रेजोल्यूशन (बीजगणित)

From Vigyanwiki

गणित में, और अधिक विशेष रूप से होमोलॉजिकल बीजगणित में, संकल्प (या बाएं संकल्प; दोहरी रूप से सहसंबंध या सही संकल्प[1]) मॉड्यूल (गणित) का एक त्रुटिहीन अनुक्रम है (या, अधिक सामान्यतः, एबेलियन श्रेणी की वस्तुओं (श्रेणी सिद्धांत) का), जिसका उपयोग किसी विशिष्ट मॉड्यूल या वस्तु की संरचना को चिह्नित करने वाले इनवेरिएंट (गणित) वर्ग को परिभाषित करने के लिए किया जाता है। जब, सामान्यतः, तीरों को दाईं ओर उन्मुख किया जाता है, तो अनुक्रम को (बाएं) संकल्पों के लिए बाईं ओर और दाएं संकल्पों के लिए दाईं ओर अनंत माना जाता है। चूँकि, परिमित संकल्प वह है जहाँ अनुक्रम में केवल बहुत सी वस्तुएँ गैर-शून्य हैं; यह सामान्यतः परिमित त्रुटिहीन अनुक्रम द्वारा दर्शाया जाता है जिसमें सबसे बाईं वस्तु (संकल्प के लिए) या सबसे दाहिनी वस्तु (सहसंयोजन के लिए) शून्य-वस्तु होती है।[2]

सामान्यतः, अनुक्रम में वस्तुओं को कुछ गुण P (उदाहरण के लिए मुक्त होने के लिए) प्रतिबंधित किया जाता है। इस प्रकार एक P संकल्प की बात करता है। विशेष रूप से, प्रत्येक मॉड्यूल में 'मुफ्त संकल्प', 'प्रक्षेपीय संकल्प' और 'फ्लैट संकल्प' होते हैं, जो क्रमशः मुक्त मॉड्यूल, प्रक्षेपी मॉड्यूल या फ्लैट मॉड्यूल से युक्त होते हैं। इसी प्रकार मुफ्त मॉड्यूल में 'इंजेक्शन संकल्प' होता है, जो इंजेक्शन मॉड्यूल से मिलकर बने सही संकल्प होते हैं।

मॉड्यूल के संकल्प

परिभाषाएं

वलय R पर मॉड्यूल एम दिया गया है, Mका 'बायां संकल्प' (या बस 'संकल्प') R-मॉड्यूल का त्रुटिहीन अनुक्रम (संभवतः अनंत) है

समरूपता di सीमा माप कहलाते हैं। माप ε को 'वृद्धि माप' कहा जाता है। संक्षिप्तता के लिए, उपरोक्त संकल्प को इस प्रकार लिखा जा सकता है

द्वैत (श्रेणी सिद्धांत) सही संकल्प (या सह-संकल्प, या केवल संकल्प) का है। विशेष रूप से, वलय R के ऊपर मॉड्यूल M दिया गया है, सही संकल्प R-मॉड्यूल का संभवतः अनंत त्रुटिहीन अनुक्रम है

जहां प्रत्येक Ci R-मॉड्यूल है (इस प्रकार के संकल्प की दोहरी प्रकृति को निरुपित करने के लिए संकल्प में वस्तुओं और उनके बीच के मापों पर सुपरस्क्रिप्ट का उपयोग करना सामान्य है)। संक्षिप्तता के लिए, उपरोक्त संकल्प को इस प्रकार लिखा जा सकता है

A (सह) संकल्प परिमित कहा जाता है यदि केवल सूक्ष्म रूप से सम्मिलित कई मॉड्यूल गैर-शून्य हैं। परिमित संकल्प की लंबाई अधिकतम सूचकांक 'n' है जो परिमित संकल्प में गैर-शून्य मॉड्यूल को लेबल करता है।

मुक्त, प्रक्षेपी, अंतःक्षेपी, और सपाट संकल्प

कई परिस्थितियों में मॉड्यूल Ei पर दिए गए मॉड्यूल M को हल करने के लिए शर्तें लगाई जाती हैं। उदाहरण के लिए एक मॉड्यूल M का एक मुक्त संकल्प एक बायाँ संकल्प है जिसमें सभी मॉड्यूल Ei मुक्त R-मॉड्यूल हैं। इसी प्रकार, प्रक्षेपी और सपाट संकल्प बाएं संकल्प हैं जैसे कि सभी ई क्रमशः प्रक्षेपी और फ्लैट आर-मॉड्यूल हैं। अंतःक्षेपी संकल्प सही संकल्प हैं जिनके सीआई सभी इंजेक्शन मॉड्यूल हैं।

प्रत्येक आर-मॉड्यूल में मुक्त बायाँ विभेदन होता है।[3] दुर्भाग्य से, प्रत्येक मॉड्यूल प्रक्षेपी और समतल संकल्पों को भी स्वीकार करता है। प्रमाण विचार E0 को M के तत्वों द्वारा उत्पन्न मुक्त R-मॉड्यूल के रूप में परिभाषित करना है, और फिर E1 को प्राकृतिक मानचित्र E0 → M आदि के कर्नेल के तत्वों द्वारा उत्पन्न मुक्त R-मॉड्यूल होना है। आर-मॉड्यूल में एक इंजेक्शन संकल्प है। टोर फ़ैक्टरों की गणना करने के लिए प्रक्षेपी संकल्प (और, अधिक सामान्यतः, फ्लैट संकल्प) का उपयोग किया जा सकता है।

एक मॉड्यूल M का प्रोजेक्टिव संकल्प एक चेन होमोटॉपी तक अद्वितीय है, यानी, दो प्रोजेक्टिव संकल्प P0 → M और P1 → M का M दिया गया है, उनके बीच एक चेन होमोटॉपी उपस्थित है।

समजातीय आयाम (बहुविकल्पी) को परिभाषित करने के लिए संकल्पों का उपयोग किया जाता है। मॉड्यूल एम के परिमित प्रक्षेपीय संकल्प की न्यूनतम लंबाई को इसका प्रक्षेपीय डायमेंशन कहा जाता है और इसे pd(M) के रूप में दर्शाया जाता है। उदाहरण के लिए, मॉड्यूल में प्रक्षेपी आयाम शून्य होता है यदि और केवल यदि यह प्रक्षेपी मॉड्यूल है। यदि M परिमित प्रक्षेपी संकल्प को स्वीकार नहीं करता है तो प्रक्षेपी आयाम अनंत है। उदाहरण के लिए, कम्यूटेटिव स्थानीय वलय R के लिए, प्रक्षेपीय डायमेंशन परिमित है यदि और केवल यदि R नियमित स्थानीय वलय है और इस स्थिति में यह R के क्रुल आयाम के साथ मेल खाता है। अनुरूप रूप से, इंजेक्शन आयाम id (M) और समतल आयाम fd (M) को मॉड्यूल के लिए भी परिभाषित किया गया है।

इंजेक्शन और प्रक्षेपी आयामों का उपयोग सही R मॉड्यूल की श्रेणी में R के लिए होमोलॉजिकल आयाम को परिभाषित करने के लिए किया जाता है जिसे R का सही वैश्विक आयाम कहा जाता है। इसी तरह, कमजोर वैश्विक आयाम को परिभाषित करने के लिए फ्लैट आयाम का उपयोग किया जाता है। इन आयामों का व्यवहार वलय की विशेषताओं को दर्शाता है। उदाहरण के लिए, वलय का सही वैश्विक आयाम 0 है यदि और केवल यदि यह अर्ध-सरल वलय है, और वलय का कमजोर वैश्विक आयाम 0 है यदि और केवल यदि यह वॉन न्यूमैन नियमित वलय है।

वर्गीकृत मॉड्यूल और बीजगणित

बता दें कि एम एक ग्रेडेड बीजगणित पर एक ग्रेडेड मॉड्यूल है, जो धनात्मक डिग्री के तत्वों द्वारा एक क्षेत्र पर उत्पन्न होता है। तब M के पास एक मुक्त विभेदन होता है जिसमें मुक्त मॉड्यूल Ei को इस तरह वर्गीकृत किया जा सकता है कि di और ε श्रेणीबद्ध रेखीय मानचित्र होते हैं। इन श्रेणीबद्ध मुक्त संकल्पों में न्यूनतम मुक्त संकल्प वे हैं जिनके लिए प्रत्येक Ei के आधार तत्वों की संख्या न्यूनतम है। प्रत्येक ईआई और उनकी डिग्री के आधार तत्वों की संख्या एक श्रेणीबद्ध मॉड्यूल के सभी न्यूनतम मुक्त संकल्पों के लिए समान होती है।

बता दें कि M ग्रेडेड बीजगणित पर ग्रेडेड मॉड्यूल है, जो धनात्मक डिग्री के तत्वों द्वारा क्षेत्र पर उत्पन्न होता है। फिर M के पास मुफ्त संकल्प है जिसमें मुक्त मॉड्यूल Ei को इस तरह वर्गीकृत किया जा सकता है कि di और ε श्रेणीबद्ध रेखीय माप होते हैं। इन श्रेणीबद्ध मुक्त संकल्पों में न्यूनतम मुक्त संकल्प वे हैं जिनके लिए प्रत्येक Ei के आधार तत्वों की संख्या न्यूनतम है। प्रत्येक Ei के आधार तत्वों की संख्या और उनकी डिग्री ग्रेडेड मॉड्यूल के सभी न्यूनतम मुक्त संकल्पों के लिए समान हैं।

यदि I एक क्षेत्र पर बहुपद वलय में सजातीय आदर्श है, तो I द्वारा परिभाषित प्रक्षेपीय बीजगणितीय सेट की कैस्टेलनुओवो-ममफोर्ड नियमितता न्यूनतम पूर्णांक R है जैसे कि Ei के आधार तत्वों की डिग्री I के न्यूनतम मुक्त संकल्प में सभी r-i से कम हैं।

उदाहरण

स्थानीय वलय में नियमित अनुक्रम के कोज़ुल परिसर या क्षेत्र में अंतिम रूप से उत्पन्न वर्गीकृत बीजगणित में सजातीय नियमित अनुक्रम द्वारा मुक्त संकल्प का उत्कृष्ट उदाहरण दिया जाता है।

मान लीजिए X एस्फेरिकल स्पेस है, अर्थात् इसका सार्वभौमिक आवरण E सिकुड़ा हुआ है। तब E का प्रत्येक विलक्षण होमोलॉजी (या एकवचन समरूपता) श्रृंखला परिसर न केवल वलय Z के ऊपर किन्तु समूह की वलय Z [π1 (X)] पर भी मॉड्यूल Z का एक मुक्त संकल्प है।

एबेलियन श्रेणियों में संकल्प

एबेलियन श्रेणी A में वस्तु M के संकल्प की परिभाषा उपरोक्त के समान है, किन्तु Ei और Ci A में वस्तुएँ हैं, और सम्मिलित सभी माप A में आकारिकी हैं।

प्रक्षेपीय और इंजेक्शन मॉड्यूल की समान धारणा प्रक्षेपण वस्तु और इंजेक्शन वस्तु हैं, और तदनुसार, प्रक्षेपीय और इंजेक्शन संकल्प है। चूंकि, इस प्रकार के संकल्पों को सामान्य एबेलियन श्रेणी A में उपस्थित होने की आवश्यकता नहीं है। यदि ए के प्रत्येक वस्तु में प्रक्षेपीय (प्रतिक्रियात्मक) संकल्प है, तो A को पर्याप्त पर्याप्त परियोजनाएँप्रतिक्रिया पर्याप्त इंजेक्शन) कहा जाता है। तथापि वे उपस्थित हों, ऐसे संकल्पों के साथ काम करना अधिकांश मुश्किल होता है। उदाहरण के लिए, जैसा कि ऊपर बताया गया है, प्रत्येक आर-मॉड्यूल में इंजेक्शन संकल्प होता है, किन्तु यह संकल्प कार्यात्मक नहीं होता है, अर्थात्, समरूपता M → M' दिया जाता है, साथ में इंजेक्शन संकल्प

सामान्यतः बीच का माप और प्राप्त करने का कोई क्रियात्मक विधि नहीं है।

सामान्य रूप से प्रक्षेपी संकल्पों के बिना एबेलियन श्रेणियां

अनुमानित प्रस्तावों के बिना एबेलियन श्रेणियों के उदाहरणों का वर्ग श्रेणियां हैं योजना पर सुसंगत शीफ का (गणित) . उदाहरण के लिए, यदि प्रक्षेपीय स्पेस है, कोई सुसंगत शीफ पर त्रुटिहीन अनुक्रम द्वारा दी गई प्रस्तुति है

पहले दो शब्द सामान्य रूप से प्रक्षेपीय नहीं हैं के लिए . किन्तु, दोनों शर्तें स्थानीय रूप से मुफ़्त हैं, और स्थानीय रूप से सपाट हैं। कुछ व्युत्पन्न फ़ैक्टरों की गणना के लिए प्रक्षेपीय संकल्पों को प्रतिस्थापित करने के लिए, कुछ कंप्यूटेशंस के लिए शेव के दोनों वर्गों का उपयोग किया जा सकता है।

चक्रीय संकल्प

कई मामलों में वास्तव में संकल्प में दिखाई देने वाली वस्तुओं में कोई दिलचस्पी नहीं है, किन्तु किसी दिए गए फ़ैक्टर के संबंध में संकल्प के व्यवहार में। इसलिए, कई स्थितियों में, चक्रीय संकल्पों की धारणा का उपयोग किया जाता है: बाएं त्रुटिहीन फ़ैक्टर एफ दिया गया: बी दो एबेलियन श्रेणियों के बीच, संकल्प

ए के वस्तु एम को एफ-एसाइक्लिक कहा जाता है, यदि व्युत्पन्न फ़ैक्टर आरiएफ (ईn) सभी i > 0 और n ≥ 0 के लिए गायब हो जाते हैं। यदि इसके व्युत्पन्न फ़ैक्टर संकल्प की वस्तुओं पर गायब हो जाते हैं, तो सही त्रुटिहीन फ़ंक्टर के संबंध में दोहरे रूप से, बायाँ संकल्प चक्रीय होता है।

उदाहरण के लिए, R मॉड्यूल एम, टेंसर उत्पाद दिया गया सही त्रुटिहीन फ़ैक्टर मॉड (आर) → मॉड (आर) है। इस फ़ैक्टर के संबंध में प्रत्येक फ्लैट संकल्प विश्वकोश है। फ्लैट संकल्प प्रत्येक एम द्वारा टेन्सर उत्पाद के लिए विश्वकोश है। इसी तरह, सभी फ़ैक्टर होम ( ⋅ , M) के लिए एसाइक्लिक संकल्प प्रक्षेपीय संकल्प हैं और फ़ैक्टर्स होम (M, ⋅ ) के लिए एसाइक्लिक इंज़ेक्टिव संकल्प हैं।

कोई भी इंजेक्शन (प्रक्षेपी) संकल्प 'एफ' है - किसी भी बाएं त्रुटिहीन (दाएं त्रुटिहीन, क्रमशः) फ़ैक्टर के लिए चक्रीय।

विश्वकोश संकल्पों का महत्व इस तथ्य में निहित है कि व्युत्पन्न कारक आरiF (बाएं त्रुटिहीन फ़ैक्टर का, और इसी तरह Liसही त्रुटिहीन फ़ंक्टर का F) F-एसाइक्लिक संकल्प के होमोलॉजी के रूप में प्राप्त किया जा सकता है: एसाइक्लिक संकल्प दिया गया वस्तु एम की, हमारे पास है

जहां दाहिने हाथ की ओर कॉम्प्लेक्स की आई-वें समरूपता वस्तु है यह स्थिति कई स्थितियों में लागू होती है। उदाहरण के लिए, लगातार शीफ R के लिए अलग-अलग कई गुना एम पर शेवों द्वारा हल किया जा सकता है चिकनी अंतर रूपों की:

पूले ठीक पुलिया हैं, जिन्हें वैश्विक खंड फंक्टर के संबंध में एसाइक्लिक के रूप में जाना जाता है ... ... इसलिए, शेफ कोहोलॉजी, जो वैश्विक खंड functor Γ के व्युत्पन्न फ़ैक्टर है, के रूप में गणना की जाती है इसी प्रकार वैश्विक खंड फ़ैक्टर के संबंध में गोडेमेंट संकल्प विश्वकोश हैं।

यह भी देखें

टिप्पणियाँ

  1. Jacobson 2009, §6.5 uses coresolution, though right resolution is more common, as in Weibel 1994, Chap. 2
  2. projective resolution at the nLab, resolution at the nLab
  3. Jacobson 2009, §6.5


संदर्भ

  • Iain T. Adamson (1972), Elementary rings and modules, University Mathematical Texts, Oliver and Boyd, ISBN 0-05-002192-3
  • Eisenbud, David (1995), Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Berlin, New York: Springer-Verlag, ISBN 3-540-94268-8, MR 1322960, Zbl 0819.13001
  • Jacobson, Nathan (2009) [1985], Basic algebra II (Second ed.), Dover Publications, ISBN 978-0-486-47187-7
  • Lang, Serge (1993), Algebra (Third ed.), Reading, Mass.: Addison-Wesley, ISBN 978-0-201-55540-0, Zbl 0848.13001
  • Weibel, Charles A. (1994). An introduction to homological algebra. Cambridge Studies in Advanced Mathematics. Vol. 38. Cambridge University Press. ISBN 978-0-521-55987-4. MR 1269324. OCLC 36131259.