समूह योजना

From Vigyanwiki
Revision as of 11:46, 26 May 2023 by alpha>Indicwiki (Created page with "{{Group theory sidebar |Basics}} गणित में, एक समूह योजना बीजगणितीय ज्यामिति से एक प्र...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, एक समूह योजना बीजगणितीय ज्यामिति से एक प्रकार की वस्तु है जो रचना कानून से सुसज्जित है। समूह योजनाएँ स्वाभाविक रूप से योजना (गणित) की समरूपता के रूप में उत्पन्न होती हैं, और वे बीजगणितीय समूहों को सामान्य करती हैं, इस अर्थ में कि सभी बीजगणितीय समूहों में समूह योजना संरचना होती है, लेकिन समूह योजनाएँ एक क्षेत्र से जुड़ी, सुचारू या परिभाषित नहीं होती हैं। यह अतिरिक्त व्यापकता एक व्यक्ति को समृद्ध अतिसूक्ष्म संरचनाओं का अध्ययन करने की अनुमति देती है, और यह अंकगणितीय महत्व के प्रश्नों को समझने और उनका उत्तर देने में सहायता कर सकती है। समूह योजनाओं की श्रेणी (गणित) समूह विविधता की तुलना में कुछ हद तक बेहतर व्यवहार करती है, क्योंकि सभी समरूपताओं में कर्नेल (श्रेणी सिद्धांत) होते हैं, और एक अच्छा व्यवहार विरूपण सिद्धांत होता है। समूह योजनाएँ जो बीजगणितीय समूह नहीं हैं, अंकगणित ज्यामिति और बीजगणितीय टोपोलॉजी में महत्वपूर्ण भूमिका निभाती हैं, क्योंकि वे गैलोज़ अभ्यावेदन और मोडुली समस्याओं के संदर्भ में सामने आती हैं। समूह योजनाओं के सिद्धांत का प्रारंभिक विकास 1960 के दशक की शुरुआत में अलेक्जेंडर ग्रोथेंडिक, मिशेल रेनॉड और मिशेल डेमजुरे के कारण हुआ था।

परिभाषा

एक समूह योजना एक समूह वस्तु है जो योजनाओं की एक श्रेणी में है जिसमें फाइबर उत्पाद और कुछ अंतिम वस्तु एस है। यानी, यह एक एस-स्कीम जी है जो डेटा के समतुल्य सेटों में से एक से सुसज्जित है।

  • morphisms का एक ट्रिपल μ: G ×S जी → जी, ई: एस → जी, और ι: जी → जी, समूहों की सामान्य अनुकूलताओं को संतुष्ट करना (अर्थात् μ, पहचान, और व्युत्क्रम अभिगृहीतों की संबद्धता)
  • समूहों की श्रेणी के लिए S से ऊपर की योजनाओं का एक फ़ंक्टर, जैसे कि सेट (गणित) के लिए भुलक्कड़ फ़नकार के साथ रचना Yoneda लेम्मा के तहत G के अनुरूप प्रीशेफ़ के बराबर है। (यह भी देखें: समूह फ़ंक्टर।)

समूह योजनाओं का एक समरूपता उन योजनाओं का मानचित्र है जो गुणन का सम्मान करती हैं। यह या तो यह कहकर सटीक रूप से व्यक्त किया जा सकता है कि एक मानचित्र f समीकरण fμ = μ (f × f) को संतुष्ट करता है, या यह कहकर कि f योजनाओं से समूहों (सिर्फ सेट के बजाय) में फ़ैक्टरों का एक प्राकृतिक परिवर्तन है।

एक योजना X पर एक समूह-योजना क्रिया G एक आकारिकी G × हैS एक्स → एक्स जो किसी भी एस-स्कीम टी के लिए सेट एक्स (टी) पर समूह जी (टी) के बाएं समूह क्रिया (गणित) को प्रेरित करता है। सही कार्यों को इसी तरह परिभाषित किया जाता है। कोई भी समूह योजना गुणा और आंतरिक ऑटोमोर्फिज़्म द्वारा अपनी अंतर्निहित योजना पर प्राकृतिक बाएँ और दाएँ कार्यों को स्वीकार करती है। संयुग्मन ऑटोमोर्फिज़्म द्वारा एक क्रिया है, अर्थात, यह समूह संरचना के साथ संचार करता है, और यह स्वाभाविक रूप से व्युत्पन्न वस्तुओं पर रैखिक क्रियाओं को प्रेरित करता है, जैसे कि इसका झूठ बीजगणित, और बाएं-अपरिवर्तनीय अंतर ऑपरेटरों के बीजगणित।

एक एस-ग्रुप स्कीम जी कम्यूटेटिव है यदि ग्रुप जी (टी) सभी एस-स्कीम टी के लिए एक एबेलियन ग्रुप है। कई अन्य समतुल्य स्थितियां हैं, जैसे संयुग्मन एक तुच्छ क्रिया को प्रेरित करता है, या उलटा नक्शा ι एक समूह आंतरिक ऑटोमोर्फिज्म है। .

निर्माण

  • एक समूह जी दिया गया है, कोई निरंतर समूह योजना जी बना सकता हैS. एक योजना के रूप में, यह एस की प्रतियों का एक अलग संघ है, और जी के तत्वों के साथ इन प्रतियों की पहचान चुनकर, संरचना के परिवहन द्वारा गुणन, इकाई और व्युत्क्रम मानचित्रों को परिभाषित कर सकता है। एक मज़ेदार के रूप में, यह किसी भी एस-योजना टी को समूह जी की प्रतियों के उत्पाद में ले जाता है, जहां प्रतियों की संख्या टी के जुड़े घटकों की संख्या के बराबर होती है।S यदि और केवल यदि G एक परिमित समूह है, तो यह S के ऊपर परिबद्ध है। हालांकि, अनंत समूह योजनाओं को प्राप्त करने के लिए परिमित निरंतर समूह योजनाओं की अनुमानित सीमा ले सकते हैं, जो मौलिक समूहों और गैलोइस अभ्यावेदन के अध्ययन में या मौलिक समूह योजना के सिद्धांत में दिखाई देते हैं, और ये अनंत प्रकार के संबंध हैं। अधिक आम तौर पर, एस पर समूहों के स्थानीय रूप से स्थिर समूह लेकर, एक स्थानीय रूप से स्थिर समूह योजना प्राप्त करता है, जिसके लिए आधार पर मोनोड्रोमी तंतुओं पर गैर-तुच्छ ऑटोमोर्फिज्म को प्रेरित कर सकता है।
  • योजनाओं के फाइबर उत्पाद का अस्तित्व एक को कई निर्माण करने की अनुमति देता है। समूह योजनाओं के परिमित प्रत्यक्ष उत्पादों में एक विहित समूह योजना संरचना होती है। Automorphisms द्वारा एक समूह योजना की दूसरे पर कार्रवाई को देखते हुए, सामान्य सेट-सैद्धांतिक निर्माण का पालन करके अर्ध-प्रत्यक्ष उत्पाद बना सकते हैं। आधार से यूनिट मैप पर फाइबर उत्पाद लेकर ग्रुप स्कीम होमोमोर्फिज्म के गुठली ग्रुप स्कीम हैं। आधार परिवर्तन समूह योजनाओं को समूह योजनाओं में भेजता है।
  • आधार योजनाओं के कुछ आकारिकी के संबंध में स्केलरों के प्रतिबंध को लेकर छोटे समूह की योजनाओं से समूह योजनाएं बनाई जा सकती हैं, हालांकि परिणामी फ़ंक्टर की प्रतिनिधित्व क्षमता सुनिश्चित करने के लिए किसी को परिमितता की स्थिति की आवश्यकता होती है। जब यह रूपवाद खेतों के परिमित विस्तार के साथ होता है, तो इसे वील प्रतिबंध के रूप में जाना जाता है।
  • किसी भी एबेलियन ग्रुप ए के लिए, डी (ए) (टी) को सेट करके एबेलियन समूह होमोमोर्फिज्म का सेट होने के लिए एबेलियन ग्रुप होमोमोर्फिज्म का सेट होने के लिए एक संबंधित विकर्ण समूह डी (ए) बना सकता है।T प्रत्येक एस-स्कीम टी के लिए। यदि एस एफ़िन है, तो डी (ए) को ग्रुप रिंग के स्पेक्ट्रम के रूप में बनाया जा सकता है। अधिक आम तौर पर, एस पर एबेलियन समूहों के एबेलियन समूहों के एक गैर-निरंतर शीफ होने की अनुमति देकर गुणक प्रकार के समूह बना सकते हैं।
  • ग्रुप स्कीम G की सबग्रुप स्कीम H के लिए, S-स्कीम T को G(T)/H(T) तक ले जाने वाला फ़ंक्टर सामान्य रूप से शीफ नहीं है, और यहां तक ​​कि इसका शेफिफिकेशन भी सामान्य रूप से स्कीम के रूप में प्रतिनिधित्व योग्य नहीं है . हालाँकि, यदि H परिमित, सपाट और G में बंद है, तो भागफल प्रतिनिधित्व करने योग्य है, और अनुवाद द्वारा एक प्रामाणिक बाएं G- क्रिया को स्वीकार करता है। यदि इस क्रिया का H पर प्रतिबंध तुच्छ है, तो H को सामान्य कहा जाता है, और भागफल योजना एक प्राकृतिक समूह कानून को स्वीकार करती है। प्रतिनिधित्व क्षमता कई अन्य मामलों में होती है, जैसे कि जब H, G में बंद होता है और दोनों affine होते हैं।[1]


उदाहरण

  • गुणक समूह जीm इसकी अंतर्निहित योजना के रूप में पंचर वाली एफ़िन लाइन है, और एक फ़ंक्टर के रूप में, यह संरचना शीफ़ के उलटे वैश्विक वर्गों के गुणक समूह को एक एस-स्कीम टी भेजता है। इसे पूर्णांकों से जुड़े विकर्ण समूह D('Z') के रूप में वर्णित किया जा सकता है। स्पेक ए जैसे एफाइन बेस पर, यह वलय A[x,y]/(xy − 1) का स्पेक्ट्रम है, जिसे A[x, x भी लिखा जाता है-1]। x को एक भेजकर इकाई मानचित्र दिया जाता है, x को x ⊗ x पर भेजकर गुणा किया जाता है, और x को x भेजकर प्रतिलोम दिया जाता है-1. बीजगणितीय टोरस क्रमविनिमेय समूह योजनाओं का एक महत्वपूर्ण वर्ग है, जिसे या तो 'जी' की प्रतियों के उत्पाद एस पर स्थानीय रूप से होने की संपत्ति द्वारा परिभाषित किया गया है।m, या गुणक प्रकार के समूहों के रूप में जो अंततः उत्पन्न मुक्त एबेलियन समूहों से जुड़े हैं।
  • सामान्य रैखिक समूह जीएलn एक affine बीजगणितीय किस्म है जिसे n by n मैट्रिक्स रिंग किस्म के गुणक समूह के रूप में देखा जा सकता है। एक फ़ंक्टर के रूप में, यह एक एस-स्कीम टी को एन मेट्रिसेस द्वारा व्युत्क्रमणीय n के समूह में भेजता है, जिनकी प्रविष्टियाँ T के वैश्विक खंड हैं। एक affine आधार पर, कोई इसे n में बहुपद वलय के भागफल के रूप में बना सकता है।2 + 1 चर एक आदर्श एन्कोडिंग द्वारा निर्धारक की उलटाता। वैकल्पिक रूप से, इसे 2n का उपयोग करके बनाया जा सकता है2 चर, संबंधों के साथ पारस्परिक रूप से उलटा मैट्रिसेस की एक क्रमबद्ध जोड़ी का वर्णन करते हुए।
  • किसी भी सकारात्मक पूर्णांक n के लिए, समूह μn 'G' से nवें पावर मैप का कर्नेल हैm खुद को। एक मज़ेदार के रूप में, यह किसी भी एस-स्कीम टी को टी के वैश्विक वर्गों के समूह में भेजता है जैसे कि fn = 1. कल्पना A जैसे संबधित आधार पर, यह A[x]/(x) का वर्णक्रम हैn-1). यदि n आधार में व्युत्क्रमणीय नहीं है, तो यह योजना सुचारू नहीं है। विशेष रूप से, विशेषता p, μ के क्षेत्र मेंp चिकना नहीं है।
  • योज्य समूह जीa Affine रेखा A है1 इसकी अंतर्निहित योजना के रूप में। एक फ़ंक्टर के रूप में, यह किसी भी एस-स्कीम टी को संरचना शीफ ​​के वैश्विक वर्गों के अंतर्निहित योजक समूह में भेजता है। स्पेक ए जैसे एफाइन बेस पर, यह बहुपद वलय A [x] का स्पेक्ट्रम है। x को शून्य पर भेजकर इकाई मानचित्र दिया जाता है, x को 1 ⊗ x + x ⊗ 1 पर भेजकर गुणन दिया जाता है, और x को −x पर भेजकर व्युत्क्रम दिया जाता है।
  • यदि किसी अभाज्य संख्या p के लिए S में p = 0 है, तो pth घात लेने से 'G' का एंडोमोर्फिज्म प्रेरित होता है।a, और कर्नेल समूह योजना α हैp. स्पेक ए जैसे एफ़िन बेस पर, यह ए [x]/(x का स्पेक्ट्रम हैपी </सुप>)।
  • एफाइन लाइन का ऑटोमोर्फिज्म समूह जी के सेमीडायरेक्ट उत्पाद के लिए आइसोमोर्फिक हैa जी द्वाराm, जहां योगात्मक समूह अनुवाद द्वारा कार्य करता है, और गुणक समूह फैलाव द्वारा कार्य करता है। एक चुने हुए बेसपॉइंट को ठीक करने वाला उपसमूह गुणक समूह के लिए आइसोमोर्फिक है, और बेसपॉइंट को एक योजक समूह संरचना की पहचान होने के लिए G की पहचान करता हैm जी के automorphism समूह के साथa.
  • एक चिह्नित बिंदु (यानी, एक अंडाकार वक्र) के साथ एक चिकनी जीनस एक वक्र की पहचान के रूप में उस बिंदु के साथ एक अद्वितीय समूह योजना संरचना होती है। पिछले सकारात्मक-आयामी उदाहरणों के विपरीत, अण्डाकार वक्र प्रक्षेपी होते हैं (विशेष रूप से उचित)।


मूल गुण

मान लीजिए कि G क्षेत्र k पर परिमित प्रकार की एक समूह योजना है। चलो जी0 आइडेंटिटी का कनेक्टेड कंपोनेंट हो, यानी मैक्सिमम कनेक्टेड सबग्रुप स्कीम। तब G एक étale समूह योजना का विस्तार है | G द्वारा परिमित étale समूह योजना0</उप>। G की एक अद्वितीय अधिकतम घटाई गई उपयोजना G हैred, और यदि k पूर्ण है, तो Gred एक चिकनी समूह किस्म है जो जी की एक उपसमूह योजना है। भागफल योजना परिमित रैंक के स्थानीय रिंग का स्पेक्ट्रम है।

कोई भी संबधित समूह योजना क्रमविनिमेय हॉफ बीजगणित की एक अंगूठी का स्पेक्ट्रम है (आधार S पर, यह एक O के सापेक्ष स्पेक्ट्रम द्वारा दिया जाता हैS-बीजगणित)। समूह योजना के गुणन, इकाई और व्युत्क्रम मानचित्र हॉफ बीजगणित में सहगुणन, गिनती और एंटीपोड संरचनाओं द्वारा दिए गए हैं। हॉफ बीजगणित में इकाई और गुणन संरचनाएं अंतर्निहित योजना के लिए आंतरिक हैं। एक मनमाना समूह योजना G के लिए, वैश्विक वर्गों की अंगूठी में एक कम्यूटेटिव हॉफ बीजगणित संरचना भी होती है, और इसके स्पेक्ट्रम को लेकर, एक अधिकतम एफ़िन भागफल समूह प्राप्त करता है। एफ़िन समूह किस्मों को रैखिक बीजगणितीय समूहों के रूप में जाना जाता है, क्योंकि उन्हें सामान्य रैखिक समूहों के उपसमूहों के रूप में एम्बेड किया जा सकता है।

पूरी तरह से जुड़ी समूह योजनाएँ कुछ अर्थों में समूह योजनाओं के विपरीत हैं, क्योंकि पूर्णता का तात्पर्य है कि सभी वैश्विक खंड ठीक वही हैं जो आधार से वापस खींचे गए हैं, और विशेष रूप से, उनके पास योजनाओं को जोड़ने के लिए कोई गैर-मानचित्र नहीं है। पहचान के जेट रिक्त स्थान पर संयुग्मन की कार्रवाई को शामिल करने वाले तर्क से कोई भी पूर्ण समूह विविधता (यहाँ विविधता का अर्थ है कम और ज्यामितीय रूप से अलघुकरणीय अलग-अलग प्रकार की परिमित प्रकार की अलग-अलग योजना) स्वचालित रूप से कम्यूटेटिव है। पूर्ण समूह किस्मों को एबेलियन किस्म कहा जाता है। यह एबेलियन स्कीम की धारणा का सामान्यीकरण करता है; एक आधार S पर एक समूह योजना G एबेलियन है यदि G से S तक की संरचनात्मक आकृति उचित है और ज्यामितीय रूप से जुड़े तंतुओं के साथ चिकनी है। वे स्वचालित रूप से प्रक्षेपी हैं, और उनके पास कई अनुप्रयोग हैं, उदाहरण के लिए, ज्यामितीय वर्ग क्षेत्र सिद्धांत और पूरे बीजगणितीय ज्यामिति में। एक क्षेत्र पर एक पूर्ण समूह योजना को क्रमविनिमेय होने की आवश्यकता नहीं है, तथापि; उदाहरण के लिए, कोई परिमित समूह योजना पूर्ण है।

परिमित फ्लैट समूह योजनाएं

एक नोथेरियन स्कीम S पर एक समूह योजना G परिमित और सपाट है यदि और केवल यदि OG स्थानीय रूप से मुक्त O हैSपरिमित रैंक का मॉड्यूल। रैंक S पर एक स्थानीय रूप से स्थिर कार्य है, और इसे G का क्रम कहा जाता है। एक स्थिर समूह योजना का क्रम संबंधित समूह के क्रम के बराबर होता है, और सामान्य तौर पर, आधार परिवर्तन और परिमित समतल के संबंध में क्रम अच्छा व्यवहार करता है स्केलर्स का प्रतिबंध।

परिमित समतल समूह योजनाओं में, स्थिरांक (उपरोक्त उदाहरण देखें) एक विशेष वर्ग बनाते हैं, और विशेषता शून्य के बीजीय रूप से बंद क्षेत्र पर, परिमित समूहों की श्रेणी निरंतर परिमित समूह योजनाओं की श्रेणी के बराबर होती है। सकारात्मक विशेषता या अधिक अंकगणितीय संरचना वाले आधारों पर, अतिरिक्त समरूपता प्रकार मौजूद हैं। उदाहरण के लिए, यदि 2 आधार पर व्युत्क्रमणीय है, क्रम 2 की सभी समूह योजनाएँ स्थिर हैं, लेकिन 2-एडिक पूर्णांकों पर, μ2 गैर-निरंतर है, क्योंकि विशेष फाइबर चिकना नहीं है। अत्यधिक शाखित 2-एडिक रिंगों के अनुक्रम मौजूद हैं, जिन पर क्रम 2 की समूह योजनाओं की समरूपता प्रकार की संख्या मनमाने ढंग से बड़ी हो जाती है। पी-एडिक रिंग्स पर क्रमविनिमेय परिमित फ्लैट समूह योजनाओं का अधिक विस्तृत विश्लेषण रेनॉड के लंबे समय तक काम में पाया जा सकता है।

क्रमविनिमेय परिमित फ्लैट समूह योजनाएँ अक्सर प्रकृति में एबेलियन और सेमी-एबेलियन किस्मों की उपसमूह योजनाओं के रूप में होती हैं, और सकारात्मक या मिश्रित विशेषता में, वे परिवेशी विविधता के बारे में बहुत सारी जानकारी प्राप्त कर सकती हैं। उदाहरण के लिए, विशेषता शून्य में एक दीर्घवृत्तीय वक्र का पी-मरोड़ क्रम पी के निरंतर प्राथमिक एबेलियन समूह योजना के लिए स्थानीय रूप से आइसोमोर्फिक है।2, लेकिन F से ऊपरp, यह क्रम p की परिमित समतल समूह योजना है2 जिसमें या तो p जुड़े हुए घटक हैं (यदि वक्र सामान्य है) या एक जुड़ा हुआ घटक है (यदि वक्र सुपरसिंगुलर है)। यदि हम अण्डाकार वक्रों के एक परिवार पर विचार करते हैं, तो पी-मरोड़ पैरामीट्रिज़िंग स्पेस पर एक परिमित फ्लैट समूह योजना बनाता है, और सुपरसिंगुलर लोकस वह जगह है जहाँ तंतु जुड़े होते हैं। कनेक्टेड घटकों के इस विलय का अध्ययन एक मॉड्यूलर योजना से एक कठोर विश्लेषणात्मक स्थान पर जाकर सूक्ष्म विस्तार से किया जा सकता है, जहां सुपरसिंगुलर बिंदुओं को सकारात्मक त्रिज्या की डिस्क से बदल दिया जाता है।

कार्टियर द्वैत

कार्टियर द्वैत पोंट्रीगिन द्वैत का एक योजना-सैद्धांतिक एनालॉग है जो कम्यूटेटिव समूह योजनाओं को सीमित करने के लिए परिमित कम्यूटेटिव समूह योजनाओं को ले रहा है।

डाययूडोने मॉड्यूल

धनात्मक विशेषता p के पूर्ण क्षेत्र k पर परिमित फ्लैट क्रमविनिमेय समूह योजनाओं का अध्ययन उनकी ज्यामितीय संरचना को (अर्ध-)रैखिक-बीजगणितीय सेटिंग में स्थानांतरित करके किया जा सकता है। मूल वस्तु डाययूडोने रिंग D = W(k){F,V}/(FV − p) है, जो k के विट वैक्टर में गुणांक के साथ, गैर-क्रमपरिवर्तनीय बहुपदों के रिंग का भागफल है। एफ और वी फ्रोबेनियस और बदलाव ऑपरेटर हैं, और वे विट वैक्टर पर अनौपचारिक रूप से कार्य कर सकते हैं। डाइयूडोन और कार्टियर ने आदेश के k पर परिमित क्रमविनिमेय समूह योजनाओं के बीच श्रेणियों की एक प्रतिरूपता का निर्माण किया, p की शक्ति और परिमित W(k)-लम्बाई के साथ D पर मॉड्यूल। Dieudonné मॉड्यूल functor एक दिशा में समरूपता द्वारा Witt सह-वैक्टरों के एबेलियन शीफ CW में दिया जाता है। यह शीफ विट वैक्टर (जो वास्तव में एक समूह योजना द्वारा प्रतिनिधित्व करने योग्य है) के शीफ के लिए कमोबेश दोहरी है, क्योंकि इसका निर्माण क्रमिक वर्शचीबंग मैप्स वी: डब्ल्यू के तहत परिमित लंबाई विट वैक्टर की सीधी सीमा लेकर किया गया है।n → डब्ल्यूn+1, और फिर पूरा करना। क्रमविनिमेय समूह योजनाओं के कई गुणों को संबंधित डाययूडोने मॉड्यूल की जांच करके देखा जा सकता है, उदाहरण के लिए, कनेक्टेड पी-ग्रुप योजनाएं डी-मॉड्यूल के अनुरूप हैं जिसके लिए एफ नाइलपोटेंट है, और ईटेल समूह योजनाएं उन मॉड्यूल के अनुरूप हैं जिनके लिए एफ एक आइसोमोर्फिज्म है।

एक क्षेत्र पर परिमित फ्लैट समूहों की तुलना में डायडोने सिद्धांत कुछ अधिक सामान्य सेटिंग में मौजूद है। ओडा की 1967 की थीसिस ने डाययूडोने मॉड्यूल और एबेलियन किस्मों के पहले डी रम कोहोलॉजी के बीच एक संबंध दिया, और लगभग उसी समय, ग्रोथेंडिक ने सुझाव दिया कि सिद्धांत का एक क्रिस्टलीय संस्करण होना चाहिए जिसका उपयोग पी-विभाज्य समूहों का विश्लेषण करने के लिए किया जा सकता है। समूह योजनाओं पर गाल्वा की कार्रवाइयाँ श्रेणियों के तुल्यता के माध्यम से स्थानांतरित होती हैं, और गैलोज़ अभ्यावेदन के संबद्ध विरूपण सिद्धांत का उपयोग शिमुरा-तानियामा अनुमान पर एंड्रयू विल्स के काम में किया गया था।

यह भी देखें

संदर्भ

  1. Raynaud, Michel (1967), Passage au quotient par une relation d'équivalence plate, Berlin, New York: Springer-Verlag, MR 0232781
  • Demazure, Michel; Alexandre Grothendieck, eds. (1970). Séminaire de Géométrie Algébrique du Bois Marie – 1962–64 – Schémas en groupes – (SGA 3) – vol. 1 (Lecture notes in mathematics 151) (in français). Berlin; New York: Springer-Verlag. pp. xv, 564.
  • Demazure, Michel; Alexandre Grothendieck, eds. (1970). Séminaire de Géométrie Algébrique du Bois Marie – 1962–64 – Schémas en groupes – (SGA 3) – vol. 2 (Lecture notes in mathematics 152) (in français). Berlin; New York: Springer-Verlag. pp. ix, 654.
  • Demazure, Michel; Alexandre Grothendieck, eds. (1970). Séminaire de Géométrie Algébrique du Bois Marie – 1962–64 – Schémas en groupes – (SGA 3) – vol. 3 (Lecture notes in mathematics 153) (in français). Berlin; New York: Springer-Verlag. pp. vii, 529.
  • Gabriel, Peter; Demazure, Michel (1980). Introduction to algebraic geometry and algebraic groups. Amsterdam: North-Holland Pub. Co. ISBN 0-444-85443-6.
  • Berthelot, Breen, Messing Théorie de Dieudonné Crystalline II
  • Laumon, Transformation de Fourier généralisée
  • Shatz, Stephen S. (1986), "Group schemes, formal groups, and p-divisible groups", in Cornell, Gary; Silverman, Joseph H. (eds.), Arithmetic geometry (Storrs, Conn., 1984), Berlin, New York: Springer-Verlag, pp. 29–78, ISBN 978-0-387-96311-2, MR 0861972
  • Serre, Jean-Pierre (1984), Groupes algébriques et corps de classes, Publications de l'Institut Mathématique de l'Université de Nancago [Publications of the Mathematical Institute of the University of Nancago], 7, Paris: Hermann, ISBN 978-2-7056-1264-1, MR 0907288
  • John Tate, Finite flat group schemes, from Modular Forms and Fermat's Last Theorem
  • Waterhouse, William (1979), Introduction to affine group schemes, Graduate Texts in Mathematics, vol. 66, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4612-6217-6, ISBN 978-0-387-90421-4, MR 0547117