न्यूमार्क-बीटा विधि संख्यात्मक एकीकरण की एक समय एकीकरण विधि होती है जिसका उपयोग कुछ अंतर समीकरणों को हल करने के लिए किया जाता है। इसका व्यापक रूप से संरचनाओं और ठोस पदार्थों की गतिशील प्रतिक्रिया के संख्यात्मक मूल्यांकन में उपयोग किया जाता है जैसे संरचनात्मक यांत्रिकी में गतिशील प्रणालियों को मॉडल करने के लिए परिमित तत्व विधि में किया जाता है। इस विधि का नाम नाथन एम. न्यूमार्क के नाम पर रखा गया था,[1] अर्बाना-शैंपेन में इलिनोइस विश्वविद्यालय में सिविल इंजीनियरिंग के पूर्व प्रोफेसर थे, जिन्होंने इसे संरचनात्मक गतिशीलता में उपयोग के लिए 1959 में विकसित किया था। अर्ध-विवेकाधीन संरचनात्मक समीकरण एक दूसरे क्रम का साधारण अंतर समीकरण प्रणाली होती है,
यहाँ द्रव्यमान आव्यूह होता है, और अवमंदन आव्यूह होता है, और क्रमशः प्रति इकाई विस्थापन आंतरिक बल और बाह्य बल होता हैं।
विस्तारित माध्य मान प्रमेय का उपयोग करते हुए, न्यूमार्क- विधि प्रदर्शित करती है कि सर्वप्रथम व्युत्पन्न (गति के समीकरण में वेग) को इस प्रकार हल किया जा सकता है,
जहाँ
इसलिए
चूँकि त्वरण भी समय के साथ बदलता रहता है, यघपि, सही विस्थापन प्राप्त करने के लिए विस्तारित माध्य मान प्रमेय को दूसरी बार व्युत्पन्न तक भी बढ़ाया जाना चाहिए। इस प्रकार,
फिर जहाँ
विवेकाधीन संरचनात्मक समीकरण बन जाता है
स्पष्ट केंद्रीय अंतर योजना समायोजन द्वारा प्राप्त किया जाता है जहाँ और होता है।
औसत स्थिर त्वरण (मध्य बिंदु नियम) समायोजन द्वारा प्राप्त किया जाता है जहाँ और होता है।
स्थिरता विश्लेषण
यदि एकीकरण समय-चरण उपस्थित होता है तो एक समय-एकीकरण योजना को स्थिर कहा जाता है जिससें किसी के लिए भी , स्थिति सदिश का एक सीमित रूपांतर समय पर स्थिति-सदिश में मात्र एक गैर-बढ़ती भिन्नता उत्पन्न होती है बाद के समय में गणना की गई । मान लें कि समय-एकीकरण योजना होती है
रैखिक स्थिरता के बराबर होती है, जहाँ अद्यतन आव्यूह का वर्णक्रमीय त्रिज्या होती है
रैखिक संरचनात्मक समीकरण के लिए
यहाँ कठोरता आव्यूह होता है। मान लें होता है, तो अद्यतन आव्यूह होता है।
अविरल स्थिति के लिए (), अद्यतन आव्यूह को ईजेनमोड्स के संरचनात्मक प्रणाली को प्रारम्भ करके पृथक किया जा सकता है, जिसे सामान्यीकृत आइगेनवेल्यू समस्या द्वारा हल किया जाता है
प्रत्येक ईजेनमोड के लिए, अद्यतन आव्यूह बन जाता है
अद्यतन आव्यूह की विशेषता समीकरण है
जहां तक स्थिरता की बात है तो हमारे पास है
स्पष्ट केंद्रीय अंतर योजना ( और ) स्थिर होता है जब होता है।
औसत स्थिर त्वरण (मध्य बिंदु नियम) ( और ) बिना अवस्था स्थिर होता है।
संदर्भ