वर्ग (समुच्चय सिद्धांत)

From Vigyanwiki

पूरे गणित में समुच्चय सिद्धांत और इसके अनुप्रयोगों में, वर्ग समुच्चय (गणित) (या कभी-कभी अन्य गणितीय वस्तुओं) का एक संग्रह है जिसे स्पष्ट रूप से एक गुण (गणित) द्वारा परिभाषित किया जा सकता है जिसे इसके सभी सदस्य साझा करते हैं। रसेल के विरोधाभास (§विरोधाभास देखें) से बचने के लिए वर्ग समुच्चय से अलग होने के समय समुच्चय-जैसे संग्रह करने के तरीके के रूप में कार्य करती हैं "वर्ग" की परिशुद्ध परिभाषा मूलभूत संदर्भ पर निर्भर करती है। ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत पर काम में, वर्ग की धारणा अनौपचारिक है, जबकि अन्य समुच्चय सिद्धांत, जैसे वॉन न्यूमैन-बर्नेज़-गोडेल समुच्चय सिद्धांत, उपयुक्त वर्ग की धारणा को अभिगृहीत करते हैं, उदाहरण के लिए, संस्थाओं के रूप में जो किसी अन्य इकाई के सदस्य नहीं हैं।

एक वर्ग जो एक समुच्चय नहीं है (अनौपचारिक रूप से ज़र्मेलो-फ्रेंकेल में) को उपयुक्त वर्ग कहा जाता है, और एक वर्ग जो एक समुच्चय होता है उसे कभी-कभी एक छोटा वर्ग कहा जाता है। उदाहरण के लिए, सभी क्रमिक संख्याओं का वर्ग और सभी समुच्चयों का वर्ग, कई औपचारिक प्रणालियों में उपयुक्त वर्ग हैं।

विलार्ड वैन ऑरमैन क्वीन के समुच्चय-सैद्धांतिक लेखन में, वाक्यांश अंतिम वर्ग का उपयोग प्रायः उपयुक्त वर्ग के वाक्यांश के अतिरिक्त किया जाता है, जिसमें प्रमुखता दी जाती है कि जिन प्रणालियों में वे मानते हैं, कुछ वर्ग सदस्य नहीं हो सकते हैं, और इस प्रकार किसी भी सदस्यता श्रृंखला में अंतिम पद हैं जिसके लिए वे संबंधित है।

समुच्चय सिद्धांत के बाहर, पद वर्ग को कभी-कभी समुच्चय के समानार्थक रूप से प्रयोग किया जाता है। यह उपयोग एक ऐतिहासिक काल से है जहां वर्गों और समुच्चयों को अलग नहीं किया गया था क्योंकि वे आधुनिक समुच्चय-सैद्धांतिक शब्दावली में हैं।[1] 19वीं शताब्दी और उससे पहले के वर्गों की कई चर्चाएँ वास्तव में समुच्चयों का उल्लेख कर रही हैं, या संभव्यता यह विचार किए बिना हो सकता है कि कुछ वर्ग समुच्चय बनने में विफल हो सकते हैं।

उदाहरण

किसी दिए गए प्रकार की सभी बीजगणितीय संरचनाओं का संग्रह सामान्य रूप से एक उपयुक्त वर्ग होगा। उदाहरणों में सभी समुच्चयों (गणित) का वर्ग, सभी सदिश समष्टि का वर्ग, और कई अन्य सम्मिलित हैं। श्रेणी सिद्धांत में, एक श्रेणी (गणित) जिसका ऑब्जेक्ट (श्रेणी सिद्धांत) का संग्रह एक उपयुक्त वर्ग बनाता है (या जिसकी आकारिता का संग्रह एक उपयुक्त वर्ग बनाता है) को एक बड़ी श्रेणी कहा जाता है।

वास्तविक संख्याएँ वस्तुओं का एक उपयुक्त वर्ग है जिसमें एक क्षेत्र (गणित) के गुण होते हैं।

समुच्चय सिद्धांत के अंदर, समुच्चय के कई संग्रह उपयुक्त वर्ग बन जाते हैं। उदाहरणों में सभी समुच्चयों का वर्ग, सभी क्रमिक संख्याओं का वर्ग और सभी गणन संख्याओं का वर्ग सम्मिलित है।

एक वर्ग को उपयुक्त प्रमाणित करने का एक तरीका यह है कि इसे सभी क्रमिक संख्याओं के वर्ग के साथ द्विअंत:क्षेपण में रखा जाए। इस पद्धति का उपयोग किया जाता है, इस पद्धति का उपयोग किया जाता है, उदाहरण के लिए, प्रमाण में कि तीन या अधिक उत्पादक (गणित) पर कोई मुक्त पूर्ण जाली (लैटिस) नहीं है।

विरोधाभास

सरल समुच्चय सिद्धांत के विरोधाभासों को असंगत अन्तर्हित धारणा के संदर्भ में समझाया जा सकता है कि "सभी वर्ग समुच्चय हैं"। एक परिशुद्ध स्थापन के साथ, ये विरोधाभास इसके अतिरिक्त प्रमाण देते हैं कि कुछ (अर्थात, कि वे समुच्चय नहीं हैं) वर्ग उपयुक्त हैं। उदाहरण के लिए, रसेल का विरोधाभास एक प्रमाण का सुझाव देता है कि सभी समुच्चयों का वर्ग जिसमें स्वयं सम्मिलित नहीं है, और बुराली-फोर्टी विरोधाभास बताता है कि सभी क्रमिक संख्याओं का वर्ग उपयुक्त है। वर्गों के साथ विरोधाभास उत्पन्न नहीं होता है क्योंकि वर्गों वाले सीमित वर्गों की कोई धारणा नहीं है। अन्यथा, कोई, उदाहरण के लिए, उन सभी वर्गों के वर्ग को परिभाषित कर सकता है जिनमें स्वयं सम्मिलित नहीं है, जो वर्गों के लिए रसेल विरोधाभास का कारण बन जाएगा। दूसरी ओर, एक समुच्चय, सदस्यों के रूप में उपयुक्त वर्ग रख सकता है, हालांकि समुच्चय का सिद्धांत अभी तक अच्छी तरह से स्थापित नहीं है।[citation needed]


औपचारिक समुच्चय सिद्धांतों में वर्ग

जेडएफ समुच्चय सिद्धांत वर्गों की धारणा को औपचारिक रूप नहीं देता है, इसलिए वर्गों के साथ प्रत्येक सूत्र को वर्गों के बिना एक सूत्र में वाक्य-विन्यास के रूप में कम किया जाना चाहिए।[2] उदाहरण के लिए, कोई सूत्र को तक कम कर सकता है। अर्थ की दृष्टि से, एक निरूपक भाषा में, वर्गों को तार्किक सूत्रों के तुल्यता वर्ग के रूप में वर्णित किया जा सकता है: यदि , जेडएफ की व्याख्या करने वाली एक संरचना (गणितीय तर्क) है तो वस्तु भाषा "वर्ग निर्माता अभिव्यक्ति'' की व्याख्या में के प्रक्षेत्र से सभी तत्वों के संग्रह द्वारा की जाती है, जिस पर धारण करता है; इस प्रकार, वर्ग को के समतुल्य सभी विधेय के समुच्चय के रूप में (जिसमें स्वयं भी सम्मिलित है) वर्णित किया जा सकता है। विशेष रूप से के समतुल्य सभी विधेय के समुच्चय के साथ "सभी समुच्चयों के वर्ग" की पहचान की जा सकती है।

क्योंकि जेडएफ के सिद्धांत में वर्गों की कोई औपचारिक स्थिति नहीं है, जेडएफ के सिद्धांत तुरंत वर्गों पर प्रयुक्त नहीं होते हैं। हालांकि, यदि एक अगम्य मान माना जाता है, तो छोटे पद के समुच्चय जेडएफ (एक ग्रोथेंडिक समष्‍टि ) का एक मॉडल बनाते हैं, और इसके उप-समुच्चय को वर्गों के रूप में माना जा सकता है।

जेडएफ में, फलन ̈(गणित) की अवधारणा को वर्गों में भी सामान्यीकृत किया जा सकता है। एक वर्ग फलन सामान्य अर्थों में एक फलन नहीं है, क्योंकि यह एक समुच्चय नहीं है बल्कि यह गुण के साथ एक सूत्र है कि किसी भी समुच्चय के लिए एक से अधिक समुच्चय नहीं है जैसे कि युग्म को संतुष्ट करता है। उदाहरण के लिए, वर्ग फलन मानचित्रण प्रत्येक समुच्चय को उसके अनुक्रमिक के लिए सूत्र के रूप में व्यक्त किया जा सकता है। तथ्य यह है कि क्रमित युग्म को संतुष्ट करती है और आशुलिपि संकेतन के साथ व्यक्त किया जा सकता है।

वॉन न्यूमैन-बर्नेज़-गोडेल अभिगृहीत (एनबीजी) द्वारा एक और दृष्टिकोण लिया जाता है; इस सिद्धांत में वर्ग मूल वस्तुएं हैं, और एक समुच्चय को तब एक वर्ग के रूप में परिभाषित किया जाता है जो किसी अन्य वर्ग का एक तत्व है। हालांकि, एनबीजी के वर्ग अस्तित्व अभिगृहीतों को प्रतिबंधित किया गया है ताकि वे सभी वर्गों के अतिरिक्त केवल समुच्चयों पर मात्रा निर्धारित कर सकें। यह एनबीजी को जेडएफ का संरक्षी आयाम बनाता है।

मोर्स-केली समुच्चय सिद्धांत एनबीजी की तरह मूल वस्तुओं के रूप में उपयुक्त वर्गों को स्वीकार करता है, लेकिन इसके वर्ग अस्तित्व अभिगृहीतों में सभी उपयुक्त वर्गों पर परिमाणीकरण की स्वीकृति भी देता है। यह एमके को एनबीजी और जेडएफ दोनों से दृढ़ता से प्रबल बनाता है।

अन्य समुच्चय सिद्धांतों में, जैसे नए स्थापन या अर्द्ध-समुच्चय का सिद्धांत, उपयुक्त वर्ग की अवधारणा अभी भी समझ में आती है सभी वर्ग समुच्चय नहीं हैं लेकिन स्थापना का मानदंड उप-समुच्चय के अंतर्गत संवृत नहीं है। उदाहरण के लिए, सार्वभौमिक समुच्चय वाले किसी समुच्चय सिद्धांत में उपयुक्त वर्ग होते हैं जो समुच्चयों के उपवर्ग होते हैं।

टिप्पणियाँ

  1. Bertrand Russell (1903). The Principles of Mathematics, Chapter VI: Classes, via Internet Archive
  2. "abeq2 - Metamath Proof Explorer". us.metamath.org. 1993-08-05. Retrieved 2016-03-09.


संदर्भ


बाहरी कड़ियाँ