टिट्स समूह

From Vigyanwiki


समूह सिद्धांत में, टिट्स समूह 2F4(2)′, जिसे जैक्स टिट्स French: [tits] के नाम पर रखा गया है, क्रम का एक परिमित सरल समूह है

   211 · 33 · 52 · 13 = 17,971,200।

इसे कभी-कभी 27वां छिटपुट समूह माना जाता है।

इतिहास और गुण

री समूह 2F4(22n+1) द्वारा निर्मित किया गया था Ree (1961), जिन्होंने दिखाया कि वे सरल हैं यदि n ≥ 1। इस श्रृंखला के पहले सदस्य 2F4(2) सरल नहीं है। द्वारा इसका अध्ययन किया गया जैक्स टिट्स (1964) जिन्होंने दिखाया कि यह लगभग सरल समूह है, इसका व्युत्पन्न उपसमूह है 2F4(2)' सूचकांक 2 का एक नया सरल समूह है, जिसे अब टिट्स समूह कहा जाता है। समूह 2F4(2) झूठ प्रकार का एक समूह है और इसमें बीएन जोड़ी है, किंतु टिट्स समूह में बीएन जोड़ी नहीं है। टिट्स समूह अनंत परिवार का सदस्य है2F4(22n+1)′ री समूहों के कम्यूटेटर समूहों का और इस प्रकार परिभाषा के अनुसार छिटपुट नहीं है। किंतु क्योंकि यह पूरी तरह से झूठ प्रकार का समूह नहीं है, इसे कभी-कभी 27वां छिटपुट समूह माना जाता है।[1]

टिट्स समूह का शूर गुणक तुच्छ है और इसके बाहरी ऑटोमोर्फिज़्म समूह का क्रम 2 है, जिसमें पूर्ण ऑटोमोर्फिज़्म समूह समूह 2F4(2) है।

टिट्स समूह फिशर समूह Fi22 के अधिकतम उपसमूह के रूप में होता है। समूह 2F4(2) 4060 = 1 + 1755 + 2304 बिंदुओं पर पद -3 क्रमपरिवर्तन क्रिया के बिंदु स्टेबलाइजर के रूप में रुडवालिस समूह के अधिकतम उपसमूह के रूप में भी होता है।

टिट्स समूह एन-समूह (परिमित समूह सिद्धांत) में से एक है| सरल एन-समूह, और जॉन जी थॉम्पसन की सरल एन-समूहों के वर्गीकरण की पहली घोषणा में इसे अनदेखा कर दिया गया था, क्योंकि यह उस समय खोजा नहीं गया था। यह भी पतले परिमित समूहों में से एक है।

पैरट (1972, 1973) और स्ट्रॉथ (1980) द्वारा टिट्स समूह की विभिन्न विधियों से विशेषता थी

की विभिन्न विधियों से विशेषता थी

अधिकतम उपसमूह

विल्सन (1984) और चाकरियन (1986) स्वतंत्र रूप से टिट्स समूह के अधिकतम उपसमूहों के 8 वर्गों को निम्नानुसार पाया गया:

L3(3):2 दो वर्ग, एक बाहरी ऑटोमोर्फिज्म द्वारा जुड़े हुए। ये उपसमूह पद 4 क्रमचय अभ्यावेदन के बिंदु तय करते हैं।

2.[28].5.4 एक समावेशन का केंद्रीकरण।

L2(25)

22.[28].S3

A6.22 (दो वर्ग, एक बाहरी ऑटोमोर्फिज्म द्वारा जुड़े हुए)

52:4A4

प्रस्तुति

टिट्स समूह को जनरेटर और संबंधों के संदर्भ में परिभाषित किया जा सकता है

जहां [ए, बी] कम्यूटेटर ए है-1बी-1 अब. इसमें (a, b) को (a, b(ba)) भेजकर प्राप्त किया गया एक बाहरी

ऑटोमोर्फिज्म है5बी(बीए)5).

जहां [a, b] कम्यूटेटर a−1b−1ab है। इसमें (a, b) से (a, b(ba)5b(ba)5).भेजकर प्राप्त किया गया एक बाहरी ऑटोमोर्फिज्म है।

टिप्पणियाँ

  1. For instance, by the ATLAS of Finite Groups and its web-based descendant


संदर्भ


बाहरी संबंध