पैरामीट्रिक फॅमिली
गणित और इसके अनुप्रयोगों में, एक पैरामीटर परिवार या एक पैरामीट्रिक परिवार वस्तुओं का एक अनुक्रमित परिवार (संबंधित वस्तुओं का एक सेट) है, जिनके अंतर केवल मापदंडों के सेट के लिए चुने गए मानों पर निर्भर करते हैं।
सामान्य उदाहरण पैरामीटरयुक्त (के परिवार) कार्य (गणित), संभाव्यता वितरण, घटता, आकार, आदि हैं।
संभाव्यता और इसके अनुप्रयोगों में
उदाहरण के लिए, संभाव्यता घनत्व फ़ंक्शन fX एक यादृच्छिक चर का X एक पैरामीटर पर निर्भर हो सकता है θ. उस स्थिति में, फ़ंक्शन को निरूपित किया जा सकता है पैरामीटर पर निर्भरता को इंगित करने के लिए θ. θ फ़ंक्शन का औपचारिक तर्क नहीं है क्योंकि इसे निश्चित माना जाता है। हालाँकि, पैरामीटर का प्रत्येक अलग मान एक अलग प्रायिकता घनत्व फ़ंक्शन देता है। फिर घनत्व का पैरामीट्रिक परिवार कार्यों का समूह है , कहाँ Θ पैरामीटर स्थान को दर्शाता है, पैरामीटर के सभी संभावित मानों का सेट θ ले जा सकते हैं। एक उदाहरण के रूप में, सामान्य वितरण समान आकार के वितरण का एक परिवार है जो उनके माध्य और उनके विचरण द्वारा पैरामीट्रिज्ड होता है।[1][2] निर्णय सिद्धांत में, दो-क्षण निर्णय मॉडल तब लागू किए जा सकते हैं जब निर्णयकर्ता का सामना संभाव्यता वितरण के स्थान-स्तरीय परिवार से तैयार किए गए यादृच्छिक चर के साथ होता है।
बीजगणित और उसके अनुप्रयोगों में
अर्थशास्त्र में, कोब-डगलस उत्पादन कार्य उत्पादन के विभिन्न कारकों के संबंध में उत्पादन के लोच (अर्थशास्त्र) द्वारा पैरामीट्रिज्ड उत्पादन कार्यों का एक परिवार है।
बीजगणित में, द्विघात समीकरण, उदाहरण के लिए, वास्तव में समीकरणों का एक परिवार है जो चर और उसके वर्ग के गुणांकों द्वारा और निरंतर अवधि के द्वारा पैरामीट्रिज किया जाता है।
यह भी देखें
- अनुक्रमित परिवार
संदर्भ
- ↑ Mukhopadhyay, Nitis (2000). संभाव्यता और सांख्यिकीय अनुमान. United States of America: Marcel Dekker, Inc. pp. 282–283, 341. ISBN 0-8247-0379-0.
- ↑ "वितरण का पैरामीटर". www.statlect.com. Retrieved 2021-08-04.