विद्युत नेटवर्क

From Vigyanwiki
Revision as of 16:59, 17 May 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
वोल्टेज स्रोत और एक प्रतिरोधक से बना एक साधारण विद्युत परिपथ। यहां , ओम के नियम के अनुसार।

विद्युत नेटवर्क इलेक्ट्रॉनिक घटकों (जैसे बैटरी, प्रतिरोधक, इन्डक्टर्स, संधारित्र, स्विच, ट्रांजिस्टर) का इंटरकनेक्शन का मॉडल है। जिसमें विद्युत तत्व (जैसे वोल्टेज स्रोत, वर्तमान स्रोत, विद्युत प्रतिरोध, चालन, इनडक्टेन्स और कैपासिटेन्स सम्मिलित हैं। विद्युत परिपथ एक ऐसा नेटवर्क है, जिसमें एक बंद लूप होता है। जो वर्तमान के लिए रिवर्स परिपथ प्रदान करता है। रैखिक परिपथ एक विशेष प्रकार का विद्युत नेटवर्क है। जिसमें केवल स्रोत (वोल्टेज या धारा ), रैखिक लम्पड तत्व (प्रतिरोधक, कैपेसिटर, इंडक्टर्स) और रैखिक वितरित तत्व (ट्रांसमिशन लाइन) का गुण होता है। जो संकेत रैखिक रूप से सुपरइम्पोजेबल होते हैं। डीसी प्रतिक्रिया, एसी प्रतिक्रिया और क्षणिक प्रतिक्रिया निर्धारित करने के लिए लाप्लास परिवर्तन जैसे शक्तिशाली आवृत्ति डोमेन विधियों का उपयोग करके अधिक सरलता से विश्लेषण किया जाता है।

प्रतिरोधक परिपथ एक ऐसा परिपथ होता है, जिसमें केवल प्रतिरोधक, आदर्श धारा और वोल्टेज स्रोत होते हैं। प्रतिरोधक परिपथ का नेटवर्क विश्लेषण (विद्युत परिपथ) कैपेसिटर और इंडक्टर्स वाले परिपथ के विश्लेषण से कम जटिल है। यदि स्रोत स्थिर (प्रत्यक्ष धारा) हैं। तो परिणाम एक प्रत्यक्ष धारा परिपथ है। प्रतिरोधक नेटवर्क के प्रभावी प्रतिरोध और वर्तमान वितरण गुणों को उनके ग्राफ उपायों और ज्यामितीय गुणों के संदर्भ में तैयार किया जा सकता है।[1]

एक नेटवर्क, जिसमें सक्रिय घटक इलेक्ट्रानिक्स घटक होते हैं। उसे विद्युत परिपथ के रूप में जानते हैं। ऐसे नेटवर्क सामान्यतः अरेखीय होते हैं और इनमें अधिक जटिल डिजाइन और विश्लेषण उपकरण की आवश्यकता होती है।

वर्गीकरण

निष्क्रियता के द्वारा

सक्रिय नेटवर्क में कम से कम एक वोल्टेज स्रोत या वर्तमान स्रोत होता है। जो नेटवर्क को अनिश्चित समय तक ऊर्जा की आपूर्ति कर सकता है। निष्क्रियता (इंजीनियरिंग) नेटवर्क में एक सक्रिय स्रोत नहीं होता है।

सक्रिय नेटवर्क में विद्युत प्रभावन बल के एक या अधिक स्रोत होते हैं। ऐसे स्रोतों के व्यावहारिक उदाहरणों में इलेक्ट्रिक बैटरी या जनरेटर सम्मिलित हैं। सक्रिय तत्व परिपथ को शक्ति इंजेक्ट कर सकते हैं और विद्युत लाभ प्रदान कर सकते हैं और परिपथ के अन्दर वर्तमान प्रवाह को नियंत्रित कर सकते हैं।

निष्क्रिय नेटवर्क में इलेक्ट्रोमोटिव बल का कोई स्रोत नहीं होता है। इनमें प्रतिरोधक और कैपेसिटर जैसे निष्क्रिय तत्व होते हैं।

रैखिकता के द्वारा

नेटवर्क रैखिक होता है। यदि उसके संकेत सुपरपोजिशन प्रमेय के सिद्धांत का पालन करते हैं। अन्यथा यह गैर-रैखिक है। निष्क्रिय नेटवर्क को सामान्यतः रैखिक माना जाता है। किन्तु इसके अपवाद भी हैं। उदाहरण के लिए एक लोहे के कोर के साथ इन्डक्टर को संतृप्ति (चुंबकीय) में संचालित किया जा सकता है। यदि एक बड़े पर्याप्त प्रवाह के साथ संचालित हो। इस क्षेत्र में इन्डक्टर का व्यवहार बहुत ही अरैखिक होता है।

लम्पीनेस के द्वारा

असतत निष्क्रिय घटकों (प्रतिरोधों, कैपेसिटर और इंडक्टर्स) को लम्प्ड तत्व कहा जाता है क्योंकि उनके सभी, क्रमशः प्रतिरोध, कैपासिटेन्स और इनडक्टन्स को एक ही स्थान पर स्थित (लम्प्ड) माना जाता है। इस प्रारूप दर्शन को लम्पड-एलिमेंट मॉडल कहा जाता है और इस प्रकार प्रारूपित किए गए नेटवर्क को लम्प्ड-एलिमेंट परिपथ कहा जाता है। यह परिपथ डिजाइन करने के लिए पारंपरिक दृष्टिकोण है। उच्च पर्याप्त आवृत्तियों पर या लंबे समय तक पर्याप्त परिपथ (जैसे विद्युत शक्ति संचरण ) के लिए लम्पीनेस धारणा अब नहीं रहती है क्योंकि घटक आयामों में तरंग दैर्ध्य का एक महत्वपूर्ण भाग होता है। ऐसी स्थितियों के लिए एक नए डिज़ाइन मॉडल की आवश्यकता होती है। जिसे वितरित-तत्व मॉडल कहा जाता है। इस मॉडल के लिए डिज़ाइन किए गए नेटवर्क को डिस्ट्रीब्यूटेड एलिमेंट परिपथ कहा जाता है।

वितरित-तत्व परिपथ अर्ध-लंप्ड डिज़ाइन कहलाते हैं। जिसमें कुछ लम्पड घटक सम्मिलित होते हैं। सेमी-लंप्ड परिपथ का एक उदाहरण कॉम्लाइन फिल्टर है।

सूत्रों का वर्गीकरण

स्रोतों को स्वतंत्र स्रोतों और आश्रित स्रोतों के रूप में वर्गीकृत किया जा सकता है।

स्वतंत्र

आदर्श स्वतंत्र स्रोत परिपथ में उपस्थित अन्य तत्वों की देखरेख किए बिना समान वोल्टेज या धारा बनाए रखता है। इसका मान या तो स्थिर (डीसी) या साइनसॉइडल (एसी) होता है। कनेक्टेड नेटवर्क में किसी भी बदलाव से वोल्टेज या धारा की शक्ति नहीं बदली है।

आश्रित

डिपेन्डेन्ट स्रोत विद्युत या वोल्टेज या धारा देने के लिए परिपथ के विशेष तत्व पर निर्भर करते हैं। जो कि स्रोत के प्रकार पर निर्भर करता है।

विद्युत नियम संचालित करना

सभी रैखिक प्रतिरोधक नेटवर्क पर कई विद्युत नियम संचालित करते हैं। इसमें से कुछ नियम सम्मिलित है:

  • किरचॉफ का वर्तमान नियम: नोड में प्रवेश करने वाली सभी धाराओं का योग नोड से निकलने वाली सभी धाराओं के योग के समान होता है।
  • किरचॉफ का वोल्टेज नियम: लूप के चारों ओर विद्युत संभावित अंतर का निर्देशित योग शून्य होना चाहिए।
  • ओम का नियम: प्रतिरोधक के आर-पार वोल्टेज प्रतिरोध के गुणनफल और उसमें से बहने वाली धारा के समान होता है।
  • नॉर्टन का प्रमेय: वोल्टेज या वर्तमान स्रोतों और प्रतिरोधों का कोई भी नेटवर्क विद्युत रूप से एकल अवरोधक के समानांतर आदर्श वर्तमान स्रोत के समान होता है।
  • थेवेनिन की प्रमेय: वोल्टेज या धारा स्रोतों और प्रतिरोधों का कोई भी नेटवर्क विद्युत रूप से एकल प्रतिरोधक के साथ श्रृंखला में एकल वोल्टेज स्रोत के समान होता है।
  • सुपरपोजिशन प्रमेय: कई स्वतंत्र स्रोतों के साथ रैखिक नेटवर्क में विशेष शाखा में प्रतिक्रिया जब सभी स्रोत एक साथ काम कर रहे होते हैं। एक समय में एक स्वतंत्र स्रोत लेकर गणना की गई व्यक्तिगत प्रतिक्रियाओं के रैखिक योग के समान होता है।

इन नियमों को संचालित करने से समकालिक समीकरणों का एक समूह बनता है। जिसे बीजगणितीय या संख्यात्मक रूप से हल किया जा सकता है। इसके नियमों को सामान्यतः विद्युत प्रतिक्रिया वाले नेटवर्क तक बढ़ाया जा सकता है। उनका उपयोग समय, व्यय और त्रुटि उन नेटवर्क में नहीं किया जा सकता है। जिनमें गैर-रेखीय या समय-भिन्न घटक होते हैं।

डिजाइन के प्रकार

Linear network analysis
Elements

ResistanceCapacitor button.svgInductor button.svgReactanceImpedanceVoltage button.svg
ConductanceElastance button.svgBlank button.svgSusceptance button.svgAdmittance button.svgCurrent button.svg

Components

Resistor button.svg Capacitor button.svg Inductor button.svg Ohm's law button.svg

Series and parallel circuits

Series resistor button.svgParallel resistor button.svgSeries capacitor button.svgParallel capacitor button.svgSeries inductor button.svgParallel inductor button.svg

Impedance transforms

Y-Δ transform Δ-Y transform star-polygon transforms Dual button.svg

Generator theorems Network theorems

Thevenin button.svgNorton button.svgMillman button.svg

KCL button.svgKVL button.svgTellegen button.svg

Network analysis methods

KCL button.svg KVL button.svg Superposition button.svg

Two-port parameters

z-parametersy-parametersh-parametersg-parametersAbcd-parameter button.svgS-parameters

किसी भी इलेक्ट्रिकल परिपथ को डिजाइन करने के लिए या तो एनालॉग इलेक्ट्रॉनिक्स या डिजिटल परिपथ, विद्युत अभियन्त्रण को परिपथ के अन्दर सभी स्थानों पर वोल्टेज और धाराओं की जानकारी करने में सक्षम होना चाहिए। जटिल संख्या का उपयोग करके सरल रैखिक परिपथों का विश्लेषण हाथ से किया जा सकता है। अधिक जटिल स्थितियों में परिपथ का विश्लेषण विशेष कंप्यूटर प्रोग्राम या अनुमान विधियों जैसे कि पीसवाइस-लीनियर मॉडल के साथ किया जा सकता है।

परिपथ सिमुलेशन सॉफ्टवेयर, जैसे एचएसपीआईसीई (एक एनालॉग परिपथ सिम्युलेटर)[2] और वीएचडीएच-एएमएस और वेरीलॉग-एएमएस जैसी भाषाएं इंजीनियरों को परिपथ प्रोटोटाइप बनाने में सम्मिलित के अवरोध के बिना परिपथ डिजाइन करने की अनुमति देती हैं।

नेटवर्क सिमुलेशन सॉफ्टवेयर

अधिक जटिल परिपथ का विश्लेषण एसपीआईईसी या जी एन यू परिपथ विश्लेषण पैकेज जैसे सॉफ़्टवेयर के साथ संख्यात्मक रूप से किया जा सकता है या प्रतीकात्मक रूप से SapWin जैसे सॉफ़्टवेयर का उपयोग करके किया जा सकता है।

ऑपरेटिंग बिंदु के पास रैखिककरण

जब एक नए परिपथ को इन्टॉल किया जाता है, तो सॉफ्टवेयर पहले एक स्थिर स्थिति खोजने का प्रयास करता है। अर्थात् जहां सभी नोड्स किरचॉफ के वर्तमान नियम के अनुरूप होते हैं और परिपथ के प्रत्येक तत्व के माध्यम से वोल्टेज उस तत्व को नियंत्रित करने वाले वोल्टेज/वर्तमान समीकरणों के अनुरूप होते हैं। .

एक बार स्थिर अवस्था समाधान मिल जाने के बाद परिपथ में प्रत्येक तत्व के संचालन बिंदु ज्ञात हो जाते हैं। एक छोटे संकेत विश्लेषण के लिए वोल्टेज और धाराओं के छोटे-संकेत अनुमान प्राप्त करने के लिए प्रत्येक गैर-रैखिक तत्व को इसके संचालन बिंदु के पास रैखिक किया जा सकता है। यह ओम के नियम का अनुप्रयोग है। परिणामी रैखिक परिपथ मैट्रिक्स को गाऊसी उन्मूलन के साथ हल किया जा सकता है।

टुकड़े-टुकड़े-रैखिक सन्निकटन

सिमुलिंक के लिए पीएलईसीएस इंटरफ़ेस जैसे सॉफ़्टवेयर एक परिपथ के तत्वों को नियंत्रित करने वाले समीकरणों के पीसवाइज लीनियर फलन का उपयोग करता है। परिपथ को डायोड मॉडलिंग गणितीय रूप से आदर्श डायोड के पूर्णतयः रैखिक नेटवर्क के रूप में माना जाता है। प्रत्येक बार जब कोई डायोड ऑन से ऑफ या इसके विपरीत स्विच करता है। तो लीनियर नेटवर्क का कॉन्फ़िगरेशन बदल जाता है। समीकरणों के सन्निकटन में अधिक विवरण जोड़ने से सिमुलेशन की स्पष्टचा बढ़ जाती है। किन्तु इसके चलने का समय भी बढ़ जाता है।

यह भी देखें

प्रतिनिधित्व

डिजाइन और विश्लेषण के तरीके

माप

सादृश्य

विशिष्ट टोपोलॉजी

संदर्भ

  1. Kumar, Ankush; Vidhyadhiraja, N. S.; Kulkarni, G. U . (2017). "Current distribution in conducting nanowire networks". Journal of Applied Physics. 122 (4): 045101. Bibcode:2017JAP...122d5101K. doi:10.1063/1.4985792.
  2. "HSPICE" (PDF). HSpice. Stanford University, Electrical Engineering Department. 1999.



डी: नेटज़वर्क (इलेक्ट्रोटेक्निक)