फजी लॉजिक

From Vigyanwiki
Revision as of 20:03, 5 July 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

फजी लॉजिक को हम अस्पष्ट तर्क भी कह सकते है जो अनेक-मूल्यवान तर्क का रूप होती है। जिसमें चर का सत्य मान 0 और 1 के मध्य कोई भी वास्तविक संख्या हो सकती है। चूँकि इसे आंशिक सत्य की अवधारणा को संभालने के लिए नियोजित किया जाता है, जहाँ सत्य मान पूर्ण प्रकार से सत्य और पूर्ण प्रकार से गलत के मध्य हो सकता है।[1] इसके विपरीत, बूलियन बीजगणित में, चर के सत्य मान सिर्फ पूर्णांक मान 0 या 1 हो सकते हैं।

समान्यतः फज़ी लॉजिक (अस्पष्ट तर्क) शब्द की शुरुआत सन् 1965 में ईरानी अज़रबैजानी गणितज्ञ लोत्फ़ी ए. ज़ादेह द्वारा फजी(अस्पष्ट) संग्रह सिद्धांत के प्रस्ताव के साथ की गई थी।[2][3] चूंकि फजी लॉजिक (अस्पष्ट तर्क) का अध्ययन सन् 1920 के दशक से किया गया था, जैसा कि लुकासिविक्ज़ लॉजिक अनंत-मूल्यवान लॉजिक—मुख्य रूप से जान लुकासिविज़, लुकासिविक्ज़ और अल्फ्रेड टार्स्की द्वारा स्पष्ट किया गया है।[4]

फजी लॉजिक (अस्पष्ट तर्क) इस अवलोकन पर आधारित है कि लोग त्रुटिहीन और गैर-संख्यात्मक जानकारी के आधार पर निर्णय लेते हैं। चूँकि फजी(अस्पष्ट) प्रतिरूप या संग्रह अस्पष्टता और त्रुटिहीन जानकारी का प्रतिनिधित्व करने के गणितीय साधन हैं अतः फजी(अस्पष्ट) शब्द इन प्रतिरूपों में आकड़े और सूचना को पहचानने, प्रतिनिधित्व करने, युक्ति करने, व्याख्या करने और उपयोग करने की क्षमता को दर्शाती है जो मुख्यतः अस्पष्ट होती हैं और निश्चितता की कमी होती है।[5][6]

नियंत्रण सिद्धांत से लेकर कृत्रिम बुद्धिमत्ता तक, कई क्षेत्रों में फ़ज़ी लॉजिक लागू किया गया है।

सिंहावलोकन

शास्त्रीय तर्क केवल उन निष्कर्षों की अनुमति देता है जो सत्य या असत्य हैं। हालाँकि, चर उत्तरों के साथ प्रस्ताव भी हैं, जैसे कि लोगों के एक समूह को एक रंग की पहचान करने के लिए कहने पर मिल सकता है। ऐसे उदाहरणों में, सत्य अयथार्थ या आंशिक ज्ञान से तर्क के परिणाम के रूप में प्रकट होता है जिसमें नमूना उत्तरों को स्पेक्ट्रम पर मैप किया जाता है।<ref>"Fuzzy Logic". YouTube. Archived from the original on 2021-12-05. Retrieved 2020-05-11.</ref>

सत्य के परिमाण और प्रायिकता दोनों की सीमा 0 और 1 के मध्य होती है और अतः प्रथम रूप में समान लगती है, किन्तु उचित रूप से फजी लॉजिक (अस्पष्ट तर्क) सत्य के परिमाण का उपयोग अस्पष्टता के गणितीय प्रतिरूप के रूप में करता है, चूँकि संभवतः यह अज्ञानता का गणितीय प्रतिरूप है।[7]

सत्य मान प्रयुक्त करना

अधिकांशतः अनुप्रयोग चर (गणित) की विभिन्न उप-श्रेणियों की विशेषता हो सकती है। उदाहरण के लिए, लॉक - रोधी ब्रेकिंग प्रणाली के लिए तापमान माप इत्यादि। एंटी-लॉक ब्रेक में ब्रेक को समुचित रूप से नियंत्रित करने के लिए आवश्यक विशेष तापमान सीमा को परिभाषित करने वाले अनेक भिन्न-भिन्न सदस्यता के माध्यम से कार्य होते हैं। प्रत्येक प्रतिक्रिया के समान तापमान के मान को 0 से 1 श्रेणी में सत्य मान पर मानचित्र करता है। अतः इन सत्य मानों का उपयोग यह निर्धारित करने के लिए किया जा सकता है कि ब्रेक को कैसे नियंत्रित किया जाना चाहिए।[8] फजी(अस्पष्ट) संग्रह सिद्धांत अनिश्चितता का प्रतिनिधित्व करने के लिए साधन प्रदान करता है।

भाषाई चर

फजी लॉजिक (अस्पष्ट तर्क) अनुप्रयोगों में, गैर-संख्यात्मक मानों का उपयोग अधिकांशतः नियमों और तथ्यों की अभिव्यक्ति को सुविधाजनक बनाने के लिए किया जाता है।[9]

भाषाई चर जैसे उम्र युवा और उसके प्राचीन विलोम जैसे मूल्यों को स्वीकार कर सकता है। चूँकि प्राकृतिक भाषाओं में फज़ी (अस्पष्ट) मूल्य आकड़ो को व्यक्त करने के लिए सामान्तः पर्याप्त मूल्य शब्द नहीं होते हैं, विशेषण या क्रियाविशेषणों के साथ भाषाई मूल्यों को संशोधित करना साधारण क्रिया है। उदाहरण के लिए, हम हेज (भाषाविज्ञान) का उपयोग कर सकते हैं और कुछ मात्रा में प्राचीन या कुछ नए अतिरिक्त मूल्यों का निर्माण कर सकते हैं।[10]

फजी(अस्पष्ट) प्रणाली

ममदानी

सबसे प्रसिद्ध प्रणाली इब्राहिम ममदानी के नियम पर आधारित है।[11] यह निम्नलिखित नियमों का उपयोग करता है।

  1. फजी(अस्पष्ट) सदस्यता कार्यों में सभी इनपुट मानों को अस्पष्ट करें।
  2. फजी(अस्पष्ट) आउटपुट प्रतिक्रियाओ की गणना करने के लिए नियम आधार में सभी प्रयुक्त नियमों को निष्पादित करती है।
  3. भंगुर आउटपुट मान प्राप्त करने के लिए अस्पष्ट आउटपुट प्रतिक्रियाओ को पुनः अस्पष्ट करें।

फजिफिकेशन (अस्पष्टता)

अस्पष्टता कुछ मात्रा तक सदस्यता के साथ फजी(अस्पष्ट) संग्रह के लिए प्रणाली के संख्यात्मक इनपुट के कार्य करने की प्रक्रिया है। सदस्यता की यह परिमाण अंतराल [0,1] के अंदर कहीं भी हो सकती है। यदि यह 0 है तो मान दिए गए फजी(अस्पष्ट) संग्रह से संबंधित नहीं है और यदि यह 1 है तो मान पूर्ण फजी(अस्पष्ट) संग्रह के अंतर्गत आता है। 0 और 1 के मध्य का कोई भी मान अनिश्चितता की परिमाण का प्रतिनिधित्व करता है जो मान संग्रह में होता है। उन्हें अस्पष्ट संग्रहों को विशेष रूप से शब्दों द्वारा वर्णित किया जाता है और अतः फजी(अस्पष्ट) संग्रहों को प्रणाली इनपुट निर्दिष्ट करके, हम इसके साथ भाषाई रूप से प्राकृतिक विधि से तर्क कर सकते हैं।

उदाहरण के लिए, नीचे दीए गये प्रतिबिम्ब में भावों के अर्थ ठंडे, गर्म और गर्म तापमान के मापन कार्यों द्वारा दर्शाए गए हैं। उस मापन पर बिंदु के तीन सत्य मान होते हैं जो तीन कार्यों में से प्रत्येक के लिए प्रतिबिम्ब में लंबवत रेखा विशेष तापमान का प्रतिनिधित्व करती है जिसे तीन तीर (सत्य मान) प्रमापी होते हैं। चूँकि लाल तीर शून्य की ओर संकेत करता है, इस तापमान की व्याख्या के रूप में गर्म नहीं की जा सकती है अर्थात फजी(अस्पष्ट) संग्रह उष्ण में इस तापमान की शून्य सदस्यता होती है। चूँकि नारंगी तीर (0.2 की ओर संकेत करते हुए) इसे थोड़ा गर्म और नीला तीर (0.8 की ओर संकेत करते हुए) अधिक ठंडा प्रतीत होता है। अतः, इस तापमान में फजी(अस्पष्ट) संग्रह उष्ण में 0.2 सदस्यता और फजी(अस्पष्ट) संग्रह ठंडे में 0.8 सदस्यता होती है। प्रत्येक फजी(अस्पष्ट) संग्रह के लिए कार्य की गई सदस्यता के परिमाण में अस्पष्टता का परिणाम है।

फजी लॉजिक(अस्पष्ट तर्क) तापमान

फजी(अस्पष्ट) संग्रह को अधिकांशतः त्रिभुज या समलम्बाकार के आकार के वक्र के रूप में परिभाषित किया जाता है, चूँकि प्रत्येक मान में ढलान होगी जहाँ मूल्य बढ़ रहा है, और मान 1 के समान्तर है (जिसकी लंबाई 0 या अधिक हो सकती है) और ढलान जहाँ मूल्य घट रहा है।[12] उन्हें सिग्मॉइड प्रतिक्रिया का उपयोग करके भी परिभाषित किया जा सकता है।[13] लॉजिस्टिक फंक्शन के रूप में परिभाषित सामान्य स्थिति है।

जिसमें निम्नलिखित समरूपता गुण है।

इससे यह अनुसरण करता है।

फजी लॉजिक (अस्पष्ट तर्क) ऑपरेटर्स

फजी लॉजिक(अस्पष्ट तर्क) सदस्यता मूल्यों के साथ इस प्रकार कार्य करता है जो बूलियन तर्क की प्रतिलिपि करता है। इसके लिए आधार अनुरूप(कंप्यूटर प्रोग्रामिंग) के AND, OR, NOT के लिए प्रतिस्थापन उपलब्ध होना चाहिए। इसके अनेक विधि हैं। जिसे सामान्य प्रतिस्थापन कहा जाता है।

बूलियन फजी
AND(x,y) MIN(x,y)
OR(x,y) MAX(x,y)
NOT(x) 1 – x

सही/1 और गलत/0 के लिए, फजी(अस्पष्ट) अभिव्यक्ति बूलियन अभिव्यक्ति के समान परिणाम उत्पन्न करते हैं।

इसके सामान्यतः अन्य अनुरूप भी हैं जो प्रकृति में अधिक भाषाई, जिन्हें हेजेज कहा जाता है उसे प्रयुक्त किया जा सकता है। ये विशेष रूप से क्रियाविशेषण होते हैं जैसे बहुत, या कुछ मात्रा तक, जो गणितीय सूत्र का उपयोग करके संग्रह के अर्थ को संशोधित करते हैं।[14]

चूंकि, अनैतिक विकल्प सूची हमेशा फजी लॉजिक (अस्पष्ट तर्क) प्रतिक्रिया को परिभाषित नहीं करती है। कागज में (जैतसेव, एट अल),[15] यह पहचानने के लिए मानदंड तैयार किया गया है कि क्या दी गई अभिव्‍यक्ति तालिका फजी लॉजिक (अस्पष्ट तर्क) प्रतिक्रिया को परिभाषित करती है और फजी लॉजिक (अस्पष्ट तर्क) प्रतिक्रिया संश्लेषण का सरल प्रारूप न्यूनतम और अधिकतम घटकों की प्रस्तुत अवधारणाओं के आधार पर प्रस्तावित किया गया है। फजी लॉजिक (अस्पष्ट तर्क) प्रतिक्रिया न्यूनतम के घटकों के संयोजन का प्रतिनिधित्व करता है, जहां न्यूनतम का घटक इस क्षेत्र में प्रतिक्रिया मान से अधिक या उसके समान वर्तमान क्षेत्र के चर का संयोजन है (असमानता में प्रतिक्रिया मान के दाईं ओर, सहित प्रतिक्रिया मान)।

AND/OR अनुरूपों का और संग्रह गुणन पर आधारित है, जहां

x और y = x * y

x AND y = x*y
NOT x = 1 - x

Hence, 
x OR y = NOT( AND( NOT(x), NOT(y) ) )
x OR y = NOT( AND(1-x, 1-y) )
x OR y = NOT( (1-x)*(1-y) )
x OR y = 1-(1-x)*(1-y) 
x OR y = x+y-xy

AND/OR/NOT में से किन्हीं दो को देखते हुए, तीसरा प्राप्त करना संभव है। जंहा AND के सामान्यीकरण को t-मानक के रूप में जाना जाता है।

यदि-तो नियम

IF-THEN नियम वांछित आउटपुट सत्य मानों के लिए इनपुट या गणना किए गए सत्य मानों को मानचित्र करते हैं। उदाहरण

यदि तापमान बहुत ठंडा है तो पंखे की गति बंद कर दी जाती है।

यदि तापमान ठंडा है तो पंखे की गति धीमी है।

यदि तापमान गर्म है तो पंखे की गति मध्यम है।

यदि तापमान गर्म है तो पंखे की गति अधिक है।

निश्चित तापमान को देखते हुए, फजी(अस्पष्ट) परिवर्तनीय उष्ण का निश्चित सत्य मान होता है, जिसे उच्च चर में प्रतिलिपि किया जाता है।

यदि कोई आउटपुट चर अनेक THEN भागों में होता है, तो संबंधित IF भागों के मानों को OR अनुरूप का उपयोग करके संयोजित किया जाता है।

डीफजिफिकेशन

लक्ष्य फजी(अस्पष्ट) सत्य मान से सतत चर प्राप्त करना है।

यह सरल प्रकार होगा यदि आउटपुट सत्य मान वास्तव में किसी दिए गए नंबर के अस्पष्टता से प्राप्त किए गए हों।

चूंकि, सभी आउटपुट सत्य मूल्यों की स्वतंत्र रूप से गणना की जाती है,तब ज्यादातर स्थितियों में वे संख्याओं के ऐसे संग्रह का प्रतिनिधित्व नहीं करते हैं।

इस प्रकार तब संख्या तय करनी होती है जो सत्य मान में कूटलेखन किए गए विचार से सबसे उत्तम प्रकार से मेल खाती है।

उदाहरण के लिए, पंखे की गति के अनेक सत्य मानों के लिए, वास्तविक गति का व्याख्यान लगाना चाहिए जो 'धीमी', 'मध्यम' और इसी प्रकार के चरों के संगणित सत्य मानों के लिए सबसे उपयुक्त हो।

इस उद्देश्य के लिए कोई एकल कलन विधि नहीं है।

एक सामान्य प्रारूप है।

  1. प्रत्येक सत्य मान के लिए, सदस्यता प्रतिक्रिया को इस मान पर काटें जाते है।
  2. OR अनुरूप का उपयोग करके परिणामी वक्रों को संयोजित किया जाता है।
  3. वक्र के अंतर्गत क्षेत्र का केंद्र-भार ज्ञात करें।
  4. इस केंद्र की x स्थिति अंतिम आउटपुट है।

ताकगी-सुगेनो-कांग (टीएसके)

टीएसके प्रणाली[16] ममदानी के समान है, किन्तु अस्पष्टीकरण प्रक्रिया फजी नियमों के निष्पादन में सम्मलित होता है। इन्हें भी अनुकूलित किया जाता है, जिससे कि इसके अतिरिक्त नियम के परिणाम को बहुपद समारोह (सामान्यतः स्थिर या रैखिक) के माध्यम से प्रदर्शित किया जा सके। जो स्थिर आउटपुट वाले नियम का उदाहरण होता है।

यदि तापमान बहुत ठंडा है = 2

इस स्थिति में, आउटपुट परिणामी के स्थिरांक के समान्तर होगा। (उदाहरण 2) अधिकांश परिदृश्यों में हमारे समीप 2 या अधिक नियमों के साथ संपूर्ण नियम आधार होगा। यदि यह स्थिति है, तो पूरे नियम आधार का उत्पादन प्रत्येक नियम i (Yi), इसके पूर्ववर्ती के सदस्यता मूल्य के अनुसार भारित (एचi):

रैखिक आउटपुट वाले नियम का उदाहरण इसके अतिरिक्त होगा

यदि तापमान बहुत ठंडा है और आर्द्रता अधिक है = 2 * तापमान + 1 * आर्द्रता

इस स्थिति में, नियम का आउटपुट परिणाम में प्रतिक्रिया का परिणाम होता है। जिससे प्रतिक्रिया के अंदर चर अस्पष्टता के पश्चात् सदस्यता मूल्यों का प्रतिनिधित्व करते हैं, जबकि भंगुर मूल्यों का प्रतिनिधित्व नहीं करते है। पहले की प्रकार यदि हमारे पास दो या अधिक नियमों के साथ संपूर्ण नियम का आधार होता है, जो कुल आउटपुट के प्रत्येक नियम के आउटपुट के मध्य भारित औसत होता है।

ममदानी पर टीएसके का उपयोग करने का मुख्य लाभ यह है कि यह कम्प्यूटेशनल रूप से कुशल होता है और अन्य कलन विधि जैसे कि पीआईडी ​​​​नियंत्रण और अनुकूलन प्रारूप के साथ अच्छी प्रकार से कार्य करता है। यह आउटपुट सतह की निरंतरता की गारंटी भी दे सकता है। चूंकि, ममदानी लोगों के साथ कार्य करने में अधिक सहज और सरल होते है। अतः, टीएसके सामान्यतः अन्य जटिल विधियों के अंदर प्रयोग किया जाता है, जैसे कि अनुकूली न्यूरो फजी(अस्पष्ट) इनफेरेंस प्रणाली में संयोजित होते है।

इनपुट और फजी नियमों की आम सहमति बनाना

चूंकि फजी(अस्पष्ट) प्रणाली में सभी आउटपुट और इनपुट नियमों की सहमति होती है, जिससे फजी(अस्पष्ट) लॉजिक प्रणाली को उचित प्रकार से व्यवहार किया जा सकता है जब इनपुट मान उपलब्ध नहीं होते हैं या भरोसेमंद नहीं होते हैं। जंहा नियमानुसार आधार में प्रत्येक नियम में भार को वैकल्पिक रूप से जोड़ा जा सकता है और भार का उपयोग उस परिमाण को विनियमित करने के लिए किया जा सकता है जिस पर नियम आउटपुट मानों को प्रभावित करता है। जिससे ये नियम भार प्रत्येक नियम की प्राथमिकता, विश्वसनीयता या स्थिरता पर आधारित हो सकते हैं। ये नियम भार स्थिर होते हैं या अन्य नियमों के आउटपुट के आधार पर भी गतिशील रूप से बदले जा सकते हैं।

अनुप्रयोग

फजी लॉजिक(अस्पष्ट तर्क) का उपयोग नियंत्रण प्रणालियों में किया जाता है जिससे कि विशेषज्ञों को अस्पष्ट नियमों का योगदान करने की अनुमति मिल सके जैसे कि यदि आप गंतव्य स्टेशन के समीप हैं और तेज़ी से आगे बढ़ रहे हैं, अतः ट्रेन के ब्रेक दबाव में वृद्धि करें जिससे कि इन अस्पष्ट नियम नियंत्रण प्रणाली के अंदर संख्यात्मक रूप से परिष्कृत किया जाता है।

फजी लॉजिक(अस्पष्ट तर्क) के अनेक प्रारंभिक सफल अनुप्रयोग जापान में प्रयुक्त किए गए थे। प्रथम उल्लेखनीय अनुप्रयोग सेंदाई सबवे 1000 श्रृंखला पर था, जिसमें फजी लॉजिक(अस्पष्ट तर्क) अर्थव्यवस्था, आराम और सवारी की त्रुटिहीनता में सुधार करने में सक्षम था। इसका उपयोग मौसम विज्ञान ब्यूरो, जापान के द्वारा सोनी पॉकेट कंप्यूटर, हेलीकॉप्टर उड़ान सहायता, सबवे प्रणाली नियंत्रण, ऑटोमोबाइल ईंधन दक्षता में सुधार, सिंगल-बटन वाशिंग यंत्र नियंत्रण, वैक्यूम क्लीनर में स्वत: बिजली नियंत्रण, और भूकंप विज्ञान संस्थान के माध्यम से भूकंप की शीघ्र पहचान के लिए लिखावट की पहचान के लिए भी किया गया है।[17]

कृत्रिम बुद्धि

एआई और फजी लॉजिक(अस्पष्ट तर्क) के द्वारा जब विश्लेषण किया जाता है, तब तंत्रिका नेटवर्क का अंतर्निहित फजी(अस्पष्ट) तर्क है। साधारणतः तंत्रिका नेटवर्क विभिन्न प्रकार के मूल्यवान इनपुट लेता है, तथा उन्हें दूसरे के संबंध में भिन्न-भिन्न भार देगा और निर्णय पर पहुंचेगा। जिसका सामान्य रूप से भी मूल्य होता है। उस प्रक्रिया में कहीं भी या तो-या निर्णयों के अनुक्रम जैसा कुछ नहीं है। जो गैर-फजी गणित में लगभग सभी कंप्यूटर प्रोग्रामिंग और डिजिटल इलेक्ट्रॉनिक्स की विशेषता होती है। सन् 1980 के दशक में, शोधकर्ताओं को यंत्र सीखने के लिए सबसे प्रभावी दृष्टिकोण के बारे में विभाजित किया गया था। सामान्य ज्ञान प्रतिरूप या तंत्रिका नेटवर्क के पूर्व दृष्टिकोण के लिए बड़े निर्णय वृक्षों की आवश्यकता होती है और यह बाइनरी तर्क का उपयोग करता है, जिस कारण यह जिस हार्डवेयर पर यह चलता है उससे मेल खाता है। चूँकि भौतिक उपकरण बाइनरी तर्क तक सीमित हो सकते हैं, किन्तु एआई इसकी गणना के लिए सॉफ्टवेयर का उपयोग कर सकता है। अतः तंत्रिका नेटवर्क इस दृष्टिकोण को अपनाते हैं, जिसके परिणामस्वरूप जटिल स्थितियों के अधिक त्रुटिहीन प्रतिरूप मिलते हैं। जिससे तंत्रिका नेटवर्क ने जल्द ही अनेक इलेक्ट्रॉनिक उपकरणों पर अपना रास्ता खोज लिया था।[18]

चिकित्सा निर्णय लेना

नैदानिक ​​निर्णय समर्थन प्रणाली में फजी लॉजिक(अस्पष्ट तर्क) की महत्वपूर्ण अवधारणा है। चूंकि चिकित्सा और स्वास्थ्य संबंधी आकड़े व्यक्तिपरक या फजी हो सकता है, अतः इस डोमेन के अनुप्रयोगों में फजी लॉजिक(अस्पष्ट तर्क) आधारित दृष्टिकोणों का उपयोग करके बहुत अधिक लाभ उठाने की क्षमता होती है।

चिकित्सा निर्णय लेने के ढांचे के अंदर अनेक भिन्न-भिन्न प्रारूप में फजी लॉजिक(अस्पष्ट तर्क) का उपयोग किया जा सकता है। जिसमे इसमें ऐसे प्रारूप सम्मलित होते हैं[19][20][21] अतः मेडिकल प्रतिबिम्ब विश्लेषण, बायोमेडिकल संकेत विश्लेषण, प्रतिबिम्ब विभाजन में[22] या संकेत और सुविधा निष्कर्षण / प्रतिबिम्बयों का चयन[22]या संकेत किया जाता है ।[23]

इस आवेदन क्षेत्र में सबसे बड़ा सवाल यह है कि फ़ज़ी लॉजिक का उपयोग करते समय कितनी उपयोगी जानकारी प्राप्त की जा सकती है। अतः बड़ी चुनौती यह है कि आवश्यक फ़ज़ी आंकड़े कैसे प्राप्त किया जाए। यह तब और भी चुनौतीपूर्ण हो जाता है जब किसी को ऐसे आंकड़े मनुष्यों (विशेष रूप से रोगियों) से प्राप्त करना होता है। जैसा कहा गया है।

— सात चुनौतियां

फजी(अस्पष्ट) आकड़े कैसे प्राप्त करें और आकड़े की त्रुटिहीनता को कैसे मान्य किया जा सकता है, ऐसा अभी भी फजी लॉजिक(अस्पष्ट तर्क) के अनुप्रयोग से संबंधित सतत प्रयास है। फजी(अस्पष्ट) आकड़े की गुणवत्ता का आकलन करने में कठिन समस्या होती है। अतः यही कारण है कि फजी लॉजिक(अस्पष्ट तर्क) चिकित्सा निर्णय लेने के आवेदन क्षेत्र के अंदर अत्यधिक आशाजनक संभावना है, किन्तु अभी भी इसकी पूर्ण क्षमता प्राप्त करने के लिए और अधिक शोध की आवश्यकता होती है।[24] यद्यपि चिकित्सा निर्णय लेने में फजी लॉजिक(अस्पष्ट तर्क) का उपयोग करने की अवधारणा रोमांचक होती है, फिर भी अनेक चुनौतियाँ हैं जो चिकित्सा निर्णय लेने के ढांचे के अंदर फजी(अस्पष्ट) दृष्टिकोण का सामना करती हैं।

प्रतिबिम्ब आधारित कंप्यूटर एडेड निदान

फजी लॉजिक(अस्पष्ट तर्क) का उपयोग करने वाले सामान्य अनुप्रयोग क्षेत्रों में से चिकित्सा में प्रतिबिम्ब-आधारित कंप्यूटर-एडेड डायग्नोसिस (सीएडी) का प्रयोग किया जाता है।[25] चूँकि सीएडी अंतर-संबंधित उपकरणों का कम्प्यूटरीकृत संग्रह है जिसका उपयोग चिकित्सकों को उनके नैदानिक ​​निर्णय लेने में सहायता करने के लिए किया जाता है। उदाहरण के लिए, जब चिकित्सक को ऐसा घाव मिलता है जो असामान्य है किन्तु अभी भी विकास के बहुत प्रारंभिक चरण में है, अतः वह घाव को चिह्नित करने और इसकी प्रकृति का निदान करने के लिए सीएडी दृष्टिकोण का उपयोग कर सकता है। इस घाव की प्रमुख विशेषताओं का वर्णन करने के लिए फजी लॉजिक(अस्पष्ट तर्क) अत्यधिक उपयुक्त हो सकता है।

फजी(अस्पष्ट) आकड़ेबेस

प्रारंभिक रूप से फजी(अस्पष्ट) संबंध परिभाषित हो जाने के पश्चात् फजी(अस्पष्ट)संबंध का आकड़ेबेस विकसित करना संभव होता है। प्रथम फजी(अस्पष्ट) संबंधित आकड़ेबेस, FRDB, मारिया ज़मानकोवा के शोध प्रबंध (1983) में दिखाई दिया था। इसके पश्चात् कुछ अन्य प्रतिरूप उत्पन्न हुए जैसे बकल्स-पेट्री प्रतिरूप, प्रेड-टेस्टेमेल प्रतिरूप, उमानो-फुकार्यी प्रतिरूप या जेएम मदीना, एमए विला एट अल द्वारा जीईएफआरईडी प्रतिरूप इत्यादि सम्मिलित है।

अस्पष्ट जांच-पड़ताल के माध्यम से भाषाओं को परिभाषित किया गया है, जैसे कि SQLF by P. Bosc et al। और J. Galindo et al द्वारा FSQL SQL कथनों में फजी(अस्पष्ट) प्रारूपो को सम्मलित करने के लिए ये भाषाएँ कुछ संरचनाओं को परिभाषित करती हैं, जैसे फजी(अस्पष्ट) स्थितियाँ, फजी(अस्पष्ट) तुलनित्र, फजी(अस्पष्ट) स्थिरांक, फजी(अस्पष्ट) बाध्यता, फजी(अस्पष्ट) प्रवेशद्वार, भाषाई लेबल आदि सम्मलित है।

तार्किक विश्लेषण

गणितीय तर्क में, फजी लॉजिक(अस्पष्ट तर्क) की अनेक औपचारिक प्रणालियाँ होती हैं, जिनमें से अधिकांश टी-मानदंड फजी लॉजिक(अस्पष्ट तर्क) के संबंध में हैं।

प्रस्तावित फजी लॉजिक(अस्पष्ट तर्क)

सबसे महत्वपूर्ण प्रस्तावक फजी लॉजिक(अस्पष्ट तर्क) होते हैं।

  • एमटीएल (तर्क) मोनॉयडल टी-नॉर्म-आधारित प्रस्‍ताव से संबंधित फजी लॉजिक(अस्पष्ट तर्क) एमटीएल स्वयंसिद्ध प्रणाली है। चूँकि तर्क का स्वयंसिद्धीकरण जहां तार्किक संयोजन को बाएं निरंतर टी-मानदंड द्वारा परिभाषित किया गया है और निहितार्थ को टी-मानदंड के अवशेष के रूप में परिभाषित किया गया है। इसकी संरचना (गणितीय तर्क) एमटीएल-बीजगणित के अनुरूप है जो पूर्व-रैखिक क्रमविनिमेय बाध्य अभिन्न अवशिष्ट जाली हैं।
  • बीएल (तर्क) बीएल एमटीएल तर्क का विस्तार है जहां संयोजन को निरंतर टी-मानदंड द्वारा परिभाषित किया जाता है, और निहितार्थ को टी-मानदंड के अवशेष के रूप में भी परिभाषित किया जाता है। इसके प्रतिरूप बीएल-अलजेब्रस के अनुरूप होता हैं।
  • लुकासिविक्ज़ फजी लॉजिक(अस्पष्ट तर्क) लुकासिविज़ फजी लॉजिक(अस्पष्ट तर्क) बुनियादी फजी लॉजिक(अस्पष्ट तर्क) बीएल का विस्तार है जहाँ मानक संयोजन लुकासिविज़ टी-नॉर्म है। इसमें बुनियादी फजी लॉजिक(अस्पष्ट तर्क) के स्वयंसिद्ध और दोहरे निषेध का स्वयंसिद्ध है और इसके प्रतिरूप एमवी-बीजगणित के अनुरूप होते हैं।
  • गोडेल फजी लॉजिक(अस्पष्ट तर्क) आधार फजी लॉजिक(अस्पष्ट तर्क) बीएल का विस्तार है जहाँ संयुग्मन गोडेल टी-नॉर्म (अर्थात न्यूनतम) है। इसमें बीएल के स्वयंसिद्ध और संयुग्मन की निष्क्रियता का स्वयंसिद्ध रूप है और इसके प्रतिरूप को जी-अल्जेब्रस कहा जाता है।
  • उत्पाद फजी लॉजिक(अस्पष्ट तर्क) आधार फजी लॉजिक(अस्पष्ट तर्क) बीएल का विस्तार है जहाँ संयोजन उत्पाद टी-नॉर्म है। इसमें बीएल के अभिगृहीत और संयोजन की रद्दीकरण के लिए अन्य अभिगृहीत होता है और इसके प्रतिरूप को उत्पाद बीजगणित कहा जाता है।
  • मूल्यांकित वाक्य - विन्यास के साथ फजी लॉजिक(अस्पष्ट तर्क) ( जिसे कभी-कभी पावेल्का लॉजिक भी कहा जाता है) का रूप होता है, जो EVŁ द्वारा निरूपित, गणितीय फजी लॉजिक(अस्पष्ट तर्क) का सामान्यीकरण होता है। जबकि उपरोक्त प्रकार के फजी लॉजिक(अस्पष्ट तर्क) में पारंपरिक वाक्य - विन्यास और अनेक-मूल्यवान शब्दार्थ सम्मलित हैं, चूँकि इसका EVŁ वाक्य - विन्यास में भी मूल्यांकन किया जाता है। इसका तात्पर्य है कि प्रत्येक सूत्र का मूल्यांकन होता है। EVŁ का स्वयंसिद्धीकरण लुकास्ज़ीविक्ज़ फजी लॉजिक(अस्पष्ट तर्क) की शोभा होती है। मौलिक गोडेल पूर्णता प्रमेय का सामान्यीकरण EVŁ में सिद्ध किया जा सकता है।

विधेय फजी लॉजिक्स

प्रस्तावक कलन से पहले क्रम का तर्क बनाने के विधि के समान, विधेय फजी लॉजिक(अस्पष्ट तर्क) फजी(अस्पष्ट) प्रणाली को यूनिवर्सल क्वांटिफायर और अस्तित्वगत परिमाणक द्वारा विस्तृत करते हैं। टी-नॉर्म फज़ी लॉजिक्स में यूनिवर्सल क्वांटिफायर का सिमेंटिक्स क्वांटिफाइड उपसूत्र के उदाहरणों की ट्रुथ डिग्रियों का सबसे कम महत्त्व है, जबकि अस्तित्व क्वांटिफायर का शब्दार्थ उसी का सर्वोच्च उदाहरण है।

निर्णायकता मुद्दे

मौलिक गणित और मौलिक तर्क के लिए निर्णायक उपसमुच्चय और पुनरावर्ती गणना योग्य उपसमुच्चय की धारणाएं आधारभूत होती हैं। इस प्रकार फजी(अस्पष्ट) संग्रह सिद्धांत के लिए उनके उपयुक्त विस्तार का प्रश्न महत्वपूर्ण है। इस प्रकार की दिशा में प्रथम प्रस्ताव ई.एस. सैंटोस द्वारा फजी(अस्पष्ट) ट्यूरिंग यंत्र, मार्कोव सामान्य फजी(अस्पष्ट) एल्गोरिथम और फजी(अस्पष्ट) प्रोग्राम (सैंटोस 1970 देखें) की धारणाओं द्वारा किया गया था। क्रमिक रूप से, एल. बियासिनो और जी. गेरला ने तर्क दिया कि प्रस्तावित परिभाषाएँ संदिग्ध हैं। उदाहरण के लिए, [26] one दिखाता है कि फजी(अस्पष्ट) ट्यूरिंग यंत्र फजी(अस्पष्ट) भाषा सिद्धांत के लिए पर्याप्त नहीं हैं क्योंकि प्राकृतिक फजी(अस्पष्ट) भाषा सहज रूप से गणना योग्य हैं जिन्हें फजी(अस्पष्ट) ट्यूरिंग यंत्र द्वारा पहचाना नहीं जा सकता है। तब उन्होंने निम्नलिखित परिभाषाएँ प्रस्तावित कीं। [0,1] में परिमेय संख्याओं के समुच्चय को Ü से निरूपित करें। फिर फजी(अस्पष्ट)उपसमुच्चय s : S [0,1] संग्रह S का पुनरावर्ती रूप से गणना योग्य है यदि पुनरावर्ती मानचित्र h : S×'N' Ü इस प्रकार उपस्तिथ है कि, S में प्रत्येक x के लिए, प्रतिक्रिया h(x,n) n और s(x) = lim h(x,n) के संबंध में बढ़ रहा है।

अतः हम कह सकते हैं कि s निर्णायक है यदि दोनों s और इसके पूरक - पुनरावर्ती रूप से गणनीय हैं। तब एल-उपसमुच्चय के सामान्य स्थिति में इस प्रकार के सिद्धांत का विस्तार संभव है (गेरला 2006 देखें)।

प्रस्तावित परिभाषाएँ फजी लॉजिक(अस्पष्ट तर्क) से उचित प्रकार से संबंधित हैं। वास्तव में, निम्नलिखित प्रमेय सत्य है (बशर्ते कि फजी लॉजिक(अस्पष्ट तर्क) का कटौती उपकरण कुछ स्पष्ट प्रभावशीलता संपत्ति को संतुष्ट करता है)।

कोई भी स्वयंसिद्ध फजी(अस्पष्ट) सिद्धांत पुनरावर्ती के गणना योग्य होता है। तार्किक रूप से सही सूत्रों का फजी(अस्पष्ट) संग्रह पुनरावर्ती रूप से गणना योग्य है, अतः इस तथ्य के बावजूद कि मान्य सूत्रों का भंगुर संग्रह सामान्य रूप से पुनरावर्ती रूप से गणना योग्य नहीं है। इसके अतिरिक्त कोई भी स्वयंसिद्ध और पूर्ण सिद्धांत निर्णायक नही होता है।

फजी(अस्पष्ट) गणित के लिए चर्च निबंध के लिए समर्थन देने के लिए यह खुला प्रश्न है, फजी(अस्पष्ट) सबसंग्रह के लिए पुनरावर्ती गणना की प्रस्तावित धारणा पर्याप्त है। इसे हल करने के लिए फजी(अस्पष्ट) व्याकरण और फजी(अस्पष्ट) ट्यूरिंग यंत्र की धारणाओं का विस्तार आवश्यक है। अन्य खुला प्रश्न इस धारणा से प्रारंभ करना है कि गोडेल के प्रमेयों का फजी लॉजिक(अस्पष्ट तर्क) तक विस्तार खोजा जाता है।

अन्य तर्कों की तुलना में

संभावना

फजी लॉजिक(अस्पष्ट तर्क) और प्रायिकता अनिश्चितता के विभिन्न रूपों को संबोधित करते हैं। जबकि फजी लॉजिक(अस्पष्ट तर्क) और संभवतः सिद्धांत दोनों कुछ प्रकार के व्यक्तिपरक विश्वास की परिमाण का प्रतिनिधित्व कर सकते हैं, फजी(अस्पष्ट) संग्रह सिद्धांत सदस्यता की अवधारणा का उपयोग करता है। अर्थात, अस्पष्ट रूप से परिभाषित संग्रह के अंदर कितना अवलोकन है और संभवतः सिद्धांत व्यक्तिपरक संभवतः की अवधारणा का उपयोग करता है। चूँकि, घटना की आवृत्ति या किसी घटना या स्थिति की संभावना फजी(अस्पष्ट) संग्रह की अवधारणा को बीसवीं सदी के मध्य में बर्कले में विकसित किया गया था [27] संयुक्त रूप से अनिश्चितता और अस्पष्टता के प्रतिरूप के लिए संभवतः सिद्धांत की कमी की प्रतिक्रिया के रूप में संयोजित किया जाता है।[28]

बार्ट कोस्को फज़ीनेस बनाम प्रायिकता में प्रामाणित करता है[29] वह संभवतः सिद्धांत फजी लॉजिक(अस्पष्ट तर्क) का उपसिद्धांत होता है। चूँकि संभवतः सिद्धांत में पारस्परिक रूप से अनन्य संग्रह सदस्यता में विश्वास की परिमाण के प्रश्नों को फजी(अस्पष्ट) सिद्धांत में गैर-पारस्परिक रूप से अनन्य श्रेणीबद्ध सदस्यता के कुछ स्थिति के रूप में दर्शाया जा सकता है। उस संदर्भ में, वह फजी(अस्पष्ट) उपसंग्रह की अवधारणा से बेयस प्रमेय को भी प्राप्त करता है। लोट्फी ए. ज़ादेह का तर्क है कि फजी लॉजिक(अस्पष्ट तर्क) चरित्र में संभवतः रूप से भिन्न होता है और यह इसका प्रतिस्थापन नहीं है। उन्होंने संभवतः फजी प्रायिकता के रूप में अस्पष्ट कर दिया और इसे संभावना सिद्धांत के लिए सामान्यीकृत भी किया।[30]

अत्यधित सामान्य रूप से, फजी लॉजिक(अस्पष्ट तर्क) मौलिक तर्क के अनेक भिन्न-भिन्न विस्तार में से उपयोग किया जाता है, जिसका उद्देश्य मौलिक तर्क की सीमा से बाहर अनिश्चितता के मुद्दों से सुलझाना होता है, अतः अनेक डोमेन में संभवतः सिद्धांत की अनुपयुक्तता, और डेम्पस्टर-शेफ़र सिद्धांत के विरोधाभास संयोजित होता है।

इकोरिथम्स

कम्प्यूटेशनल सिद्धांतवादी लेस्ली बहादुर इकोरिथम्स शब्द का उपयोग यह व्यक्त करने के लिए करता है कि कितने कम त्रुटिहीन प्रणाली और फजी लॉजिक(अस्पष्ट तर्क) (और कम मजबूत लॉजिक) जैसी तकनीकों को सीखने के प्रारूप पर प्रयुक्त किया जा सकता है। जिससे वैलेंट अनिवार्य रूप से यंत्र अधिगम को विकासवादी के रूप में पुनः परिभाषित करता है। सामान्य उपयोग में, ईकोरिथम प्रारूप होता हैं जो उनके अधिक जटिल वातावरण से सामान्यीकरण, अनुमान और समाधान तर्क को सरल बनाने के लिए सीखते हैं। फजी लॉजिक(अस्पष्ट तर्क) की प्रकार में वे निरंतर चर या प्रणालियों को दूर करने के लिए उपयोग की जाने वाली विधियाँ होती हैं जो पूर्ण प्रकार से समझने के लिए बहुत जटिल हैं।[31] इकोरिथम्स और फजी लॉजिक(अस्पष्ट तर्क) में अधिक संभावनाओं से समझौता करने के लिए सामान्य संपत्ति होती है, चूंकि प्रतिपुष्टि और फीडफॉरवर्ड नियंत्रण(नियंत्रण), मूल रूप से स्टोचैस्टिक वजन उदाहरण के लिए, गतिशील प्रणाली से समझौते के समय दोनों की विशेषता व्यक्त होती है।

गोडेल जी तर्क

सामान्य रूप से अन्य तार्किक प्रणाली जहां सत्य मान 0 और 1 के मध्य वास्तविक संख्याएं हैं और जहां AND और OR अनुरूपों को MIN और MAX से परिवर्तित किया जाता है, अतः वह गोडेल का जी तर्क है। इस तर्क में फजी लॉजिक(अस्पष्ट तर्क) के साथ अनेक समानताएँ होती हैं। किन्तु नकारात्मकता को भिन्न प्रकार से परिभाषित करता है और इसका आंतरिक निहितार्थ करता है। जंहा नकार और निहितार्थ निम्नानुसार परिभाषित किया गया है।

जो परिणामी तार्किक प्रणाली को अंतर्ज्ञानवादी तर्क के लिए प्रतिरूप में पतिवर्तित कर देता है, जिससे तार्किक प्रणालियों के सभी संभावित विकल्पों में विशेष रूप से उचित प्रकार से व्यवहार किया जाता है, जिसमें 0 और 1 के मध्य वास्तविक संख्याएं सत्य मान के रूप में होती हैं। इस स्थिति में, निहितार्थ की व्याख्या की जा सकती है क्योंकि x, y से कम सत्य है और निषेध के रूप में x, 0 से कम सत्य है या x सख्ती से गलत है और किसी के लिए और , हमारे समीप वह है . जो विशेष रूप से, गोडेल तर्क में निषेध अंतर्वलन नहीं है और दोहरा निषेध किसी भी गैर-शून्य मान को 1 में दर्शाता है।

क्षतिपूरक फजी लॉजिक(अस्पष्ट तर्क)

क्षतिपूरक फजी लॉजिक(अस्पष्ट तर्क) (CFL) फजी लॉजिक(अस्पष्ट तर्क) की शाखा है जिसमें संयोजन के लिए संशोधित नियम हैं। जब संयोजन या वियोग के घटक का सत्य मान बढ़ता या घटता है, चूँकि दूसरे घटक को क्षतिपूर्ति के लिए घटाया या बढ़ाया जाता है। सत्य मूल्य में यह वृद्धि या कमी किसी अन्य घटक में वृद्धि या कमी से बंद संग्रह हो सकती है। कुछ निश्चित सीमाएँ पूर्ण होने पर बंद संग्रह ब्लॉक किया जा सकता है। जो समर्थकों को प्रामाणित करता है कि सीएफएल उत्तम कम्प्यूटेशनल अर्थ-संबंधी व्यवहार और प्राकृतिक भाषा की प्रतिलिपि करने की अनुमति देता है।[32][33]

जेसुस सेजस मोंटेरो (2011) के अनुसार प्रतिपूरक फजी लॉजिक(अस्पष्ट तर्क) में चार निरंतर अनुरूप होते हैं- संयुग्मन (सी), संयोजन (डी), फजी सख्त आदेश (या), और निषेध (एन)। अतः संयुग्मन ज्यामितीय माध्य है और इसके दोहरे संयोजक और वियोगी संकारक हैं।[34]

मार्कअप भाषा मानकीकरण

IEEE 1855, IEEE मानक 1855–2016, अस्पष्ट मार्कअप भाषा (FML) नामक विशिष्ट भाषा के बारे में है।[35] IEEE मानक संघ द्वारा विकसित FML फजी लॉजिक(अस्पष्ट तर्क) प्रणाली को मानव-पठनीय और हार्डवेयर स्वतंत्र विधि से प्रतिरूप करने की अनुमति देता है। चूँकि, FML एक्स्टेंसिबल मार्कअप भाषा (XML) पर आधारित है। अतः FML के साथ फजी(अस्पष्ट) प्रणाली के डिजाइनरों के समीप अंतर-संचालित फजी(अस्पष्ट) प्रणाली का वर्णन करने के लिए एकीकृत और उच्च-स्तरीय कार्यप्रणाली होती है। IEEE STANDARD 1855–2016 FML कार्यक्रम के वाक्य - विन्यास और शब्दार्थ को परिभाषित करने के लिए W3C XML स्कीमा (W3C) परिभाषा की भाषा का उपयोग करता है।

FML की शुरुआत से पूर्व, फजी लॉजिक(अस्पष्ट तर्क) व्यवहार अपने फजी(अस्पष्ट) प्रारूप के बारे में जानकारी का आदान-प्रदान कर सकते थे। चूँकि अपने सॉफ़्टवेयर कार्यकर्मो में फजी(अस्पष्ट) नियंत्रण भाषा (FCL) के साथ संगत फॉर्म में पढ़ने और उचित रूप से पार्स करने और अपने कार्य के परिणाम को स्टोर करने की क्षमता जोड़कर IEC 61131 के भाग 7 द्वारा वर्णित और निर्दिष्ट किया जाता है।[36][37]

यह भी देखें


संदर्भ

  1. Novák, V.; Perfilieva, I.; Močkoř, J. (1999). Mathematical principles of fuzzy logic. Dordrecht: Kluwer Academic. ISBN 978-0-7923-8595-0.
  2. "Fuzzy Logic". Stanford Encyclopedia of Philosophy. Bryant University. 2006-07-23. Retrieved 2008-09-30.
  3. Lua error in Module:Cite_Q at line 435: attempt to index field '?' (a nil value).
  4. Pelletier, Francis Jeffry (2000). "Review of Metamathematics of fuzzy logics" (PDF). The Bulletin of Symbolic Logic. 6 (3): 342–346. doi:10.2307/421060. JSTOR 421060. Archived (PDF) from the original on 2016-03-03.
  5. "What is Fuzzy Logic? "Mechanical Engineering Discussion Forum"". mechanicalsite.com. Archived from the original on 2018-11-11. Retrieved 2018-11-11.
  6. Babuška, Robert (1998). नियंत्रण के लिए फ़ज़ी मॉडलिंग. Springer Science & Business Media. ISBN 978-94-011-4868-9.
  7. Asli, Kaveh Hariri; Aliyev, Soltan Ali Ogli; Thomas, Sabu; Gopakumar, Deepu A. (2017-11-23). Handbook of Research for Fluid and Solid Mechanics: Theory, Simulation, and Experiment (in English). CRC Press. ISBN 9781315341507.
  8. Chaudhuri, Arindam; Mandaviya, Krupa; Badelia, Pratixa; Ghosh, Soumya K. (2016-12-23). Optical Character Recognition Systems for Different Languages with Soft Computing (in English). Springer. ISBN 9783319502526.
  9. Zadeh, L. A.; et al. (1996). Fuzzy Sets, Fuzzy Logic, Fuzzy Systems. World Scientific Press. ISBN 978-981-02-2421-9.
  10. Zadeh, L. A. (January 1975). "The concept of a linguistic variable and its application to approximate reasoning—I". Information Sciences. 8 (3): 199–249. doi:10.1016/0020-0255(75)90036-5.
  11. Mamdani, E. H. (1974). "Application of fuzzy algorithms for control of simple dynamic plant". Proceedings of the Institution of Electrical Engineers. 121 (12): 1585–1588. doi:10.1049/PIEE.1974.0328.
  12. Xiao, Zhi; Xia, Sisi; Gong, Ke; Li, Dan (2012-12-01). "The trapezoidal fuzzy soft set and its application in MCDM". Applied Mathematical Modelling (in English). 36 (12): 5846–5847. doi:10.1016/j.apm.2012.01.036. ISSN 0307-904X.
  13. Wierman, Mark J. "An Introduction to the Mathematics of Uncertainty: including Set Theory, Logic, Probability, Fuzzy Sets, Rough Sets, and Evidence Theory" (PDF). Creighton University. Archived (PDF) from the original on 30 July 2012. Retrieved 16 July 2016.
  14. Zadeh, L. A. (January 1972). "A Fuzzy-Set-Theoretic Interpretation of Linguistic Hedges". Journal of Cybernetics. 2 (3): 4–34. doi:10.1080/01969727208542910. ISSN 0022-0280.
  15. Zaitsev, D. A.; Sarbei, V. G.; Sleptsov, A. I. (1998). "Synthesis of continuous-valued logic functions defined in tabular form". Cybernetics and Systems Analysis. 34 (2): 190–195. doi:10.1007/BF02742068. S2CID 120220846.
  16. Takagi, Tomohiro; Sugeno, Michio (January 1985). "Fuzzy identification of systems and its applications to modeling and control". IEEE Transactions on Systems, Man, and Cybernetics. SMC-15 (1): 116–132. doi:10.1109/TSMC.1985.6313399. S2CID 3333100.
  17. Bansod, Nitin A; Kulkarni, Marshall; Patil, S. H. (2005). "Soft Computing- A Fuzzy Logic Approach". In Bharati Vidyapeeth College of Engineering (ed.). Soft Computing. Allied Publishers. p. 73. ISBN 978-81-7764-632-0. Retrieved 9 November 2018.
  18. Elkan, Charles (1994). "The paradoxical success of fuzzy logic". IEEE Expert. 9 (4): 3–49. CiteSeerX 10.1.1.100.8402. doi:10.1109/64.336150. S2CID 113687.
  19. Lin, K. P.; Chang, H. F.; Chen, T. L.; Lu, Y. M.; Wang, C. H. (2016). "Intuitionistic fuzzy C-regression by using least squares support vector regression". Expert Systems with Applications. 64: 296–304. doi:10.1016/j.eswa.2016.07.040.
  20. Deng, H.; Deng, W.; Sun, X.; Ye, C.; Zhou, X. (2016). "Adaptive intuitionistic fuzzy enhancement of brain tumor MR images". Scientific Reports. 6: 35760. Bibcode:2016NatSR...635760D. doi:10.1038/srep35760. PMC 5082372. PMID 27786240.
  21. Vlachos, I. K.; Sergiadis, G. D. (2007). "Intuitionistic fuzzy information–applications to pattern recognition". Pattern Recognition Letters. 28 (2): 197–206. Bibcode:2007PaReL..28..197V. doi:10.1016/j.patrec.2006.07.004.
  22. 22.0 22.1 Gonzalez-Hidalgo, Manuel; Munar, Marc; Bibiloni, Pedro; Moya-Alcover, Gabriel; Craus-Miguel, Andrea; Segura-Sampedro, Juan Jose (October 2019). "Detection of infected wounds in abdominal surgery images using fuzzy logic and fuzzy sets". 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). Barcelona, Spain: IEEE: 99–106. doi:10.1109/WiMOB.2019.8923289. ISBN 978-1-7281-3316-4. S2CID 208880793.
  23. Das, S.; Guha, D.; Dutta, B. (2016). "Medical diagnosis with the aid of using fuzzy logic and intuitionistic fuzzy logic". Applied Intelligence. 45 (3): 850–867. doi:10.1007/s10489-016-0792-0. S2CID 14590409.
  24. Yanase, Juri; Triantaphyllou, Evangelos (2019). "The Seven Key Challenges for the Future of Computer-Aided Diagnosis in Medicine". International Journal of Medical Informatics. 129: 413–422. doi:10.1016/j.ijmedinf.2019.06.017. PMID 31445285. S2CID 198287435.
  25. Yanase, Juri; Triantaphyllou, Evangelos (2019). "A Systematic Survey of Computer-Aided Diagnosis in Medicine: Past and Present Developments". Expert Systems with Applications. 138: 112821. doi:10.1016/j.eswa.2019.112821. S2CID 199019309.
  26. Gerla, G. (2016). "Comments on some theories of fuzzy computation". International Journal of General Systems. 45 (4): 372–392. Bibcode:2016IJGS...45..372G. doi:10.1080/03081079.2015.1076403. S2CID 22577357.
  27. "Lotfi Zadeh Berkeley". Archived from the original on 2017-02-11.
  28. Mares, Milan (2006). "Fuzzy Sets". Scholarpedia. 1 (10): 2031. Bibcode:2006SchpJ...1.2031M. doi:10.4249/scholarpedia.2031.
  29. Kosko, Bart. "Fuzziness vs. Probability" (PDF). University of South California. Archived (PDF) from the original on 2006-09-02. Retrieved 9 November 2018.
  30. Novák, V (2005). "Are fuzzy sets a reasonable tool for modeling vague phenomena?". Fuzzy Sets and Systems. 156 (3): 341–348. doi:10.1016/j.fss.2005.05.029.
  31. Valiant, Leslie (2013). Probably Approximately Correct: Nature's Algorithms for Learning and Prospering in a Complex World. New York: Basic Books. ISBN 978-0465032716.
  32. Richardson, Mark (2010). "6.863 Final Project Writeup" (PDF). Archived (PDF) from the original on 2015-10-04. Retrieved 2015-10-02.
  33. Veri, Francesco (2017). "Fuzzy Multiple Attribute Conditions in fsQCA: Problems and Solutions". Sociological Methods & Research. 49 (2): 312–355. doi:10.1177/0049124117729693. S2CID 125146607.
  34. Montero, Jesús Cejas (2011). "La lógica difusa compensatoria" [The compensatory fuzzy logic]. Ingeniería Industrial (in español). 32 (2): 157–162. Gale A304726398.
  35. Acampora, Giovanni; Di Stefano, Bruno; Vitiello, Autilia (November 2016). "IEEE 1855™: The First IEEE Standard Sponsored by IEEE Computational Intelligence Society [Society Briefs]". IEEE Computational Intelligence Magazine. 11 (4): 4–6. doi:10.1109/MCI.2016.2602068.
  36. Di Stefano, Bruno N. (2013). "On the Need of a Standard Language for Designing Fuzzy Systems". On the Power of Fuzzy Markup Language. Studies in Fuzziness and Soft Computing. Vol. 296. pp. 3–15. doi:10.1007/978-3-642-35488-5_1. ISBN 978-3-642-35487-8.
  37. On the Power of Fuzzy Markup Language. Studies in Fuzziness and Soft Computing. Vol. 296. 2013. doi:10.1007/978-3-642-35488-5. ISBN 978-3-642-35487-8.


ग्रन्थसूची


बाहरी संबंध