व्युत्पन्न श्रेणी

From Vigyanwiki
Revision as of 08:48, 17 May 2023 by alpha>Akriti

गणित में, एबेलियन श्रेणी A की व्युत्पन्न श्रेणी D (A) समरूपी बीजगणित का निर्माण है जिसे परिशोधित करने के लिए और एक निश्चित अर्थ में A पर परिभाषित व्युत्पन्न प्रकार्यक के सिद्धांत को सरल बनाने के लिए प्रस्तुत किया गया है। निर्माण इस आधार पर आगे बढ़ते है कि D (A) की वस्तुएं (श्रेणी सिद्धांत) A में मिश्रित श्रेणी होनी चाहिए, ऐसे दो मिश्रित श्रेणी को समाकृतिकता माना जाता है जब एक श्रृंखला प्रतिचित्र होता है जो मिश्रित श्रेणी के समरूपता (गणित) के स्तर पर एक समरूपता को प्रेरित करते है। अति सह-समरूपता की अवधारणा को परिष्कृत करते हुए व्युत्पन्न प्रकार्यकों को श्रृंखला सम्मिश्रों के लिए परिभाषित किया जा सकता है। परिभाषाएँ सम्मिश्र वर्णक्रमीय अनुक्रमों द्वारा अन्यथा वर्णित सूत्रों के महत्वपूर्ण सरलीकरण की ओर ले जाती हैं (पूर्ण रूप से विश्वासपूर्वक नहीं)।

1960 के कुछ ही समय बाद अलेक्जेंडर ग्रोथेंडिक और उनके छात्र जीन लुइस वेर्डियर द्वारा व्युत्पन्न श्रेणी का विकास, अब 1950 के दशक में अनुरूप बीजगणित के विस्फोटक विकास में अंतस्थ बिंदु के रूप में प्रकट होते है, दशक जिसमें इसने उल्लेखनीय प्रगति की थी। वेर्डियर के मूल सिद्धांत को उनके शोध प्रबंध में लिखा गया था, जो अंततः 1996 में एस्टेरिस्क में प्रकाशित हुआ था (सारांश पहले एसजीए 4½ में दिखाई दिया था)। स्वयंसिद्धों को नवीनता की आवश्यकता होती है, त्रिकोणीय श्रेणी की अवधारणा, और निर्माण एक श्रेणी के स्थानीयकरण पर आधारित होते है, एक वलय के स्थानीयकरण का सामान्यीकरण है। व्युत्पन्न औपचारिकता को विकसित करने का मूल आवेग ग्रोथेंडिक के सुसंगत द्वैत सिद्धांत के उपयुक्त सूत्रीकरण को खोजने की आवश्यकता से आया है। तब से व्युत्पन्न श्रेणियां बीजगणितीय ज्यामिति के बाहर भी अपरिहार्य हो गई हैं, उदाहरण के लिए डी-मॉड्यूल और सूक्ष्म स्थानीय विश्लेषण के सिद्धांत के निर्माण में। वर्तमान में व्युत्पन्न श्रेणियां भी भौतिकी के निकट के क्षेत्रों में महत्वपूर्ण हो गई हैं, जैसे कि डी-ब्रान और दर्पण समरूपता (स्ट्रिंग सिद्धांत)।

प्रेरणा

सुसंगत शीफ सिद्धांत में, व्‍युत्‍क्रमणीय योजना (गणित) की धारणा के बिना सेरे द्वैत के साथ क्या किया जा सकता है, इसकी सीमा तक धकेलते हुए, एकल द्वैतकारी शीफ के स्थान पर चक्रिका के पूरे सम्मिश्र को लेने की आवश्यकता स्पष्ट हो गई। वस्तुतः कोहेन-मैकाले वलय की स्थिति, गैर-विलक्षणता का निर्बल होना, एकल द्वैतकारी शीफ के अस्तित्व से मेल खाती है; और यह सामान्य स्थिति से बहुत दूर है। अधोशीर्ष बौद्धिक स्थिति से, सदैव ग्रोथेंडिक द्वारा ग्रहण किया गया, इसने संशोधन की आवश्यकता का संकेत दिया। इसके साथ यह विचार आया कि 'वास्तविक' टेन्सर उत्पाद और होम प्रकार्यक वे होंगे जो व्युत्पन्न स्तर पर विद्यमान होंगे; उनके संबंध में, Tor और Ext संगणनात्मक उपकरणों के जैसे बन जाते हैं।

अमूर्तता के स्तर के अतिरिक्त, व्युत्पन्न श्रेणियां निम्नलिखित दशकों में स्वीकार की गईं, विशेष रूप से शेफ सह समरूपता के लिए सुविधाजनक समायोजन के रूप में है। संभवतः सबसे बड़ी प्रगति 1980 के निकट, व्युत्पन्न प्रतिबन्धों में 1 से अधिक विमाओं में रीमैन-हिल्बर्ट पत्राचार का सूत्रीकरण था। मिकियो सातो स्कूल ने व्युत्पन्न श्रेणियों की भाषा को अपनाया, और डी-मॉड्यूल का बाद का इतिहास उन पदों में व्यक्त सिद्धांत का था।

समस्थेयता सिद्धांत में एक समानांतर विकास वर्णक्रम (समस्थेयता सिद्धांत) की श्रेणी थी। वर्णक्रम की समस्थेयता श्रेणी और वलय की व्युत्पन्न श्रेणी दोनों त्रिकोणीय श्रेणी के उदाहरण हैं।

परिभाषा

बता दें कि एक एबेलियन श्रेणी है। (उदाहरणों में एक वलय (गणित) पर मॉड्यूल (गणित) की श्रेणी और एक स्थलीय स्थान पर एबेलियन समूहों के शेफ (गणित) की श्रेणी सम्मिलित है।) व्युत्पन्न श्रेणी मिश्रित शृंखला की श्रेणी के संदर्भ में में प्रतिबन्धों के साथ एक सार्वभौमिक गुण द्वारा परिभाषित किया गया है। की वस्तुएं

के रूप में हैं, जहाँ प्रत्येक Xi, की वस्तु है और प्रत्येक सम्मिश्र शून्य है। सम्मिश्र का iवां सह समरूपता समूह है। यदि इस श्रेणी में और दो वस्तुएँ हैं,तो एक आकारिता को आकारिता के एक वर्ग के रूप में परिभाषित किया जाता है जैसे कि । इस प्रकार की आकारिता सह समरूपता समूहों पर आकारिकी को प्रेरित करते है , और को अर्ध-समरूपता कहा जाता है यदि इनमें से प्रत्येक आकारिता में एक तुल्याकारिता है।

व्युत्पन्न श्रेणी की सार्वभौमिक गुण यह है कि यह अर्ध-समरूपता के संबंध में सम्मिश्रों की श्रेणी की श्रेणी का स्थानीयकरण है। विशेष रूप से, व्युत्पन्न श्रेणी एक वर्ग है, साथ में प्रकार्यक के साथ, निम्नलिखित सार्वभौमिक गुण है: मान लीजिए कि एक और श्रेणी है (आवश्यक नहीं कि एबेलियन) और एक ऐसा कारक है, जब भी , में अर्ध-समरूपता है , इसका प्रतिरूप में समरूपता है ; तब के माध्यम से कारक । इस सार्वभौमिक गुण वाली कोई भी दो श्रेणियां समकक्ष हैं।

समस्थेयता श्रेणी से संबंध

यदि और , में दो आकारिता हैं, तो श्रृंखला समस्थेयता या मात्र समस्थेयता आकारिकी का एक संग्रह है जैसे कि प्रत्येक i के लिए । यह दिखाना स्पष्ट है कि दो समस्थानी आकारिता सह समरूपता समूहों पर समान आकारिकी को प्रेरित करते हैं। हम कहते हैं श्रृंखला समस्थेयता तुल्यता है यदि वहाँ स्थित है जैसे कि और क्रमशः और पर पहचान आकारिकी के लिए श्रृंखला समस्थानी हैं। श्रृंखला सम्मिश्रों की समस्थेयता श्रेणी , के समान वस्तुओं वाली श्रेणी है, परन्तु श्रृंखला समस्थेयता के संबंध के संबंध में जिनके आकारिकी सम्मिश्रों के आकारिकी के समतुल्य वर्ग हैं। प्राकृतिक कारक है जो वस्तुओं पर पहचान है और जो प्रत्येक आकारिता को उसकी श्रृंखला समस्थेयता तुल्यता वर्ग में भेजती है। चूँकि प्रत्येक श्रृंखला समस्थेयता तुल्यता अर्ध-समरूपता है, इस कारक के माध्यम से कारक है। फलस्वरूप को समस्थेयता श्रेणी के स्थानीयकरण के रूप में समान रूप से देखा जा सकता है।

मॉडल श्रेणी के दृष्टिकोण से, व्युत्पन्न श्रेणी D (A) सम्मिश्रों की श्रेणी की उचित 'समस्थेयता श्रेणी' है, जबकि के (ए) को 'सरल समस्थेयता श्रेणी' कहा जा सकता है।

व्युत्पन्न श्रेणी का निर्माण

व्युत्पन्न श्रेणी के कई संभावित निर्माण हैं। जब छोटी श्रेणी है, तो अर्ध-समरूपता के औपचारिक रूप से आसन्न व्युत्क्रमों द्वारा व्युत्पन्न श्रेणी का प्रत्यक्ष निर्माण होता है। यह उत्पादक और संबंधों द्वारा श्रेणी के सामान्य निर्माण का एक उदाहरण है।[1]

जब बड़ी श्रेणी है, यह निर्माण निर्धारित सैद्धांतिक कारणों से काम नहीं करता है। यह निर्माण रूपों को पथों के समतुल्य वर्गों के रूप में बनाते है। यदि वस्तुओं का एक उचित वर्ग है, जो सभी समरूप हैं, तो इनमें से किन्हीं दो वस्तुओं के बीच पथों का एक उचित वर्ग है। उत्पादक और संबंध निर्माण इसलिए मात्र गारंटी देता है कि दो वस्तुओं के बीच आकारिता उचित वर्ग बनाते हैं। यद्यपि, श्रेणी में दो वस्तुओं के बीच आकारिता सामान्यतः समुच्चय होने की आवश्यकता होती है, और इसलिए यह निर्माण वास्तविक श्रेणी का उत्पादन करने में विफल रहते है।

यहां तक ​​कि जब छोटा होता है,यद्यपि, उत्पादक और संबंधों द्वारा निर्माण सामान्यतः एक ऐसी श्रेणी में होता है जिसकी संरचना अपारदर्शी होती है, जहां एक गूढ़ समानता संबंध के अधीन आकारिकी स्वेच्छतः लंबे पथ होते हैं। इस कारण से, व्युत्पन्न श्रेणी का निर्माण अधिक ठोस रूप से तब भी किया जाता है जब समुच्चय सिद्धांत समस्या में न हो।

ये अन्य निर्माण समस्थेयता श्रेणी से गुजरते हैं। में अर्ध-समरूपता का संग्रह गुणक प्रणाली बनाता है। यह प्रतिबन्धों का एक संग्रह है जो सम्मिश्र पथों को सरल पथों के रूप में फिर से लिखने की अनुमति देता है। गेब्रियल-ज़िस्मान प्रमेय का तात्पर्य है कि गुणक प्रणाली में स्थानीयकरण का पटलों के संदर्भ में सरल विवरण है।[2] आकारिता में युग्म के रूप में वर्णित किया जा सकता है , जहां कुछ सम्मिश्र के लिए , एक अर्ध-समरूपता है और आकारिकी की एक श्रृंखला समस्थेयता तुल्यता वर्ग है। विभेदननात्मक रूप से, यह का प्रतिनिधित्व करता है। दो पटलें समान होती हैं यदि उनके निकट सामान्य पटल के ऊपर हो।

पटलों के साथ आकारिता की श्रृंखलाओं को बदलने से बड़ी श्रेणियों की व्युत्पन्न श्रेणियों में सम्मिलित समुच्चय-सैद्धांतिक समस्याओं के हल को भी सक्षम बनाते है। सम्मिश्र को ठीक करें और श्रेणी पर विचार करें, जिनकी वस्तुएं सह प्रांत के साथ में अर्ध-समरूपता हैं और जिनकी आकृतियां क्रमविनिमेय आरेख हैं। समान रूप से, यह पर वस्तुओं की श्रेणी है जिनके संरचना मानचित्र अर्ध-समरूपता हैं। तब गुणक प्रणाली की स्थिति का अर्थ है कि से तक में आकारिता

हैं, यह मानते हुए कि यह सह सीमा वस्तुतः समुच्चय है। जबकि संभावित रूप से बड़ी श्रेणी है, कुछ स्थितियों में इसे छोटी श्रेणी द्वारा नियंत्रित किया जाता है। यह स्थिति है, उदाहरण के लिए, यदि एक ग्रोथेंडिक एबेलियन श्रेणी है (जिसका अर्थ है कि यह AB5 को संतुष्ट करते है और उत्पादक का समुच्चय है), आवश्यक बिंदु के साथ कि मात्र परिबद्ध गणनांक की वस्तुएं प्रासंगिक हैं।[3] इन स्थितियों में, सीमा की गणना छोटी उपश्रेणी पर की जा सकती है, और यह सुनिश्चित करता है कि परिणाम एक समुच्चय है। तब को इन समुच्चयों को इसके समुच्चय रूप में परिभाषित किया जा सकता है।

समस्थेयता श्रेणी में आकारिकी द्वारा व्युत्पन्न श्रेणी में आकारिता को बदलने के आधार पर अलग दृष्टिकोण है। सह प्रांत के साथ व्युत्पन्न श्रेणी में आकारिता अंतःक्षेपी वस्तुओं के सम्मिश्र से नीचे बंधा हुआ है, समस्थेयता श्रेणी में इस सम्मिश्र के आकारिकी के समान है; यह अवधिवार अंतःक्षेप से होता है। अवधिवार अंतःक्षेप को एक दृढ स्थिति से बदलकर, एक समान गुण प्राप्त होती है जो असीमित सम्मिश्रों पर भी लागू होती है। सम्मिश्र K-अंतःक्षेप है यदि, प्रत्येक अचक्रीय सम्मिश्र के लिए , हमारे निकट है। इसका स्पष्ट परिणाम यह है कि, प्रत्येक सम्मिश्र के लिए , में आकारिकी , में ऐसे आकारिता के समान हैं। सर्पे की एक प्रमेय, ग्रोथेंडिक और स्पाल्टेंस्टीन के सामान्यीकरण का काम, यह निश्चय करता है कि ग्रोथेंडिक एबेलियन श्रेणी में, प्रत्येक सम्मिश्र अंतःक्षेप की प्रतिबन्धों के साथ K-अंतःक्षेप सम्मिश्र के लिए अर्ध- समरूपी है, और इसके अतिरिक्त, यह क्रियात्मक है।[4] विशेष रूप से, हम समस्थेयता श्रेणी में के-अंतःक्षेप विभेदन और संगणना आकारिता को निकट करके व्युत्पन्न श्रेणी में आकारिकी को परिभाषित कर सकते हैं। सर्पेे के निर्माण की कार्यात्मकता यह सुनिश्चित करती है कि आकारिता की संरचना ठीक रूप से परिभाषित है। पटलों का उपयोग कर निर्माण के जैसे, यह निर्माण भी व्युत्पन्न श्रेणी के लिए उपयुक्त समुच्चय सैद्धांतिक गुणों को सुनिश्चित करता है, क्योंकि ये गुण पहले से ही समस्थेयता श्रेणी से संतुष्ट हैं।

व्युत्पन्न होम-समुच्चय

जैसा कि पहले उल्लेख किया गया है, व्युत्पन्न श्रेणी में होम समुच्चय पटलों, या घाटियों के माध्यम से व्यक्त किए जाते हैं , जहां अर्ध-समरूपता है। अवयव किस प्रकार दिखते हैं, इसकी ठीक प्रतिरूप पाने के लिए, एक यथार्थ अनुक्रम

पर विचार करें

हम इसका उपयोग उपरोक्त सम्मिश्र को छोटा करके, इसे स्थानांतरित करके, और उपरोक्त स्पष्ट आकारिकी का उपयोग करके आकारिता बनाने के लिए कर सकते हैं। विशेष रूप से, हमारे निकट चित्र

है जहां निचला सम्मिश्र है परिमाण में केंद्रित है, एकमात्र असतहीय ऊपर की ओर तीर समानता आकारिकी है, और एकमात्र असतहीय नीचे की ओर तीर है। सम्मिश्रों का यह चित्र व्युत्पन्न श्रेणी में आकारिकी

को परिभाषित करता है। इस अवलोकन का अनुप्रयोग अतियाह-श्रेणी का निर्माण है।[5]


टिप्पणियाँ

कुछ उद्देश्यों के लिए (नीचे देखें) असीमित लोगों के अतिरिक्त कोई परिबद्ध-नीचे ( के लिए ), सीमाबद्ध-ऊपर ( के लिए ) या परिबद्ध ( के लिए ) सम्मिश्रों का उपयोग करते है। संबंधित व्युत्पन्न श्रेणियों को सामान्यतः क्रमशः D+ (A), डी (A) और Db (A) द्वारा निरूपित किया जाता है।

यदि कोई श्रेणियों पर शास्त्रीय दृष्टिकोण अपनाता है, कि एक वस्तु से दूसरी वस्तु में आकारिकी का समुच्चय (गणित) होता है (मात्र एक वर्ग (समुच्चय सिद्धांत) नहीं), तो उसे इसे सिद्ध करने के लिए एक अतिरिक्त तर्क देना होगा। यदि, उदाहरण के लिए, एबेलियन श्रेणी A छोटा है, अर्थात मात्र वस्तुओं का समुच्चय है, तो यह समस्या कोई समस्या नहीं होगी। इसके अतिरिक्त, यदि A ग्रोथेंडिक श्रेणी है, तो व्युत्पन्न श्रेणी D (A) समस्थेयता श्रेणी K (A) की पूर्ण उपश्रेणी के बराबर है, और इसलिए एक वस्तु से दूसरी वस्तु में मात्र आकारिकी का समुच्चय है।[6] ग्रोथेंडिक एबेलियन श्रेणियों में एक वलय के ऊपर मॉड्यूल की श्रेणी, सांस्थितिक समष्टि पर एबेलियन समूहों के चक्रिका की श्रेणी और कई अन्य उदाहरण सम्मिलित हैं।

व्युत्पन्न श्रेणी में आकारिकी, अर्थात पटलों की संरचना दो पटलों के शीर्ष पर तीसरी पटल खोजने के द्वारा पूरी की जाती है। यह जाँचा जा सकता है कि यह संभव है और एक ठीक रूप से परिभाषित, साहचर्य रचना देता है।

चूँकि K (A) त्रिकोणीय श्रेणी है, इसका स्थानीयकरण D (A) भी त्रिभुजित है। पूर्णांक n और सम्मिश्र X के लिए,[7] सम्मिश्र X [n] X को n द्वारा नीचे स्थानांतरित करने के लिए परिभाषित करें, ताकि

अंतर

के साथ।

परिभाषा के अनुसार, D (A) में विशिष्ट त्रिभुज एक त्रिकोण है जो D (A) में त्रिभुज X → Y → शंकु (f) → X [1] में सम्मिश्रों के कुछ प्रतिचित्र के लिए f: X → Y है। यहां शंकु (f) f के प्रतिचित्रण शंकु (अनुरूप बीजगणित) को दर्शाता है। विशेष रूप से, संक्षिप्त यथार्थ अनुक्रम के लिए

A में, त्रिकोण X → Y → Z → X [1] D (A) में प्रतिष्ठित है। वेर्डियर ने समझाया कि परिवर्तन X [1] की परिभाषा को X [1] को आकारिकी X → 0 के शंकु होने की आवश्यकता के कारण प्रणोदित किया गया है।[8]

A की वस्तु को परिमाण शून्य में केंद्रित सम्मिश्र के रूप में देखकर, व्युत्पन्न श्रेणी D (A) में उपश्रेणी के रूप में A होते है। व्युत्पन्न श्रेणी में आकारिता में सभी Ext प्रचालक के विषय में सूचना सम्मिलित है: A में किसी वस्तु X और Y के लिए और कोई पूर्णांक j,


प्रक्षेपी और अंतःक्षेप विभेदन

कोई भी सरलता से दिखा सकता है कि समस्थेयता तुल्यता अर्ध-समरूपता है, इसलिए उपरोक्त निर्माण में दूसरा चरण छोड़ा जा सकता है। परिभाषा सामान्यतः इस प्रकार से दी जाती है क्योंकि यह एक विहित प्रकार्यक

के अस्तित्व को प्रकट करती है।

ठोस स्थितियों में, सीधे व्युत्पन्न श्रेणी में आकारिता को संभालना बहुत कठिन या असंभव है। इसलिए, अधिक प्रबंधनीय श्रेणी की खोज करता है जो व्युत्पन्न श्रेणी के बराबर है। शास्त्रीय रूप से, इसके दो (दोहरे) दृष्टिकोण हैं: प्रक्षेपी और अंतःक्षेपी विभेदन। दोनों ही स्थितियों में, उपयुक्त उपश्रेणी के लिए उपरोक्त विहित प्रकार्यक का प्रतिबंध श्रेणियों की समानता होगी।

निम्नलिखित में हम व्युत्पन्न श्रेणी के संदर्भ में अंतःक्षेपी विभेदनों की भूमिका का वर्णन करेंगे, जो उचित व्युत्पन्न प्रकार्यकों को परिभाषित करने का आधार है, जिसके बदले में सांस्थितिक समष्टि या अधिक उन्नत सह-समरूपता सिद्धांतों जैसे ईटेल सह समरूपता या समूह सह समरूपता पर शीफ (गणित) के सह समरूपता में महत्वपूर्ण अनुप्रयोग हैं।

इस तकनीक को लागू करने के लिए, किसी को यह मान लेना होगा कि प्रश्न में एबेलियन श्रेणी में पर्याप्त अंतःक्षेप हैं, जिसका अर्थ है कि श्रेणी की प्रत्येक वस्तु X एक अंतःक्षेप वस्तु I के लिए एकरूपता स्वीकार करती है। (न तो प्रतिचित्र और न ही अंतःक्षेप वाली वस्तु को होना चाहिए विशिष्ट रूप से निर्दिष्ट।) उदाहरण के लिए, प्रत्येक ग्रोथेंडिक श्रेणी में पर्याप्त अंतःक्षेप हैं। X को कुछ अंतःक्षेपक वस्तु I0 में अंत: स्थापन करना, इस प्रतिचित्र के सह कर्नेल को कुछ अंतःक्षेपी I1 आदि में, एक X के एक अंतःक्षेप विभेदन का निर्माण करते है, अर्थात यथार्थ अनुक्रम (सामान्य अनंत में) अनुक्रम

जहाँ I * अंतःक्षेप वाली वस्तुएँ हैं। यह विचार पर्याप्त रूप से छोटे n के लिए परिबद्ध -नीचे सम्मिश्रों X, अर्थात Xn = 0 के विभेदनों के लिए सामान्यीकृत करते है। जैसा कि ऊपर उल्लेख किया गया है, अंतःक्षेपी विभेदन अद्वितीय रूप से परिभाषित नहीं हैं, परन्तु यह एक तथ्य है कि कोई भी दो विभेदन एक दूसरे के समतुल्य समस्थेयता हैं, अर्थात समस्थेयता श्रेणी में समरूपी। इसके अतिरिक्त, सम्मिश्रों के आकारिता विशिष्ट रूप से दो दिए गए अंतःक्षेप विभेदनों के आकारिता तक विस्तारित होते हैं।

यह वह बिंदु है जहां समस्थेयता श्रेणी फिर से चलन में आती है: A की वस्तु X को (किसी भी) अंतःक्षेपक विभेदन I* को A से प्रतिचित्रित करना नीचे व्युत्पन्न श्रेणी से एक प्रकार्यक

तक फैला हुआ है, जो समस्थेयता श्रेणी के सम्मिश्र से नीचे की ओर है, जिसके पद A में अंतःक्षेपक वाली वस्तुएं हैं।

यह देखना जटिल नहीं है कि यह प्रकार्यक वस्तुतः प्रारम्भ में उल्लिखित विहित स्थानीयकरण प्रकार्यक के प्रतिबंध के विपरीत है। दूसरे पदों में, व्युत्पन्न श्रेणी में आकारिता Hom (X,Y) की गणना X और Y दोनों को हल करके और समस्थेयता श्रेणी में आकारिता की गणना करके की जा सकती है, जो कम से कम सैद्धांतिक रूप से सरल है। वस्तुतः, यह Y को हल करने के लिए पर्याप्त है: किसी भी सम्मिश्र X के लिए और अंतःक्षेप,

के सम्मिश्र Y के नीचे परिबद्ध किसी भी के लिए।

दोहरी रूप से, यह मानते हुए कि A के निकट पर्याप्त प्रक्षेप्य वस्तु है, अर्थात प्रत्येक वस्तु X के लिए प्रक्षेपी वस्तु P से X तक अधिरूपता है, व्यक्ति अंतःक्षेप वाले के अतिरिक्त प्रक्षेपी विभेदनों का उपयोग कर सकता है।

इन विभेदन तकनीकों के अतिरिक्त ऐसे भी हैं जो विशेष स्थितियों पर लागू होते हैं, और जो सीमाबद्ध-उपरोक्त या -नीचे प्रतिबंधों के साथ समस्या से बचते हैं: स्पाल्टेंस्टीन (1988) तथाकथित K-अंतःक्षेप और K- प्रक्षेपी विभेदन का उपयोग करता है, मे (2006) और (थोड़ी अलग भाषा में) केलर (1994) क्रमशः तथाकथित सेल-मॉड्यूल और अर्ध-मुक्त मॉड्यूल प्रस्तुत किए।

अधिक सामान्यतः, परिभाषाओं को ध्यान से अपनाते हुए, एक यथार्थ श्रेणी की व्युत्पन्न श्रेणी (केलर 1996) को परिभाषित करना संभव है।

व्युत्पन्न प्रकार्यक से संबंध

व्युत्पन्न श्रेणी व्युत्पन्न प्रकार्यकों को परिभाषित करने और अध्ययन करने के लिए एक प्राकृतिक भाग है। निम्नलिखित में, F: A → B को एबेलियन श्रेणियों का एक प्रकार्यक होने दें। दो दोहरी अवधारणाएँ हैं:

  • दाएं व्युत्पन्न प्रकार्यक बाएं यथार्थ प्रकार्यक से आते हैं और अंतःक्षेप विभेदन के माध्यम से गणना की जाती है
  • बाएं व्युत्पन्न प्रकार्यक उचित यथार्थ प्रकार्यक से आते हैं और प्रक्षेपी विभेदन के माध्यम से गणना की जाती है

निम्नलिखित में हम उचित व्युत्पन्न प्रकार्यक का वर्णन करेंगे। तो, मान लें कि f यथार्थ छोड़ दिया गया है। विशिष्ट उदाहरण हैं F: A → Ab, जो X ↦ होम (X, A) या X ↦ होम (A, X) द्वारा कुछ निश्चित वस्तु A के लिए दिया गया है, या शेफ (गणित) या प्रत्यक्ष प्रतिरूप प्रचालक पर वैश्विक खंड प्रकार्यक हैं। उनके उचित व्युत्पन्न प्रकार्यक क्रमशः Extn (–,A), Extn (A,–), Hn (X,F) या Rnf(F) हैं।

व्युत्पन्न श्रेणी हमें सभी व्युत्पन्न प्रकार्यक RnF को एक प्रकार्यक में समाहित करने की अनुमति देती है, अर्थात् तथाकथित कुल व्युत्पन्न प्रकार्यक RF: D+ (A) → D+ (B)। यह निम्नलिखित रचना है: D+ (A) ≅ K+ (इंज (A)) → K+ (B) → D+ (B), जहां श्रेणियों की पहली समानता ऊपर वर्णित है। शास्त्रीय व्युत्पन्न फलन कुल एक से Rnf (X) = Hn (RF(X)) के माध्यम से संबंधित हैं। कोई कह सकता है कि RnF मिश्रित श्रेणी को भूल जाता है और मात्र सह समरूपता रखता है, जबकि RF सम्मिश्र का पद चिन्ह रखता है।

व्युत्पन्न श्रेणियां, एक अर्थ में, इन प्रकार्यकों का अध्ययन करने के लिए उचित स्थान हैं। उदाहरण के लिए, दो कारकों

की संरचना का ग्रोथेंडिक वर्णक्रमीय अनुक्रम, जैसे कि F से G-अचक्रीय (अर्थात सभी i > 0 और अंतःक्षेप I के लिए RiG (F(I)) = 0 में अंतःक्षेपक वस्तु को प्रतिचित्रित करता है), एक है कुल व्युत्पन्न प्रकार्यक

R (G∘F) ≅ RG∘RF की निम्नलिखित पहचान की अभिव्यक्ति है।

j.-L. वेर्डियर ने दिखाया कि एबेलियन श्रेणी A से जुड़े व्युत्पन्न फलन को A के अंत: स्थापन के साथ उपयुक्त व्युत्पन्न श्रेणियों मैक लेन में कान विस्तार के रूप में देखा जा सकता है।

व्युत्पन्न तुल्यता

ऐसा हो सकता है कि दो एबेलियन श्रेणियां A और B समकक्ष नहीं हैं, परन्तु उनकी व्युत्पन्न श्रेणियां D(A) और D(B) हैं। प्रायः यह A और B के बीच एक रुचिपूर्ण संबंध है। इस प्रकार की समानता त्रिकोणीय श्रेणी में t-संरचनाओं के सिद्धांत से संबंधित हैं। यहां कुछ उदाहरण दिए गए हैं।[9]

  • बता दें कि क्षेत्र (गणित) k पर प्रक्षेपण रेखा पर सुसंगत शीफ की एबेलियन श्रेणी है। K2-Rep को दो शीर्षों के साथ क्रोनकर तरकश के निरूपण की एबेलियन श्रेणी है। वे बहुत अलग एबेलियन श्रेणियां हैं, परन्तु उनकी (सीमित) व्युत्पन्न श्रेणियां समकक्ष हैं।
  • मान लीजिए Q कोई तरकश (गणित) है और P कुछ तीरों को व्युत्क्रमित कर Q से प्राप्त तरकश है। सामान्यतः, Q और P के प्रतिनिधित्व की श्रेणियां अलग-अलग होती हैं, परन्तु Db (Q-Rep) सदैव Db (P-Rep) के समतुल्य होते है।
  • बता दें कि X एक एबेलियन प्रकार है, Y इसकी दोहरी एबेलियन प्रकार है। तब Db (Coh(X)) Db फूरियर-मुकाई के सिद्धांत द्वारा (Coh(Y)) के बराबर है। सुसंगत चक्रिका की समतुल्य व्युत्पन्न श्रेणियों वाली प्रकारों को कभी-कभी 'फूरियर-मुकाई सहयोग' कहा जाता है।

यह भी देखें

टिप्पणियाँ

  1. Mac Lane, Categories for the Working Mathematician.
  2. Gabriel, Peter; Zisman, M. "1.2 The Calculus of Fractions: Proposition 2.4". फ्रैक्शंस और होमोटॉपी थ्योरी की गणना. Springer. p. 14. ISBN 978-3-642-85844-4.
  3. Weibel 1994, remark 10.4.5 and errata
  4. Stacks Project, tag 079P.
  5. Markarian, Nikita (2009). "अतियाह वर्ग, होशचाइल्ड कोहोलॉजी और रीमैन-रोच प्रमेय". Journal of the London Mathematical Society. 79: 129–143. arXiv:math/0610553. doi:10.1112/jlms/jdn064. S2CID 16236000.
  6. Kashiwara & Schapira 2006, Theorem 14.3.1
  7. Gelfand & Manin 2003, III.3.2
  8. Verdier 1996, Appendice to Ch. 1
  9. Keller, Bernhard (2003). "व्युत्पन्न श्रेणियां और झुकाव" (PDF).


संदर्भ

Four textbooks that discuss derived categories are: