पाउली अपवर्जन सिद्धांत

From Vigyanwiki
Revision as of 17:37, 9 September 2022 by alpha>Indicwiki (Created page with "{{Short description|Quantum mechanics rule: identical fermions cannot occupy the same quantum state simultaneously}} {{Distinguish|Pauling's principle of electroneutrality}} [...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
वोल्फगैंग पाउली ने यह कहते हुए कानून तैयार किया कि किसी भी दो इलेक्ट्रॉनों में क्वांटम संख्याओं का एक ही सेट नहीं हो सकता है।

क्वांटम यांत्रिकी में, पाउली अपवर्जन सिद्धांत (German: Paulisches Ausschließungsprinzip) बताता है कि अर्ध-पूर्णांक स्पिन (भौतिकी) (अर्थात फर्मियन ) वाले दो या दो से अधिक समान कण एक साथ क्वांटम प्रणाली के भीतर एक ही क्वांटम अवस्था पर कब्जा नहीं कर सकते। यह सिद्धांत ऑस्ट्रियाई भौतिक विज्ञानी वोल्फगैंग पाउली द्वारा 1925 में इलेक्ट्रॉन ों के लिए तैयार कितना राज्य था, और बाद में 1940 के अपने स्पिन-सांख्यिकी प्रमेय के साथ सभी फ़र्मियन तक बढ़ा दिया गया था।

परमाणुओं में इलेक्ट्रॉनों के मामले में, इसे निम्नानुसार कहा जा सकता है: एक पॉली-इलेक्ट्रॉन परमाणु के दो इलेक्ट्रॉनों के लिए चार क्वांटम संख्याओं के समान मान होना असंभव है: n, प्रमुख क्वांटम संख्या;ℓ, अज़ीमुथल क्वांटम संख्या ; एम, चुंबकीय क्वांटम संख्या ; और एमs, स्पिन क्वांटम संख्या । उदाहरण के लिए, यदि दो इलेक्ट्रॉन एक ही परमाणु कक्षक में रहते हैं, तो उनका n,ℓ, और एममान समान हैं; इसलिए उनके एमsअलग होना चाहिए, और इस प्रकार इलेक्ट्रॉनों के पास 1/2 और -1/2 के विपरीत अर्ध-पूर्णांक स्पिन अनुमान होने चाहिए।

एक पूर्णांक स्पिन, या बोसॉन के साथ कण, पाउली अपवर्जन सिद्धांत के अधीन नहीं हैं: समान बोसॉन की कोई भी संख्या समान क्वांटम स्थिति पर कब्जा कर सकती है, उदाहरण के लिए, बोस-आइंस्टीन कंडेनसेट में लेज़र या परमाणुओं द्वारा उत्पादित फोटॉन।

एक अधिक कठोर कथन यह है कि, दो समान कणों के आदान-प्रदान के संबंध में, कुल (कई-कण) तरंग फ़ंक्शन समान कण हैं # फ़र्मियन के लिए समान कणों का क्वांटम यांत्रिक विवरण, और बोसॉन के लिए सममित। इसका मतलब यह है कि यदि दो समान कणों के स्थान और स्पिन निर्देशांक आपस में बदल दिए जाते हैं, तो कुल तरंग फ़ंक्शन फ़र्मियन के लिए अपना संकेत बदल देता है और बोसॉन के लिए नहीं बदलता है।

यदि दो फ़र्मियन एक ही अवस्था में होते हैं (उदाहरण के लिए एक ही परमाणु में एक ही स्पिन के साथ एक ही कक्षीय), तो उन्हें आपस में बदलने से कुछ भी नहीं बदलेगा और कुल तरंग फ़ंक्शन अपरिवर्तित रहेगा। जिस तरह से टोटल तरंग क्रिया दोनों ही फर्मियन के लिए आवश्यक संकेत बदल सकते हैं और अपरिवर्तित भी रह सकते हैं, वह यह है कि यह फ़ंक्शन हर जगह शून्य होना चाहिए, जिसका अर्थ है कि राज्य मौजूद नहीं हो सकता। यह तर्क बोसॉन पर लागू नहीं होता क्योंकि चिन्ह नहीं बदलता है।

अवलोकन

पाउली अपवर्जन सिद्धांत सभी फ़र्मियन (आधा-पूर्णांक स्पिन (भौतिकी) वाले कण) के व्यवहार का वर्णन करता है, जबकि बोसॉन (पूर्णांक स्पिन वाले कण) अन्य सिद्धांतों के अधीन हैं। फ़र्मियन में प्राथमिक कण जैसे क्वार्क , इलेक्ट्रॉन और न्युट्रीनो शामिल हैं। इसके अतिरिक्त, प्रोटॉन और न्यूट्रॉन (तीन क्वार्क से बने उप-परमाणु कण) और कुछ परमाणु (जैसे हीलियम -3 ) जैसे बेरियन फ़र्मियन हैं, और इसलिए पॉली अपवर्जन सिद्धांत द्वारा भी वर्णित हैं। परमाणुओं में अलग-अलग समग्र स्पिन हो सकते हैं, जो यह निर्धारित करता है कि वे फ़र्मियन हैं या बोसॉन - उदाहरण के लिए हीलियम -3 में स्पिन 1/2 है और इसलिए यह एक फ़र्मियन है, जबकि हीलियम -4 में स्पिन 0 है और यह एक बोसॉन है।[1]: 123–125  पाउली अपवर्जन सिद्धांत अपने बड़े पैमाने पर स्थिरता से लेकर आवर्त सारणी तक, रोजमर्रा के पदार्थ के कई गुणों को रेखांकित करता है।

अर्ध-पूर्णांक स्पिन का अर्थ है कि फ़र्मियन का आंतरिक कोणीय गति  मान है  (प्लैंक के स्थिरांक को कम किया गया) आधा-पूर्णांक (1/2, 3/2, 5/2, आदि) का गुणा। क्वांटम यांत्रिकी के सिद्धांत में, समान कणों द्वारा फ़र्मियन का वर्णन किया जाता है। इसके विपरीत, पूर्णांक स्पिन (बोसोन) वाले कणों में सममित तरंग कार्य होते हैं और समान क्वांटम राज्यों को साझा कर सकते हैं। बोसॉन में फोटॉन, कूपर जोड़े  जो अतिचालकता  के लिए जिम्मेदार हैं, और डब्ल्यू और जेड बोसॉन  शामिल हैं। Fermions अपना नाम Fermi-Dirac सांख्यिकी से लेते हैं|Fermi-Dirac सांख्यिकीय वितरण, जिसका वे पालन करते हैं, और बोसॉन बोस-आइंस्टीन के आंकड़ों से लेते हैं|बोस-आइंस्टीन वितरण।

इतिहास

20वीं शताब्दी की शुरुआत में यह स्पष्ट हो गया कि इलेक्ट्रॉनों की सम संख्या वाले परमाणु और अणु अधिक रासायनिक स्थिरता वाले होते हैं। उदाहरण के लिए, गिल्बर्ट एन. लुईस द्वारा 1916 के लेख द एटम एंड द मोलेक्यूल में, रासायनिक व्यवहार के उनके छह अभिधारणाओं में से तीसरे में कहा गया है कि परमाणु किसी भी शेल में इलेक्ट्रॉनों की एक सम संख्या धारण करता है, और विशेष रूप से आठ इलेक्ट्रॉनों को धारण करने के लिए। , जिसे उन्होंने आम तौर पर सममित रूप से क्यूबिकल परमाणु के रूप में व्यवस्थित माना।[2] 1919 में रसायनज्ञ इरविंग लैंगमुइर ने सुझाव दिया कि आवर्त सारणी की व्याख्या की जा सकती है यदि किसी परमाणु में इलेक्ट्रॉनों को किसी तरह से जोड़ा या क्लस्टर किया गया हो। ऐसा माना जाता था कि इलेक्ट्रॉन कवच समूह नाभिक के चारों ओर इलेक्ट्रॉन कोशों के एक समूह पर कब्जा कर लेते हैं।[3] 1922 में, नील्स बोहरो ने यह मानकर बोहर मॉडल को अपडेट किया कि कुछ निश्चित संख्या में इलेक्ट्रॉन (उदाहरण के लिए 2, 8 और 18) स्थिर बंद कोशों के अनुरूप हैं।[4]: 203  पाउली ने इन संख्याओं के लिए एक स्पष्टीकरण की तलाश की, जो पहले केवल अनुभवजन्य संबंध थे। साथ ही वह परमाणु स्पेक्ट्रोस्कोपी और लौह चुम्बकत्व में जीमन प्रभाव के प्रयोगात्मक परिणामों की व्याख्या करने की कोशिश कर रहे थे। उन्हें एडमंड क्लिफ्टन स्टोनर द्वारा 1924 के एक पेपर में एक आवश्यक सुराग मिला। एडमंड सी। स्टोनर, जिसने बताया कि, प्रमुख क्वांटम संख्या (एन) के दिए गए मूल्य के लिए, क्षार धातु में एक इलेक्ट्रॉन के ऊर्जा स्तर की संख्या एक बाहरी चुंबकीय क्षेत्र में स्पेक्ट्रा, जहां सभी पतित ऊर्जा स्तर अलग हो जाते हैं, n के समान मान के लिए महान गैसों के बंद शेल में इलेक्ट्रॉनों की संख्या के बराबर होता है। इसने पाउली को यह महसूस किया कि बंद कोशों में इलेक्ट्रॉनों की जटिल संख्या को प्रति राज्य एक इलेक्ट्रॉन के सरल नियम में कम किया जा सकता है यदि इलेक्ट्रॉन राज्यों को चार क्वांटम संख्याओं का उपयोग करके परिभाषित किया जाता है। इस उद्देश्य के लिए उन्होंने एक नया दो-मूल्यवान क्वांटम नंबर पेश किया, जिसे सैमुअल गौडस्मिट और जॉर्ज उहलेनबेक ने इलेक्ट्रॉन स्पिन के रूप में पहचाना।[5][6]


क्वांटम राज्य समरूपता से संबंध

अपने नोबेल व्याख्यान में, पाउली ने बहिष्करण सिद्धांत के लिए क्वांटम राज्य समरूपता के महत्व को स्पष्ट किया:[7]

समरूपता के विभिन्न वर्गों में, सबसे महत्वपूर्ण (जो दो कणों के अलावा केवल एक ही होते हैं) बोसॉन हैं, जिसमें दो कणों के स्थान और स्पिन निर्देशांकों को बदलने पर तरंग फ़ंक्शन अपना मान नहीं बदलता है। , और फ़र्मियन, जिसमें इस तरह के क्रमपरिवर्तन के लिए तरंग फ़ंक्शन अपना संकेत बदलता है ... [एंटीसिमेट्रिकल क्लास है] बहिष्करण सिद्धांत का सही और सामान्य तरंग यांत्रिक सूत्रीकरण।

एकल-मूल्यवान कई-कण तरंग के साथ पाउली बहिष्करण सिद्धांत, समान कणों # सममित और एंटीसिमेट्रिकल अवस्थाओं के लिए तरंग की आवश्यकता के बराबर है। यदि तथा एक-कण प्रणाली का वर्णन करने वाले हिल्बर्ट अंतरिक्ष के आधार वैक्टर से अधिक है, फिर टेंसर उत्पाद आधार वैक्टर का उत्पादन करता है हिल्बर्ट अंतरिक्ष के दो ऐसे कणों की एक प्रणाली का वर्णन। किसी भी दो-कण अवस्था को इन आधार वैक्टरों के सुपरपोजिशन सिद्धांत (यानी योग) के रूप में दर्शाया जा सकता है:

जहां प्रत्येक A(x,y) एक (जटिल) अदिश गुणांक है। विनिमय के तहत एंटीसिमेट्री का मतलब है कि A(x,y) = −A(y,x). यह संकेत करता है A(x,y) = 0 जब x = y, जो पाउली अपवर्जन है। यह किसी भी आधार पर सही है क्योंकि आधार के स्थानीय परिवर्तन एंटीसिमेट्रिक मैट्रिक्स को एंटीसिमेट्रिक रखते हैं।

इसके विपरीत, यदि विकर्ण मात्राएँ A(x,x) प्रत्येक आधार में शून्य हैं, तो तरंगफलन घटक

अनिवार्य रूप से एंटीसिमेट्रिक है। इसे सिद्ध करने के लिए, मैट्रिक्स तत्व पर विचार करें

यह शून्य है, क्योंकि दोनों कणों के अध्यारोपण अवस्था में होने की संभावना शून्य है . लेकिन यह बराबर है

प्रथम और अंतिम पद विकर्ण तत्व हैं और शून्य हैं, और संपूर्ण योग शून्य के बराबर है। तो वेवफंक्शन मैट्रिक्स तत्व पालन करते हैं:

या

के साथ एक प्रणाली के लिए n > 2 कण, बहु-कण आधार राज्य एक-कण आधार राज्यों के n-गुना टेंसर उत्पाद बन जाते हैं, और तरंग के गुणांक एन एक-कण राज्यों द्वारा पहचाने जाते हैं। एंटीसिमेट्री की स्थिति में कहा गया है कि जब भी किसी भी दो राज्यों का आदान-प्रदान होता है, तो गुणांक को फ्लिप साइन करना चाहिए: किसी के लिए . बहिष्करण सिद्धांत यह परिणाम है कि, यदि किसी के लिए फिर इससे पता चलता है कि कोई भी n कण एक ही अवस्था में नहीं हो सकता है।

उन्नत क्वांटम सिद्धांत

स्पिन-सांख्यिकी प्रमेय के अनुसार, पूर्णांक स्पिन वाले कण सममित क्वांटम अवस्थाओं पर कब्जा कर लेते हैं, और अर्ध-पूर्णांक स्पिन वाले कण एंटीसिमेट्रिक अवस्थाओं पर कब्जा कर लेते हैं; इसके अलावा, क्वांटम यांत्रिकी के सिद्धांतों द्वारा स्पिन के केवल पूर्णांक या अर्ध-पूर्णांक मानों की अनुमति है। सापेक्षतावादी क्वांटम क्षेत्र सिद्धांत में, पाउली सिद्धांत अर्ध-पूर्णांक स्पिन के कणों के लिए काल्पनिक समय में एक रोटेशन ऑपरेटर (क्वांटम यांत्रिकी) को लागू करने से चलता है।

एक आयाम में, बोसोन, साथ ही फर्मियन, अपवर्जन सिद्धांत का पालन कर सकते हैं। अनंत शक्ति के डेल्टा-फ़ंक्शन प्रतिकारक अंतःक्रियाओं वाली एक-आयामी बोस गैस मुक्त फ़र्मियन की गैस के बराबर होती है। इसका कारण यह है कि, एक आयाम में, कणों के आदान-प्रदान के लिए आवश्यक है कि वे एक दूसरे से होकर गुजरें; असीम रूप से मजबूत प्रतिकर्षण के लिए ऐसा नहीं हो सकता। इस मॉडल का वर्णन क्वांटम नॉनलाइनियर श्रोडिंगर समीकरण द्वारा किया गया है। संवेग स्थान में, अपवर्जन सिद्धांत बोस गैस में डेल्टा-फ़ंक्शन इंटरैक्शन के साथ परिमित प्रतिकर्षण के लिए भी मान्य है,[8] साथ ही हाइजेनबर्ग मॉडल (क्वांटम) और हबर्ड मॉडल के लिए एक आयाम में, और अन्य मॉडलों के लिए बेथे ansatz द्वारा हल करने योग्य। मॉडल में स्थिर अवस्था Bethe ansatz द्वारा हल करने योग्य एक Fermi ऊर्जा है।

अनुप्रयोग

परमाणु

पाउली अपवर्जन सिद्धांत भौतिक घटनाओं की एक विस्तृत विविधता को समझाने में मदद करता है। सिद्धांत का एक विशेष रूप से महत्वपूर्ण परिणाम परमाणुओं का विस्तृत इलेक्ट्रॉन विन्यास है और जिस तरह से परमाणु इलेक्ट्रॉनों को साझा करते हैं, रासायनिक तत्वों की विविधता और उनके रासायनिक संयोजनों की व्याख्या करते हैं। एक विद्युत आवेश परमाणु में परमाणु नाभिक में प्रोटॉन की संख्या के बराबर बाध्य इलेक्ट्रॉन होते हैं। इलेक्ट्रॉन, फ़र्मियन होने के कारण, अन्य इलेक्ट्रॉनों के समान क्वांटम अवस्था पर कब्जा नहीं कर सकते हैं, इसलिए इलेक्ट्रॉनों को एक परमाणु के भीतर ढेर करना पड़ता है, अर्थात एक ही इलेक्ट्रॉन कक्षीय में अलग-अलग स्पिन होते हैं जैसा कि नीचे वर्णित है।

एक उदाहरण तटस्थ हीलियम परमाणु है, जिसमें दो बाध्य इलेक्ट्रॉन होते हैं, जो दोनों विपरीत स्पिन प्राप्त करके निम्नतम-ऊर्जा (इलेक्ट्रॉन शेल) राज्यों पर कब्जा कर सकते हैं; चूंकि स्पिन इलेक्ट्रॉन की क्वांटम अवस्था का हिस्सा है, इसलिए दो इलेक्ट्रॉन अलग-अलग क्वांटम अवस्थाओं में हैं और पाउली सिद्धांत का उल्लंघन नहीं करते हैं। हालांकि, स्पिन केवल दो अलग-अलग मान (eigenvalue s) ले सकता है। लिथियम परमाणु में, तीन बाध्य इलेक्ट्रॉनों के साथ, तीसरा इलेक्ट्रॉन 1s अवस्था में नहीं रह सकता है और इसके बजाय उच्च-ऊर्जा 2s राज्यों में से एक पर कब्जा करना चाहिए। इसी तरह, क्रमिक रूप से बड़े तत्वों में क्रमिक रूप से उच्च ऊर्जा के गोले होने चाहिए। किसी तत्व के रासायनिक गुण मोटे तौर पर सबसे बाहरी कोश में इलेक्ट्रॉनों की संख्या पर निर्भर करते हैं; अलग-अलग संख्या में व्याप्त इलेक्ट्रॉन कोश वाले परमाणु लेकिन सबसे बाहरी कोश में समान संख्या में इलेक्ट्रॉनों में समान गुण होते हैं, जो आवर्त सारणी को जन्म देता है।[9]: 214–218  हे परमाणु के लिए पाउली अपवर्जन सिद्धांत का परीक्षण करने के लिए, गॉर्डन ड्रेक[10] उन्होंने परमाणु के काल्पनिक राज्यों के लिए बहुत सटीक गणना की जो इसका उल्लंघन करते हैं, जिन्हें पारोनिक राज्य कहा जाता है। बाद में, के. देइलमियन एट अल।[11] परोनिक अवस्था 1s2s . की खोज के लिए एक परमाणु बीम स्पेक्ट्रोमीटर का उपयोग किया 1S0 ड्रेक द्वारा गणना की गई। खोज असफल रही और पता चला कि इस विक्षिप्त अवस्था के सांख्यिकीय भार की ऊपरी सीमा है 5×10−6. (बहिष्करण सिद्धांत का अर्थ है शून्य का भार।)

ठोस अवस्था गुण

विद्युत कंडक्टर ों और अर्धचालकों में, बहुत बड़ी संख्या में आणविक कक्षाएँ होती हैं जो प्रभावी रूप से ऊर्जा स्तर ों की एक सतत इलेक्ट्रॉनिक बैंड संरचना बनाती हैं। मजबूत कंडक्टरों (धातु ओं) में इलेक्ट्रॉन इतने पतित ऊर्जा स्तर होते हैं कि वे धातु की तापीय क्षमता में ज्यादा योगदान भी नहीं कर सकते हैं।[12]: 133–147  ठोस के कई यांत्रिक, विद्युत, चुंबकीय, ऑप्टिकल और रासायनिक गुण पाउली अपवर्जन के प्रत्यक्ष परिणाम हैं।

पदार्थ की स्थिरता

(अधिक जानकारी के लिए, पदार्थ पृष्ठ की स्थिरता पढ़ें)

एक परमाणु में प्रत्येक इलेक्ट्रॉन अवस्था की स्थिरता को परमाणु के क्वांटम सिद्धांत द्वारा वर्णित किया जाता है, जो दर्शाता है कि नाभिक के लिए एक इलेक्ट्रॉन के निकट दृष्टिकोण से इलेक्ट्रॉन की गतिज ऊर्जा में वृद्धि होती है, हाइजेनबर्ग के अनिश्चितता सिद्धांत का एक अनुप्रयोग।[13] हालांकि, कई इलेक्ट्रॉनों और कई न्युक्लियोन के साथ बड़े सिस्टम की स्थिरता एक अलग सवाल है, और पॉली अपवर्जन सिद्धांत की आवश्यकता है।[14] यह दिखाया गया है कि पाउली अपवर्जन सिद्धांत इस तथ्य के लिए जिम्मेदार है कि साधारण थोक पदार्थ स्थिर होता है और मात्रा में रहता है। यह सुझाव पहली बार 1931 में पॉल एरेनफेस्ट द्वारा दिया गया था, जिन्होंने बताया कि प्रत्येक परमाणु के इलेक्ट्रॉन सभी सबसे कम ऊर्जा वाले कक्षीय में नहीं गिर सकते हैं और उन्हें क्रमिक रूप से बड़े कोशों पर कब्जा करना चाहिए। इसलिए, परमाणु एक आयतन पर कब्जा कर लेते हैं और उन्हें एक साथ बहुत करीब से निचोड़ा नहीं जा सकता है।[15] पहला कठोर प्रमाण 1967 में फ्रीमैन डायसन और एंड्रयू लेनार्ड (: डी: एंड्रयू लेनार्ड) द्वारा प्रदान किया गया था, जिन्होंने आकर्षक (इलेक्ट्रॉन-परमाणु) और प्रतिकारक (इलेक्ट्रॉन-इलेक्ट्रॉन और परमाणु-परमाणु) बलों के संतुलन पर विचार किया और दिखाया कि सामान्य पदार्थ पाउली सिद्धांत के बिना बहुत कम मात्रा में ढह जाएगा और कब्जा कर लेगा।[16][17] 1975 में इलियट एच. लिब और वाल्टर थिरिंग द्वारा बाद में एक बहुत ही सरल प्रमाण पाया गया। उन्होंने थॉमस-फर्मी मॉडल के संदर्भ में क्वांटम ऊर्जा पर एक निचली सीमा प्रदान की, जो एक घनत्व_फंक्शनल_थ्योरी # थॉमस-फर्मि_मॉडल के कारण स्थिर है। सबूत ने गतिज ऊर्जा पर निचली सीमा का इस्तेमाल किया जिसे अब लाइब-थिरिंग असमानता कहा जाता है।

यहां पाउली सिद्धांत का परिणाम यह है कि एक ही स्पिन के इलेक्ट्रॉनों को एक प्रतिकारक विनिमय अंतःक्रिया द्वारा अलग रखा जाता है, जो एक छोटी दूरी का प्रभाव है, जो लंबी दूरी के इलेक्ट्रोस्टैटिक या कूलम्बिक बल के साथ-साथ कार्य करता है। यह प्रभाव स्थूल जगत में प्रतिदिन के अवलोकन के लिए आंशिक रूप से जिम्मेदार है कि दो ठोस वस्तुएं एक ही समय में एक ही स्थान पर नहीं हो सकती हैं।

खगोल भौतिकी

डायसन और लेनार्ड ने कुछ खगोलीय पिंडों में होने वाले अत्यधिक चुंबकीय या गुरुत्वाकर्षण बलों पर विचार नहीं किया। 1995 में इलियट लिब और सहकर्मियों ने दिखाया कि पाउली सिद्धांत अभी भी न्यूट्रॉन स्टार जैसे तीव्र चुंबकीय क्षेत्रों में स्थिरता की ओर जाता है, हालांकि सामान्य पदार्थ की तुलना में बहुत अधिक घनत्व पर।[18] यह सामान्य सापेक्षता का परिणाम है कि, पर्याप्त रूप से तीव्र गुरुत्वाकर्षण क्षेत्र ों में, एक ब्लैक होल बनाने के लिए पदार्थ गिर जाता है।

खगोल विज्ञान सफेद बौने और न्यूट्रॉन सितारों के रूप में पाउली सिद्धांत के प्रभाव का एक शानदार प्रदर्शन प्रदान करता है। दोनों पिंडों में, परमाणु संरचना अत्यधिक दबाव से बाधित होती है, लेकिन सितारों को अध: पतन दबाव द्वारा हाइड्रोस्टेटिक संतुलन में रखा जाता है, जिसे फर्मी दबाव भी कहा जाता है। पदार्थ के इस विदेशी रूप को पतित पदार्थ के रूप में जाना जाता है। एक तारे के द्रव्यमान का विशाल गुरुत्वाकर्षण बल सामान्य रूप से आदर्श गैस कानून द्वारा संतुलन में रखा जाता है, जो तारे के कोर में थर्मोन्यूक्लियर फ्यूजन में उत्पन्न गर्मी के कारण होता है। सफेद बौनों में, जो परमाणु संलयन से नहीं गुजरते हैं, गुरुत्वाकर्षण के लिए एक विरोधी बल इलेक्ट्रॉन अध: पतन दबाव द्वारा प्रदान किया जाता है। न्यूट्रॉन सितारों में, और भी मजबूत गुरुत्वाकर्षण बलों के अधीन, इलेक्ट्रॉनों ने न्यूट्रॉन बनाने के लिए प्रोटॉन के साथ विलय कर दिया है। न्यूट्रॉन एक छोटे से रेंज पर भले ही उच्च डिजेनरेसी प्रेशर, न्यूट्रॉन अध: पतन दबाव पैदा करने में सक्षम हैं। यह न्यूट्रॉन सितारों को और अधिक पतन से स्थिर कर सकता है, लेकिन एक सफेद बौने की तुलना में छोटे आकार और उच्च घनत्व पर। न्यूट्रॉन तारे ज्ञात सबसे कठोर पिंड हैं; उनका यंग मापांक (या अधिक सटीक रूप से, थोक मापांक ) हीरे की तुलना में बड़े परिमाण के 20 क्रम है। हालांकि, इस भारी कठोरता को भी टॉल्मन-ओपेनहाइमर-वोल्कॉफ़ सीमा से अधिक न्यूट्रॉन स्टार द्रव्यमान के गुरुत्वाकर्षण क्षेत्र से दूर किया जा सकता है, जिससे ब्लैक होल का निर्माण होता है।[19]: 286–287 


यह भी देखें


संदर्भ

  1. Kenneth S. Krane (5 November 1987). Introductory Nuclear Physics. Wiley. ISBN 978-0-471-80553-3.
  2. "Linus Pauling and The Nature of the Chemical Bond: A Documentary History". Special Collections & Archives Research Center - Oregon State University – via scarc.library.oregonstate.edu.
  3. Langmuir, Irving (1919). "The Arrangement of Electrons in Atoms and Molecules" (PDF). Journal of the American Chemical Society. 41 (6): 868–934. doi:10.1021/ja02227a002. Archived from the original (PDF) on 2012-03-30. Retrieved 2008-09-01.
  4. Shaviv, Glora (2010). The Life of Stars: The Controversial Inception and Emergence of the Theory of Stellar Structure. Springer. ISBN 978-3642020872.
  5. Straumann, Norbert (2004). "The Role of the Exclusion Principle for Atoms to Stars: A Historical Account". Invited Talk at the 12th Workshop on Nuclear Astrophysics: 184–196. arXiv:quant-ph/0403199. Bibcode:2004quant.ph..3199S. CiteSeerX 10.1.1.251.9585.
  6. Pauli, W. (1925). "Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren". Zeitschrift für Physik. 31 (1): 765–783. Bibcode:1925ZPhy...31..765P. doi:10.1007/BF02980631. S2CID 122941900.
  7. "Wolfgang Pauli, Nobel lecture (December 13, 1946)" (PDF).
  8. A. G. Izergin; V. E. Korepin (July 1982). "Pauli principle for one-dimensional bosons and the algebraic Bethe ansatz" (PDF). Letters in Mathematical Physics. 6 (4): 283–288. Bibcode:1982LMaPh...6..283I. doi:10.1007/BF00400323. S2CID 121829553.
  9. Griffiths, David J. (2004), Introduction to Quantum Mechanics (2nd ed.), Prentice Hall, ISBN 0-13-111892-7
  10. Drake, G.W.F. (1989). "Predicted energy shifts for "paronic" Helium". Phys. Rev. A. 39 (2): 897–899. Bibcode:1989PhRvA..39..897D. doi:10.1103/PhysRevA.39.897. PMID 9901315. S2CID 35775478.
  11. Deilamian, K.; et al. (1995). "Search for small violations of the symmetrization postulate in an excited state of Helium". Phys. Rev. Lett. 74 (24): 4787–4790. Bibcode:1995PhRvL..74.4787D. doi:10.1103/PhysRevLett.74.4787. PMID 10058599.
  12. Kittel, Charles (2005), Introduction to Solid State Physics (8th ed.), USA: John Wiley & Sons, Inc., ISBN 978-0-471-41526-8
  13. Lieb, Elliott H. (2002). "The Stability of Matter and Quantum Electrodynamics". arXiv:math-ph/0209034. Bibcode:2002math.ph...9034L. {{cite journal}}: Cite journal requires |journal= (help)
  14. This realization is attributed by Lieb, Elliott H. (2002). "The Stability of Matter and Quantum Electrodynamics". arXiv:math-ph/0209034. and by G. L. Sewell (2002). Quantum Mechanics and Its Emergent Macrophysics. Princeton University Press. ISBN 0-691-05832-6. to F. J. Dyson and A. Lenard: Stability of Matter, Parts I and II (J. Math. Phys., 8, 423–434 (1967); J. Math. Phys., 9, 698–711 (1968) ).
  15. As described by F. J. Dyson (J.Math.Phys. 8, 1538–1545 (1967)), Ehrenfest made this suggestion in his address on the occasion of the award of the Lorentz Medal to Pauli.
  16. F. J. Dyson and A. Lenard: Stability of Matter, Parts I and II (J. Math. Phys., 8, 423–434 (1967); J. Math. Phys., 9, 698–711 (1968) )
  17. Dyson, Freeman (1967). "Ground‐State Energy of a Finite System of Charged Particles". J. Math. Phys. 8 (8): 1538–1545. Bibcode:1967JMP.....8.1538D. doi:10.1063/1.1705389.
  18. Lieb, E. H.; Loss, M.; Solovej, J. P. (1995). "Stability of Matter in Magnetic Fields". Physical Review Letters. 75 (6): 985–9. arXiv:cond-mat/9506047. Bibcode:1995PhRvL..75..985L. doi:10.1103/PhysRevLett.75.985. PMID 10060179. S2CID 2794188.
  19. Martin Bojowald (5 November 2012). The Universe: A View from Classical and Quantum Gravity. John Wiley & Sons. ISBN 978-3-527-66769-7.
General


इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची

  • सांख्यिक अंक
  • मुख्य क्वांटम संख्या
  • परमाणु कक्षीय
  • विनिमय बातचीत
  • उप - परमाणविक कण
  • हीलियम-4
  • बेरिऑन
  • प्रोटोन
  • फोटोन
  • अलकाली धातु
  • ऊर्जा के स्तर में गिरावट
  • Zeeman प्रभाव
  • नोबल गैस
  • हिल्बर्ट स्पेस
  • अध्यारोपण सिद्धांत
  • फर्मी ऊर्जा
  • ऋणावेशित सूक्ष्म अणु का विन्यास
  • सेमीकंडक्टर
  • आणविक कक्षीय
  • अनिश्चित सिद्धांत
  • व्हाइट द्वार्फ
  • जवां मॉड्यूलस
  • हीरा
  • जलस्थैतिक संतुलन
  • विनिमय समरूपता

बाहरी संबंध