औसती फलन
गणित में और विशेष रूप से गणितीय विश्लेषण #Measure_theory में, एक मापने योग्य कार्य दो मापने योग्य स्थान के अंतर्निहित सेटों के बीच एक कार्य है जो रिक्त स्थान की संरचना को संरक्षित करता है: किसी भी माप (गणित) सेट की पूर्व छवि मापने योग्य है। यह परिभाषा के सीधे सादृश्य में है कि टोपोलॉजिकल स्पेस आकारिता के बीच एक सतत कार्य कार्य टोपोलॉजिकल संरचना: किसी भी खुले सेट का पूर्वाभास खुला है। वास्तविक विश्लेषण में, मापने योग्य कार्यों का उपयोग लेबेसेग एकीकरण की परिभाषा में किया जाता है। संभाव्यता सिद्धांत में, संभाव्यता स्थान पर मापने योग्य कार्य को यादृच्छिक चर के रूप में जाना जाता है।
औपचारिक परिभाषा
होने देना और मापने योग्य स्थान हो, जिसका अर्थ है और are sets equipped with respective [[σ-algebra|-बीजगणित और एक समारोह औसत दर्जे का कहा जाता है अगर हर के लिए की पूर्व छवि अंतर्गत में है ; यानी सभी के लिए
शब्द उपयोग भिन्नता
का चुनाव उपरोक्त परिभाषा में बीजगणित कभी-कभी निहित होता है और संदर्भ तक छोड़ दिया जाता है। उदाहरण के लिए, के लिए या अन्य टोपोलॉजिकल रिक्त स्थान, बोरेल बीजगणित (सभी खुले सेटों द्वारा उत्पन्न) एक आम पसंद है। कुछ लेखक मापने योग्य कार्यों को बोरेल बीजगणित के संबंध में विशेष रूप से वास्तविक-मूल्यवान कार्यों के रूप में परिभाषित करते हैं।[1] यदि फ़ंक्शन के मान एक अनंत-आयामी वेक्टर अंतरिक्ष में हैं, तो मापनीयता की अन्य गैर-समतुल्य परिभाषाएं, जैसे कमजोर मापनीयता और बोचनर मापनीयता मौजूद हैं।
मापने योग्य कार्यों के उल्लेखनीय वर्ग
- रैंडम वेरिएबल्स परिभाषा के अनुसार प्रायिकता रिक्त स्थान पर परिभाषित औसत दर्जे के कार्य हैं।
- अगर और बोरेल सेट # मानक बोरेल रिक्त स्थान और कुराटोस्की प्रमेय हैं, एक मापने योग्य कार्य इसे बोरेल फंक्शन भी कहा जाता है। सतत फलन बोरेल फलन होते हैं लेकिन सभी बोरेल फलन संतत नहीं होते हैं। हालाँकि, एक मापने योग्य कार्य लगभग एक सतत कार्य है; लुज़िन की प्रमेय देखें। यदि एक बोरेल फ़ंक्शन मानचित्र का एक भाग होता है इसे बोरेल सेक्शन कहा जाता है।
- एक Lebesgue औसत दर्जे का कार्य एक औसत दर्जे का कार्य है कहाँ है लेबेस्ग औसत दर्जे का सेट का बीजगणित, और सम्मिश्र संख्याओं पर बोरेल बीजगणित है Lebesgue मापने योग्य कार्य गणितीय विश्लेषण में रुचि रखते हैं क्योंकि उन्हें एकीकृत किया जा सकता है। यदि Lebesgue मापने योग्य है अगर और केवल अगर सभी के लिए मापने योग्य है यह भी इनमें से किसी के बराबर है सभी के लिए मापने योग्य होना या किसी भी खुले सेट के मापने योग्य होने की पूर्व-छवि। निरंतर कार्य, मोनोटोन कार्य, चरण कार्य, अर्ध-सतत कार्य, रीमैन-अभिन्न कार्य, और परिबद्ध भिन्नता के कार्य सभी Lebesgue मापने योग्य हैं।[2] एक समारोह मापनीय है यदि और केवल यदि वास्तविक और काल्पनिक भाग मापने योग्य हैं।
मापने योग्य कार्यों के गुण
- दो जटिल-मूल्यवान मापने योग्य कार्यों का योग और उत्पाद औसत दर्जे का है।[3] भागफल भी ऐसा ही है, जब तक कि शून्य से कोई विभाजन न हो।[1]* अगर और मापने योग्य कार्य हैं, तो उनकी रचना भी है [1]* अगर और मापने योग्य कार्य हैं, उनकी रचना जरूरत नहीं है -मापने योग्य जब तक वास्तव में, दो Lebesgue-मापने योग्य कार्यों का निर्माण इस तरह से किया जा सकता है कि उनकी रचना को गैर-Lebesgue-मापने योग्य बनाया जा सके।
- वास्तविक-मूल्यवान मापने योग्य कार्यों के अनुक्रम (अर्थात्, गणनीय रूप से कई) के (बिंदुवार) अंतिम , सबसे कम, निचली सीमा, और लिमिट हीन सभी मापनीय भी हैं।[1][4]
- मापने योग्य कार्यों के अनुक्रम की बिंदुवार सीमा मापने योग्य है, जहां एक मीट्रिक स्थान है (बोरेल बीजगणित के साथ संपन्न)। यह सामान्य तौर पर सच नहीं है अगर गैर-मेट्रिजेबल है। निरंतर कार्यों के लिए संबंधित बयानों को बिंदुवार अभिसरण की तुलना में मजबूत स्थितियों की आवश्यकता होती है, जैसे वर्दी अभिसरण।[5][6]
गैर-मापने योग्य कार्य
अनुप्रयोगों में सामने आने वाले वास्तविक-मूल्यवान कार्य औसत दर्जे के होते हैं; हालाँकि, गैर-मापने योग्य कार्यों के अस्तित्व को साबित करना मुश्किल नहीं है। इस तरह के प्रमाण एक आवश्यक तरीके से पसंद के स्वयंसिद्ध पर निर्भर करते हैं, इस अर्थ में कि ज़र्मेलो-फ्रेंकेल सेट सिद्धांत पसंद के स्वयंसिद्ध के बिना ऐसे कार्यों के अस्तित्व को साबित नहीं करता है।
किसी भी माप स्थान मेंएक गैर-मापने योग्य सेट के साथ एक गैर-मापने योग्य संकेतक समारोह का निर्माण कर सकता है:
कहाँ सामान्य बोरेल बीजगणित से सुसज्जित है। मापने योग्य सेट की प्रीइमेज के बाद से यह एक गैर-मापने योग्य कार्य है गैर-मापने योग्य है
एक अन्य उदाहरण के रूप में, कोई भी गैर-निरंतर कार्य तुच्छ के संबंध में गैर-मापने योग्य है -बीजगणित चूंकि सीमा में किसी भी बिंदु की पूर्वकल्पना कुछ उचित, गैर-खाली उपसमुच्चय है जो तुच्छ का एक तत्व नहीं है
यह भी देखें
- Bochner measurable function
- Bochner space
- Lp space - मापने योग्य कार्यों के वेक्टर रिक्त स्थान: एलपी स्थान | खाली स्थान
- Measure-preserving dynamical system
- Vector measure
- Weakly measurable function
टिप्पणियाँ
- ↑ 1.0 1.1 1.2 1.3 Strichartz, Robert (2000). विश्लेषण का तरीका. Jones and Bartlett. ISBN 0-7637-1497-6.
- ↑ Carothers, N. L. (2000). वास्तविक विश्लेषण. Cambridge University Press. ISBN 0-521-49756-6.
- ↑ Folland, Gerald B. (1999). Real Analysis: Modern Techniques and their Applications. Wiley. ISBN 0-471-31716-0.
- ↑ Royden, H. L. (1988). वास्तविक विश्लेषण. Prentice Hall. ISBN 0-02-404151-3.
- ↑ Dudley, R. M. (2002). वास्तविक विश्लेषण और संभावना (2 ed.). Cambridge University Press. ISBN 0-521-00754-2.
- ↑ Aliprantis, Charalambos D.; Border, Kim C. (2006). अनंत आयामी विश्लेषण, एक सहयात्री की मार्गदर्शिका (3 ed.). Springer. ISBN 978-3-540-29587-7.