहा जाता है (क्योंकि यह टोपोलॉजी में यूनिवर्सल कवरिंग स्पेस का असतत एनालॉग है)। यदि परिमित समूह G पूर्ण नहीं है, तो इसके शूर कवरिंग समूह (अधिकतम क्रम के ऐसे सभी C) केवल आइसोक्लिनिक हैं।

इसे अधिक संक्षेप में 'सार्वभौमिक केंद्रीय विस्तार' भी कहा जाता है, लेकिन ध्यान दें कि कोई सबसे बड़ा केंद्रीय विस्तार नहीं है, क्योंकि G के समूहों का प्रत्यक्ष उत्पाद और एक एबेलियन समूह मनमाने आकार के G का एक केंद्रीय विस्तार बनाता है।

स्टेम एक्सटेंशन की अच्छी संपत्ति है कि जी के एक जनरेटिंग सेट का कोई भी लिफ्ट सी का एक जनरेटिंग सेट है। यदि समूह जी जनरेटर के एक सेट पर एक मुक्त समूह एफ के संदर्भ में एक समूह की प्रस्तुति है, और एक सामान्य उपसमूह आर उत्पन्न होता है जनरेटर पर संबंधों के एक सेट द्वारा, ताकि , तो कवरिंग ग्रुप को F के संदर्भ में प्रस्तुत किया जा सकता है लेकिन एक छोटे सामान्य उपसमूह S के साथ, यानी . चूँकि G के संबंध C के भाग के रूप में माने जाने पर K के तत्वों को निर्दिष्ट करते हैं, किसी के पास होना चाहिए .

वास्तव में यदि G पूर्ण है, तो बस इतना ही आवश्यक है: C ≅ [F,F]/[F,R] और M(G) ≅ K ≅ R/[F,R]। इस सादगी के कारण, प्रदर्शनी जैसे (Aschbacher 2000, §33) पहले सही केस को हैंडल करें। शूर गुणक के लिए सामान्य मामला समान है लेकिन यह सुनिश्चित करता है कि विस्तार F: M(G) ≅ (R ∩ [F, F])/[F, R] के व्युत्पन्न उपसमूह तक सीमित करके एक स्टेम विस्तार है। ये सभी शूर के थोड़े बाद के परिणाम हैं, जिन्होंने उन्हें अधिक स्पष्ट रूप से गणना करने के लिए कई उपयोगी मानदंड भी दिए।

कुशल प्रस्तुतियों से संबंध

संयोजी समूह सिद्धांत में, एक समूह अक्सर एक समूह की प्रस्तुति से उत्पन्न होता है। गणित के इस क्षेत्र में एक महत्वपूर्ण विषय यथासंभव कम से कम संबंधों के साथ प्रस्तुतियों का अध्ययन करना है, जैसे बॉम्सलैग-सोलिटर समूह जैसे एक संबंधक समूह। ये समूह दो जनरेटर और एक संबंध के साथ अनंत समूह हैं, और श्रेयर के एक पुराने परिणाम से पता चलता है कि संबंधों की तुलना में अधिक जनरेटर के साथ किसी भी प्रस्तुति में परिणामी समूह अनंत है। सीमा रेखा का मामला इस प्रकार काफी दिलचस्प है: समान संख्या वाले जनरेटर के साथ परिमित समूहों को कहा जाता है कि संबंधों में कमी (समूह सिद्धांत) शून्य है। एक समूह में कमी शून्य होने के लिए, समूह के पास एक तुच्छ शूर गुणक होना चाहिए क्योंकि शूर गुणक के जनरेटर की न्यूनतम संख्या हमेशा संबंधों की संख्या और जनरेटर की संख्या के बीच के अंतर से कम या बराबर होती है, जो नकारात्मक है कमी। एक कुशल समूह वह है जहां शूर गुणक को जनरेटर की संख्या की आवश्यकता होती है।[2] अनुसंधान का एक हालिया विषय तुच्छ शूर मल्टीप्लायरों के साथ सभी परिमित सरल समूहों के लिए कुशल प्रस्तुतियों को खोजना है। इस तरह की प्रस्तुतियाँ कुछ अर्थों में अच्छी होती हैं क्योंकि वे आम तौर पर कम होती हैं, लेकिन उन्हें खोजना और उनके साथ काम करना मुश्किल होता है क्योंकि वे टोड-कॉक्सेटर एल्गोरिथम जैसे मानक तरीकों के अनुकूल नहीं हैं।

टोपोलॉजी से संबंध

टोपोलॉजी में, समूहों को अक्सर समूह समूहों की बारीक प्रस्तुति के रूप में वर्णित किया जा सकता है और एक मौलिक प्रश्न उनके अभिन्न समरूपता की गणना करना है . विशेष रूप से, दूसरी समरूपता एक विशेष भूमिका निभाती है और इसने हेंज हॉफ को इसकी गणना के लिए एक प्रभावी तरीका खोजने के लिए प्रेरित किया। में विधि (Hopf 1942) को हॉफ के इंटीग्रल होमोलॉजी फॉर्मूला के रूप में भी जाना जाता है और एक परिमित समूह के शूर गुणक के लिए शूर के सूत्र के समान है:

कहाँ और F एक मुक्त समूह है। यही सूत्र तब भी लागू होता है जब G एक पूर्ण समूह है।[3] मान्यता है कि ये सूत्र समान थे, समूहों के कोहोलॉजी के निर्माण के लिए सैमुअल एलेनबर्ग और सॉन्डर्स मैक लेन का नेतृत्व किया। सामान्य रूप में,

जहां तारा बीजगणितीय दोहरे समूह को दर्शाता है। इसके अलावा, जब G परिमित होता है, तो एक प्राकृतिक परिवर्तन समरूपता होती है

के लिए हॉफ फॉर्मूला उच्च आयामों के लिए सामान्यीकृत किया गया है। एक दृष्टिकोण और संदर्भ के लिए नीचे सूचीबद्ध एवरर्ट, ग्रैन और वैन डेर लिंडेन द्वारा पेपर देखें।

एक आदर्श समूह वह है जिसका पहला अभिन्न समरूपता लुप्त हो जाता है। एक अति उत्तम समूह वह होता है जिसके पहले दो इंटीग्रल होमोलॉजी ग्रुप गायब हो जाते हैं। परिमित पूर्ण समूहों के शूर कवर सुपरपरफेक्ट हैं। एसाइक्लिक समूह एक ऐसा समूह है जिसके सभी घटे हुए इंटीग्रल होमोलॉजी गायब हो जाते हैं।

अनुप्रयोग

बीजीय K-सिद्धांत#K2|दूसरा बीजगणितीय K-समूह K2(आर) एक कम्यूटेटिव रिंग आर की पहचान दूसरे होमोलॉजी ग्रुप एच के साथ की जा सकती है2(ई (आर), 'जेड') आर में प्रविष्टियों के साथ (अनंत) प्राथमिक मैट्रिक्स के समूह ई (आर) का।[4]


यह भी देखें

  • अर्धसरल समूह

क्लेयर मिलर के संदर्भ शूर मल्टीप्लायर का एक और दृश्य देते हैं जो एक आकारिकी κ: G ∧ G → G के कर्नेल के रूप में कम्यूटेटर मानचित्र से प्रेरित है।

टिप्पणियाँ

  1. Rotman 1994, p. 553
  2. Johnson & Robertson 1979, pp. 275–289
  3. Rosenberg 1994, Theorems 4.1.3, 4.1.19
  4. Rosenberg 1994, Corollary 4.2.10


संदर्भ