लघुगणकीय व्युत्पन्न

From Vigyanwiki
Revision as of 08:48, 5 July 2023 by alpha>Indicwiki (Created page with "{{Short description|Mathematical operation in calculus}} {{More citations needed|date=August 2021}}{{Calculus}} गणित में, विशेष रूप से ...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, विशेष रूप से गणना और जटिल विश्लेषण में, किसी फ़ंक्शन (गणित) एफ के लघुगणकीय व्युत्पन्न को सूत्र द्वारा परिभाषित किया जाता है

कहाँ एफ का व्युत्पन्न है।[1] सहज रूप से, यह f में अतिसूक्ष्म सापेक्ष परिवर्तन है; अर्थात्, f में अत्यंत सूक्ष्म निरपेक्ष परिवर्तन एफ के वर्तमान मूल्य से स्केल किया गया।

जब f एक वास्तविक चर x का एक फलन f(x) होता है, और वास्तविक संख्याएँ लेता है, सख्ती से सकारात्मक संख्या मान लेता है, तो यह ln(f) के व्युत्पन्न, या f के प्राकृतिक लघुगणक के बराबर होता है। यह सीधे श्रृंखला नियम से अनुसरण करता है:[1]


बुनियादी गुण

वास्तविक लघुगणक के कई गुण लघुगणकीय व्युत्पन्न पर भी लागू होते हैं, तब भी जब फ़ंक्शन सकारात्मक वास्तविकताओं में मान नहीं लेता है। उदाहरण के लिए, चूँकि किसी उत्पाद का लघुगणक कारकों के लघुगणक का योग है, हमारे पास है

तो सकारात्मक-वास्तविक-मूल्यवान कार्यों के लिए, किसी उत्पाद का लघुगणकीय व्युत्पन्न कारकों के लघुगणकीय व्युत्पन्नों का योग है। लेकिन हम किसी उत्पाद का व्युत्पन्न प्राप्त करने के लिए जनरल लाइबनिज़ नियम का भी उपयोग कर सकते हैं
इस प्रकार, किसी भी फ़ंक्शन के लिए यह सत्य है कि किसी उत्पाद का लघुगणकीय व्युत्पन्न कारकों के लघुगणकीय व्युत्पन्नों का योग होता है (जब उन्हें परिभाषित किया जाता है)।

इसका एक परिणाम यह है कि किसी फ़ंक्शन के व्युत्क्रम का लघुगणकीय व्युत्पन्न फ़ंक्शन के लघुगणकीय व्युत्पन्न का निषेधन है:

जिस प्रकार किसी धनात्मक वास्तविक संख्या के व्युत्क्रम का लघुगणक उस संख्या के लघुगणक का निषेधन होता है।[citation needed]

अधिक सामान्यतः, किसी भागफल का लघुगणकीय व्युत्पन्न लाभांश और भाजक के लघुगणकीय व्युत्पन्नों का अंतर होता है:

जिस प्रकार भागफल का लघुगणक लाभांश और भाजक के लघुगणक का अंतर होता है।

दूसरी दिशा में सामान्यीकरण करते हुए, एक शक्ति का लघुगणकीय व्युत्पन्न (निरंतर वास्तविक घातांक के साथ) घातांक और आधार के लघुगणकीय व्युत्पन्न का उत्पाद है:

जिस प्रकार किसी घात का लघुगणक घातांक और आधार के लघुगणक का गुणनफल होता है।

संक्षेप में, व्युत्पन्न और लघुगणक दोनों में एक उत्पाद नियम, एक पारस्परिक नियम, एक भागफल नियम और एक शक्ति नियम होता है (लघुगणकीय पहचान की सूची की तुलना करें); नियमों की प्रत्येक जोड़ी लघुगणकीय व्युत्पन्न के माध्यम से संबंधित है।

लघुगणकीय डेरिवेटिव का उपयोग करके सामान्य डेरिवेटिव की गणना करना

लॉगरिदमिक डेरिवेटिव समान परिणाम उत्पन्न करते हुए उत्पाद नियम की आवश्यकता वाले डेरिवेटिव की गणना को सरल बना सकते हैं। प्रक्रिया इस प्रकार है: मान लीजिए कि और हम इसकी गणना करना चाहते हैं . इसकी गणना सीधे तौर पर करने के बजाय , हम इसके लघुगणकीय व्युत्पन्न की गणना करते हैं। अर्थात्, हम गणना करते हैं:

द्वारा गुणा करना गणना करता है f:
यह तकनीक तब सबसे उपयोगी होती है जब ƒ बड़ी संख्या में कारकों का उत्पाद हो। यह तकनीक गणना करना संभव बनाती है f प्रत्येक कारक के लघुगणकीय व्युत्पन्न की गणना करके, योग करके और गुणा करके f.

उदाहरण के लिए, हम के लघुगणकीय व्युत्पन्न की गणना कर सकते हैं होना .

कारकों को एकीकृत करना

लघुगणकीय व्युत्पन्न विचार प्रथम-क्रम अंतर समीकरणों के लिए एकीकृत कारक विधि से निकटता से जुड़ा हुआ है। ऑपरेटर (गणित) शब्दों में लिखें

और मान लीजिए कि M किसी दिए गए फ़ंक्शन G(x) द्वारा गुणन के संचालिका को दर्शाता है। तब
(उत्पाद नियम द्वारा) इस प्रकार लिखा जा सकता है
कहाँ अब गुणन संचालिका को लघुगणकीय अवकलज द्वारा निरूपित करता है
व्यवहार में हमें एक ऑपरेटर दिया जाता है जैसे
और समीकरण हल करना चाहते हैं
फ़ंक्शन h के लिए, f दिया गया है। इसके बाद यह समाधान तक सीमित हो जाता है
जिसका समाधान है
एफ के किसी भी अनिश्चित अभिन्न अंग के साथ।[citation needed]

जटिल विश्लेषण

दिए गए सूत्र को अधिक व्यापक रूप से लागू किया जा सकता है; उदाहरण के लिए यदि f(z) एक मेरोमोर्फिक फ़ंक्शन है, तो यह z के सभी जटिल मानों पर समझ में आता है, जिस पर f में न तो कोई शून्य है और न ही ध्रुव। इसके अलावा, शून्य या ध्रुव पर लॉगरिदमिक व्युत्पन्न इस तरह से व्यवहार करता है कि विशेष मामले के संदर्भ में आसानी से विश्लेषण किया जा सके

zn

n पूर्णांक के साथ, n ≠ 0. लघुगणकीय व्युत्पन्न तब है

और कोई सामान्य निष्कर्ष निकाल सकता है कि एफ मेरोमोर्फिक के लिए, एफ के लघुगणकीय व्युत्पन्न की विलक्षणताएं सभी सरल ध्रुव हैं, ऑर्डर एन के शून्य से अवशेष (जटिल विश्लेषण) एन, ऑर्डर एन के ध्रुव से अवशेष - एन। तर्क सिद्धांत देखें. इस जानकारी का अक्सर समोच्च एकीकरण में उपयोग किया जाता है।[2][3][verification needed]

नेवानलिन्ना सिद्धांत के क्षेत्र में, एक महत्वपूर्ण लेम्मा बताती है कि लघुगणकीय व्युत्पन्न का निकटता फ़ंक्शन मूल फ़ंक्शन की नेवानलिन्ना विशेषता के संबंध में छोटा है, उदाहरण के लिए .[4][verification needed]

गुणात्मक समूह

लॉगरिदमिक व्युत्पन्न के उपयोग के पीछे जीएल के बारे में दो बुनियादी तथ्य हैं1, अर्थात वास्तविक संख्याओं या अन्य क्षेत्र (गणित) का गुणनात्मक समूह। विभेदक संचालिका

फैलाव के तहत अपरिवर्तनीय (गणित) है (एक स्थिरांक के लिए एक्स को एक्स द्वारा प्रतिस्थापित करना)। और विभेदक रूप
वैसे ही अपरिवर्तनीय है. फ़ंक्शंस F से GL के लिए1, सूत्र
इसलिए यह अपरिवर्तनीय रूप का एक पुलबैक (विभेदक ज्यामिति) है।[citation needed]

उदाहरण

यह भी देखें

संदर्भ

  1. 1.0 1.1 "लघुगणकीय व्युत्पन्न - गणित का विश्वकोश". encyclopediaofmath.org. 7 December 2012. Retrieved 12 August 2021.{{cite web}}: CS1 maint: url-status (link)
  2. Gonzalez, Mario (1991-09-24). शास्त्रीय जटिल विश्लेषण (in English). CRC Press. ISBN 978-0-8247-8415-7.
  3. "लघुगणकीय अवशेष - गणित का विश्वकोश". encyclopediaofmath.org. 7 June 2020. Retrieved 2021-08-12.{{cite web}}: CS1 maint: url-status (link)
  4. Zhang, Guan-hou (1993-01-01). Theory of Entire and Meromorphic Functions: Deficient and Asymptotic Values and Singular Directions (in English). American Mathematical Soc. p. 18. ISBN 978-0-8218-8764-6. Retrieved 12 August 2021.