बोरेल समुच्चय

From Vigyanwiki
Revision as of 11:34, 30 May 2023 by alpha>Reena

गणित में, एक बोरेल समुच्चय एक टोपोलॉजिकल स्थान में कोई भी समुच्चय होता है जिसे गणनीय संघ (समुच्चय सिद्धांत) , गणनीय चौराहा (समुच्चय सिद्धांत) और सापेक्ष पूरक के संचालन के माध्यम से खुला समुच्चय (या समतुल्य, बंद समुच्चय से) से बनाया जा सकता है। . बोरेल समुच्चय का नाम एमिल बोरल उपाय नाम पर रखा गया है।

एक टोपोलॉजिकल स्थान X के लिए, X पर सभी बोरेल समुच्चय का समुच्चय एक सिग्मा-बीजगणित बनाता है| σ-बीजगणित, जिसे बोरेल बीजगणित या बोरेल σ-बीजगणित के रूप में जाना जाता है। X पर बोरेल बीजगणित सबसे छोटा σ-बीजगणित है जिसमें सभी खुले समुच्चय (या, समतुल्य, सभी बंद समुच्चय) सम्मिलित हैं।

माप सिद्धांत में बोरेल समुच्चय महत्वपूर्ण हैं, क्योंकि किसी स्थान के खुले समुच्चयों पर या किसी स्थान के बंद समुच्चयों पर परिभाषित किसी भी माप को उस स्थान के सभी बोरेल समुच्चयों पर भी परिभाषित किया जाना चाहिए। बोरल समुच्चय पर परिभाषित किसी भी माप को बोरेल माप कहा जाता है। बोरेल समुच्चय और संबंधित बोरेल पदानुक्रम भी वर्णनात्मक समुच्चय सिद्धांत में मौलिक भूमिका निभाते हैं।

कुछ संदर्भों में, बोरेल समुच्चय को खुले समुच्चय के बजाय टोपोलॉजिकल स्थान के कॉम्पैक्ट समुच्चय द्वारा उत्पन्न होने के लिए परिभाषित किया गया है। दो परिभाषाएँ कई अच्छे व्यवहार वाले स्थानों के लिए समान हैं, जिसमें सभी हॉसडॉर्फ स्थान σ-कॉम्पैक्ट स्थान सम्मिलितहैं, लेकिन अधिक पैथोलॉजिकल (गणित) स्थान में भिन्न हो सकते हैं।

बोरेल बीजगणित उत्पन्न करना

इस घटना में , X एक मीट्रिक स्थान है, पहले अर्थ में बोरेल बीजगणित को सामान्य रूप से निम्नानुसार वर्णित किया जा सकता है।

X के सबसमुच्चय के समुच्चय टी के लिए (यानी, X के सत्ता स्थापित पी (X) के किसी भी सबसमुच्चय के लिए), चलो

  • टी के तत्वों के सभी गणनीय संघ बनें
  • T के अवयवों के सभी गणनीय प्रतिच्छेद हों

अब ट्रांसफिनिट इंडक्शन द्वारा अनुक्रम Gm को परिभाषित करें, जहाँ m एक क्रमिक संख्या है, निम्नलिखित तरीके से:

  • परिभाषा के आधार घटना के लिए, आइए को X के खुले उपसमुच्चयों का होने दें।
  • यदि i (आई) एक सीमा क्रमसूचक नहीं है, तो मेरे पास एक ठीक पूर्ववर्ती क्रमसूचक i - 1 है
  • यदि मैं एक सीमा क्रमसूचक है, तो समुच्चय करें

दावा है कि बोरेल बीजगणित Gω1 है, जहां ω1 पहला अगणित क्रमसूचक है। अर्थात्, ऑपरेशन को पुनरावृत्त करके खुले समुच्चयों के वर्ग से बोरेल बीजगणित उत्पन्न किया जा सकता है

पहले अगणित अध्यादेश के लिए।

इस दावे को साबित करने के लिए, मीट्रिक स्थान में कोई भी खुला समुच्चय बंद समुच्चयों के बढ़ते अनुक्रम का संघ है। विशेष रूप से, समुच्चय मैप्स Gm का पूरक किसी भी सीमा के लिए अपने आप में क्रमसूचक m; इसके अलावा अगर m एक अगणित सीमा क्रमसूचक है, Gm गणनीय संघों के अंतर्गत बंद है।

प्रत्येक बोरेल समुच्चय B के लिए, कुछ गणनीय क्रमिक αB है ऐसा है कि B को αB पर ऑपरेशन को पुनरावृत्त करके प्राप्त किया जा सकता है. हालाँकि, जैसा कि B सभी बोरेल समुच्चयों में भिन्न होता है, αBसभी गणनीय अध्यादेशों में भिन्नता होगी, और इस प्रकार पहला क्रमांक जिस पर सभी बोरेल समुच्चय प्राप्त होते हैं, वह है ω1, पहला अगणित क्रमसूचक।

उदाहरण

एक महत्वपूर्ण उदाहरण, विशेष रूप से संभाव्यता सिद्धांत में, वास्तविक संख्याओं के समुच्चय पर बोरेल बीजगणित है। यह वह बीजगणित है जिस पर बोरेल माप को परिभाषित किया गया है। एक यादृच्छिक चर वास्तविक-मूल्यवान यादृच्छिक चर को संभाव्यता स्थान पर परिभाषित किया गया है, इसकी संभावना वितरण परिभाषा के अनुसार बोरेल बीजगणित पर भी एक उपाय है।

वास्तविक पर बोरेल बीजगणित R पर सबसे छोटा σ-बीजगणित है जिसमें सभी अंतराल (गणित) सम्मिलित हैं।

ट्रांसफिनिट इंडक्शन द्वारा निर्माण में, यह दिखाया जा सकता है कि, प्रत्येक चरण में, समुच्चय की प्रमुखता, अधिक से अधिक, सातत्य की कार्डिनैलिटी है। तो, बोरेल समुच्चय की कुल संख्या कम या बराबर है

वास्तव में, बोरेल समुच्चयों के समुच्चय की कार्डिनैलिटी सातत्य के बराबर है (लेबेसेग मापने योग्य समुच्चयों की संख्या की तुलना में उपस्थित है, जो सख्ती से बड़ा है और इसके बराबर है ).

मानक बोरेल रिक्त स्थान और कुराटोस्की प्रमेय

X को टपॉल G का मूल्य रहने दें। X से जुड़ा 'बोरेल स्थान' जोड़ी (X, B) है, जहां B, X के बोरेल समुच्चय का σ-बीजगणित है।

जॉर्ज मैके ने बोरेल स्थान को कुछ अलग तरीके से परिभाषित किया, यह लिखते हुए कि यह एक विशिष्ट σ-क्षेत्र के सबसमुच्चय के साथ एक समुच्चय है जिसे इसके बोरेल समुच्चय कहा जाता है।[1] हालांकि, आधुनिक उपयोग विशिष्ट उप-बीजगणित को औसत दर्जे का समुच्चय और ऐसे रिक्त स्थान को मापने योग्य स्थान कहते हैं। इस भेद का कारण यह है कि बोरेल समुच्चय खुले समुच्चय (एक टोपोलॉजिकल स्थान) द्वारा उत्पन्न σ-बीजगणित हैं, जबकि मैके की परिभाषा एक मनमाना σ-बीजगणित से लैस समुच्चय को संदर्भित करती है। अंतर्निहित स्थान पर टोपोलॉजी के किसी भी विकल्प के लिए मापने योग्य स्थान उपस्थित हैं जो बोरेल स्थान नहीं हैं।[2]

मापने योग्य स्थान एक श्रेणी (गणित) बनाते हैं जिसमें आकारिकी मापने योग्य स्थानों के बीच रूपवाद मापने योग्य कार्य होते हैं। एक फलन मापने योग्य कार्य है यदि यह मापने योग्य समुच्चय को ठहराना करता है, यानी, Y में सभी मापने योग्य समुच्चय B के लिए, समुच्चय X में मापने योग्य है।

'प्रमेय'।, X को एक पोलिश स्थान होने दें, यानी एक टोपोलॉजिकल स्थान जैसे कि X पर एक मेट्रिक (गणित) d है जो X की टोपोलॉ G को परिभाषित करता है और जो X को एक पूर्ण वियोज्य स्थान मेट्रिक स्थान बनाता है। तब X वियोज्य स्थान के रूप में से एक के लिए समरूपी है

  1. 'R',
  2. 'Z',
  3. एक परिमित स्थान।

(यह परिणाम महरम के प्रमेय की याद दिलाता है।)

बोरेल रिक्त स्थान के रूप में माना जाता है, वास्तविक रेखा 'R', एक गणनीय समुच्चय के साथ 'R' का संघ, और Rn समरूप हैं।

एक मानक बोरेल स्थान एक पोलिश स्थान से जुड़ा बोरेल स्थान है। एक मानक बोरेल स्थान को इसकी प्रमुखता द्वारा समाकृतिकता तक चित्रित किया जाता है,[3] और किसी भी अगणित मानक बोरेल स्थान में सातत्य की प्रमुखता होती है।

पोलिश स्थानों के सबसमुच्चय के लिए, बोरेल समुच्चय को उन समुच्चयों के रूप में वर्णित किया जा सकता है जो पोलिश रिक्त स्थान पर परिभाषित निरंतर इंजेक्शन मानचित्रों की श्रेणी हैं। हालाँकि, ध्यान दें कि निरंतर गैर-इंजेक्शन मानचित्र की सीमा बोरेल होने में विफल हो सकती है। विश्लेषणात्मक समुच्चय देखें।

एक मानक बोरेल स्थान पर प्रत्येक प्रायिकता माप इसे एक मानक प्रायिकता स्थान में बदल देता है।

गैर-बोरेल समुच्चय

वास्तविक के एक उपसमुच्चय का एक उदाहरण जो गैर-बोरेल है, निकोलाई लुज़िन के कारण,[4] नीचे वर्णित है। इसके विपरीत, एक गैर-मापने योग्य समुच्चय का उदाहरण प्रदर्शित नहीं किया जा सकता है, हालांकि इसका अस्तित्व सिद्ध किया जा सकता है।

प्रत्येक अपरिमेय संख्या का एक अनंत निरंतर अंश द्वारा एक अद्वितीय प्रतिनिधित्व होता है

कहाँ कुछ पूर्णांक और अन्य सभी संख्याएँ हैं सकारात्मक पूर्णांक हैं। होने देना अनुक्रमों के संगत सभी अपरिमेय संख्याओं का समुच्चय हो निम्नलिखित संपत्ति के साथ: एक अनंत अनुक्रम उपस्थित है जैसे कि प्रत्येक तत्व अगले तत्व का विभाजक है। यह समुच्चय बोरेल नहीं है। वास्तव में, यह विश्लेषणात्मक समुच्चय है, और विश्लेषणात्मक समुच्चय की श्रेणी में पूर्ण है। अधिक जानकारी के लिए वर्णनात्मक समुच्चय सिद्धांत और अलेक्जेंडर एस केक्रिस द्वारा पुस्तक देखें, विशेष रूप से पृष्ठ 209 पर व्यायाम (27.2), पृष्ठ 169 पर परिभाषा (22.9), और पृष्ठ 14 पर व्यायाम (3.4) (ii)।

यह ध्यान रखना महत्वपूर्ण है कि जब ए का निर्माण ZF में किया जा सकता है, यह अकेले ZF में गैर-बोरेल साबित नहीं हो सकता। वास्तव में, यह ZF के अनुरूप है गणनीय समुच्चयों का एक गणनीय संघ है,[5] ताकि कोई भी उपसमुच्चय बोरेल समुच्चय है।

एक अन्य गैर-बोरेल समुच्चय एक उलटी छवि है समता फ़ंक्शन का अनंत समता फ़ंक्शन . हालाँकि, यह अस्तित्व का प्रमाण है (पसंद के स्वयंसिद्ध के माध्यम से), स्पष्ट उदाहरण नहीं।

वैकल्पिक गैर-समतुल्य परिभाषाएँ

पॉल हेल्मोस के अनुसार,[6] स्थानीय रूप से कॉम्पैक्ट हॉसडॉर्फ टोपोलॉजिकल स्थान के एक उपसमुच्चय को बोरेल समुच्चय कहा जाता है यदि यह सबसे छोटे सिग्मा-रिंग | σ-रिंग से संबंधित होता है जिसमें सभी कॉम्पैक्ट समुच्चय होते हैं।

नॉरबर्ग और वर्वाट[7] टोपोलॉजिकल स्थान के बोरेल बीजगणित को फिर से परिभाषित करें के रूप में -बीजगणित इसके खुले उपसमुच्चयों और इसके कॉम्पैक्ट संतृप्त समुच्चयों द्वारा उत्पन्न होता है। यह परिभाषा उस घटनामें अनुप्रयोगों के लिए उपयुक्त है जहां हॉसडॉर्फ नहीं है। यह सामान्य परिभाषा के साथ मेल खाता है यदि दूसरा गणनीय है या यदि प्रत्येक कॉम्पैक्ट संतृप्त सबसमुच्चय बंद है (जो कि विशेष रूप से घटना है हॉसडॉर्फ है)।

यह भी देखें

टिप्पणियाँ

  1. Mackey, G.W. (1966), "Ergodic Theory and Virtual Groups", Math. Ann., 166 (3): 187–207, doi:10.1007/BF01361167, ISSN 0025-5831, S2CID 119738592
  2. Jochen Wengenroth, Is every sigma-algebra the Borel algebra of a topology?
  3. Srivastava, S.M. (1991), A Course on Borel Sets, Springer Verlag, ISBN 978-0-387-98412-4
  4. Lusin, Nicolas (1927), "Sur les ensembles analytiques", Fundamenta Mathematicae (in français), 10: Sect. 62, pages 76–78, doi:10.4064/fm-10-1-1-95
  5. Jech, Thomas (2008). पसंद का स्वयंसिद्ध. Courier Corporation. p. 142.
  6. (Halmos 1950, page 219)
  7. Tommy Norberg and Wim Vervaat, Capacities on non-Hausdorff spaces, in: Probability and Lattices, in: CWI Tract, vol. 110, Math. Centrum Centrum Wisk. Inform., Amsterdam, 1997, pp. 133-150


संदर्भ

  • विलियम अर्वेसन, एन इनविटेशन टू सी*-अलजेब्रस, स्प्रिंगर-वर्लाग, 1981। (पोलिश टोपोलॉजी की उत्कृष्ट व्याख्या के लिए अध्याय 3 देखें)
  • रिचर्ड डुडले, वास्तविक विश्लेषण और संभावना। वड्सवर्थ, ब्रूक्स और कोल, 1989
  • हल्मोस, पॉल आर. (1950). माप सिद्धांत. डी वैन नोस्ट्रैंड कंपनी. See especially Sect. 51 "Borel sets and Baire sets".
  • हैल्सी रॉयडेन, वास्तविक विश्लेषण, अप्रेंटिस हॉल, 1988
  • अलेक्जेंडर एस केक्रिस, शास्त्रीय वर्णनात्मक समुच्चय थ्योरी, स्प्रिंगर-वर्लाग, 1995 (गणित में स्नातक ग्रंथ।, खंड 156)

बाहरी संबंध

Lightface Boldface
Σ0
0
= Π0
0
= Δ0
0
(sometimes the same as Δ0
1
)
Σ0
0
= Π0
0
= Δ0
0
(if defined)
Δ0
1
= recursive
Δ0
1
= clopen
Σ0
1
= recursively enumerable
Π0
1
= co-recursively enumerable
Σ0
1
= G = open
Π0
1
= F = closed
Δ0
2
Δ0
2
Σ0
2
Π0
2
Σ0
2
= Fσ
Π0
2
= Gδ
Δ0
3
Δ0
3
Σ0
3
Π0
3
Σ0
3
= Gδσ
Π0
3
= Fσδ
Σ0
= Π0
= Δ0
= Σ1
0
= Π1
0
= Δ1
0
= arithmetical
Σ0
= Π0
= Δ0
= Σ1
0
= Π1
0
= Δ1
0
= boldface arithmetical
Δ0
α
recursive)
Δ0
α
countable)
Σ0
α
Π0
α
Σ0
α
Π0
α
Σ0
ωCK
1
= Π0
ωCK
1
= Δ0
ωCK
1
= Δ1
1
= hyperarithmetical
Σ0
ω1
= Π0
ω1
= Δ0
ω1
= Δ1
1
= B = Borel
Σ1
1
= lightface analytic
Π1
1
= lightface coanalytic
Σ1
1
= A = analytic
Π1
1
= CA = coanalytic
Δ1
2
Δ1
2
Σ1
2
Π1
2
Σ1
2
= PCA
Π1
2
= CPCA
Δ1
3
Δ1
3
Σ1
3
Π1
3
Σ1
3
= PCPCA
Π1
3
= CPCPCA
Σ1
= Π1
= Δ1
= Σ2
0
= Π2
0
= Δ2
0
= analytical
Σ1
= Π1
= Δ1
= Σ2
0
= Π2
0
= Δ2
0
= P = projective