सामान्य फलन
स्वयंसिद्ध समुच्चय सिद्धांत में, एक फलन f : क्रमसूचक संख्या → Ord को 'सामान्य' (या एक 'सामान्य फलन') कहा जाता है यदि और केवल यदि यह निरंतर फलन है#आंशिक रूप से क्रमित समुच्चयों के बीच सतत फलन (आदेश टोपोलॉजी के संबंध में) और मोनोटोनिक फ़ंक्शन। यह निम्नलिखित दो स्थितियों के बराबर है:
- प्रत्येक सीमा क्रमसूचक γ के लिए (अर्थात γ न तो शून्य है और न ही उत्तराधिकारी), यह स्थिति है कि f(γ) = सर्वोच्च {f(ν) : ν < γ}।
- सभी अध्यादेश α < β के लिए, यह मामला है कि f (α) < f (β)।
उदाहरण
द्वारा एक साधारण सामान्य कार्य दिया जाता है f(α) = 1 + α (क्रमिक अंकगणित देखें)। लेकिन f(α) = α + 1 सामान्य नहीं है क्योंकि यह किसी भी सीमा क्रमसूचक पर निरंतर नहीं है; वह है, एक-बिंदु खुले सेट की उलटी छवि {λ + 1} समुच्चय है {λ}, जो तब खुला नहीं है जब λ एक सीमा क्रमसूचक है। यदि β एक निश्चित क्रमसूचक है, तो कार्य करता है f(α) = β + α, f(α) = β × α (के लिए β ≥ 1), और f(α) = βα (के लिए β ≥ 2) सब सामान्य हैं।
सामान्य कार्यों के अधिक महत्वपूर्ण उदाहरण एलेफ संख्या द्वारा दिए गए हैं , जो क्रमवाचक और कार्डिनल संख्याओं और बेथ संख्याओं से जुड़ते हैं .
गुण
यदि f सामान्य है, तो किसी भी क्रमिक α के लिए,
- एफ (α) ≥ α।[1]
सबूत: यदि नहीं, तो γ न्यूनतम चुनें जैसे कि f(γ) <γ। चूँकि f कड़ाई से नीरस रूप से बढ़ रहा है, f(f(γ)) <'f(γ), γ की न्यूनतमता के विपरीत ।
इसके अलावा, किसी भी गैर-खाली सेट S के लिए, हमारे पास है
- f(sup S) = sup f(S).
प्रमाण: ≥ च की एकरसता और सर्वोच्चता की परिभाषा से अनुसरण करता है। ≤ के लिए, δ = sup S सेट करें और तीन मामलों पर विचार करें:
- अगर δ = 0, तो S = {0} और sup f(S) = f(0);
- यदि δ = ν + 1 एक उत्तराधिकारी क्रमसूचक है, तो S में ν <'s के साथ s मौजूद है, ताकि δ ≤ स। इसलिए, f(δ) ≤ f(s), जिसका अर्थ है f(δ) ≤ sup f(S' ');
- यदि δ एक गैर-शून्य सीमा है, तो कोई भी ν <δ, और S में एक s चुनें, जैसे कि ν <'s (संभव चूँकि δ = सुपर S)। इसलिए, f(ν) <'f(s) ताकि f(ν) < sup f(' 'S), उपज f(δ) = sup {f(ν) : ν < δ} ≤ sup f (एस), इच्छानुसार।
हर सामान्य कार्य 'एफ' में मनमाने ढंग से बड़े निश्चित बिंदु होते हैं; सबूत के लिए सामान्य कार्यों के लिए निश्चित-बिंदु लेम्मा देखें। कोई एक सामान्य कार्य 'एफ' बना सकता है: ऑर्ड → ऑर्ड, जिसे एफ का व्युत्पन्न कहा जाता है, जैसे एफ ( α ) α है - 'एफ' का वें निश्चित बिंदु।[2] सामान्य कार्यों के पदानुक्रम के लिए, वेब्लेन कार्य देखें।
टिप्पणियाँ
- ↑ Johnstone 1987, Exercise 6.9, p. 77
- ↑ Johnstone 1987, Exercise 6.9, p. 77