प्रतिस्थापन द्वारा एकीकरण
के बारे में लेखों की एक श्रृंखला का हिस्सा |
पथरी |
---|
कलन में, प्रतिस्थापन द्वारा एकीकरण, जिसे 'यू'-प्रतिस्थापन, रिवर्स चेन नियम या चर के परिवर्तन के रूप में भी जाना जाता है,[1] अभिन्न और [[antiderivative]]्स के मूल्यांकन के लिए एक विधि है। यह व्युत्पन्न के लिए श्रृंखला नियम का प्रतिरूप है, और शिथिल रूप से श्रृंखला नियम को पीछे की ओर उपयोग करने के बारे में सोचा जा सकता है।
एकल चर के लिए प्रतिस्थापन
परिचय
गणितीय कठोरता के परिणाम को बताने से पहले, अनिश्चित समाकलों का उपयोग करते हुए एक साधारण मामले पर विचार करें।
गणना करना .[2] तय करना . इसका मतलब यह है , या विभेदक रूप में, . अब
कहाँ एकीकरण का एक मनमाना स्थिरांक है।
इस प्रक्रिया का अक्सर उपयोग किया जाता है, लेकिन सभी अभिन्न एक ऐसे रूप में नहीं होते हैं जो इसके उपयोग की अनुमति देता है। किसी भी स्थिति में, परिणाम को मूल एकीकृत से अलग करके और तुलना करके सत्यापित किया जाना चाहिए।
निश्चित समाकलों के लिए, समाकलन की सीमाओं को भी समायोजित किया जाना चाहिए, लेकिन प्रक्रिया अधिकतर समान होती है।
निश्चित अभिन्न
होने देना एक निरंतर फ़ंक्शन डेरिवेटिव के साथ एक अलग-अलग कार्य हो, जहां एक अंतराल (गणित) है। लगता है कि एक सतत कार्य है। तब[3]
लीबनिज संकेतन में, प्रतिस्थापन पैदावार
बहुत छोता के साथ ह्यूरिस्टिक रूप से कार्य करने से समीकरण प्राप्त होता है
जो ऊपर प्रतिस्थापन सूत्र का सुझाव देता है। (इस समीकरण को विभेदक रूपों के बारे में एक बयान के रूप में व्याख्या करके एक कठोर आधार पर रखा जा सकता है।) एक व्यक्ति प्रतिस्थापन द्वारा एकीकरण की विधि को इंटीग्रल और डेरिवेटिव के लिए लीबनिज के नोटेशन के आंशिक औचित्य के रूप में देख सकता है।
सूत्र का उपयोग एक अभिन्न को दूसरे अभिन्न में बदलने के लिए किया जाता है जो कि गणना करना आसान है। इस प्रकार, किसी दिए गए अभिन्न को सरल बनाने के लिए सूत्र को बाएं से दाएं या दाएं से बाएं पढ़ा जा सकता है। जब पूर्व तरीके से उपयोग किया जाता है, तो इसे कभी-कभी यू-प्रतिस्थापन या डब्ल्यू-प्रतिस्थापन के रूप में जाना जाता है जिसमें एक नया चर परिभाषित किया जाता है जो मूल चर के फ़ंक्शन के रूप में परिभाषित किया जाता है जो फ़ंक्शन संरचना फ़ंक्शन के अंदर पाया जाता है। आंतरिक कार्य का व्युत्पन्न। बाद के तरीके का आमतौर पर त्रिकोणमितीय प्रतिस्थापन में उपयोग किया जाता है, मूल चर को एक नए चर के त्रिकोणमितीय फ़ंक्शन के साथ और त्रिकोणमितीय फ़ंक्शन के अंतर के साथ फ़ंक्शन के मूल अंतर के साथ बदल दिया जाता है।
प्रमाण
प्रतिस्थापन द्वारा एकीकरण को कैलकुलस के मौलिक प्रमेय से निम्नानुसार प्राप्त किया जा सकता है। होने देना और उपरोक्त परिकल्पना को संतुष्ट करने वाले दो कार्य हो निरंतर चालू है और बंद अंतराल पर पूर्णांक है . फिर समारोह पर भी समाकलनीय है . इसलिए अभिन्न
और
वास्तव में मौजूद हैं, और यह दिखाना बाकी है कि वे समान हैं।
तब से निरंतर है, इसमें एक प्रतिपक्षी है . समारोह रचना तब परिभाषित किया जाता है। तब से अवकलनीय है, शृंखला नियम और प्रतिअवकलज की परिभाषा को मिलाकर देता है
कलन की मूलभूत प्रमेय को दो बार लागू करने पर प्राप्त होता है
जो प्रतिस्थापन नियम है।
उदाहरण
उदाहरण 1
अभिन्न पर विचार करें
प्रतिस्थापन करें प्राप्त करने के लिए , अर्थ . इसलिए,
निचली सीमा के बाद से के साथ बदल दिया गया था , और ऊपरी सीमा साथ , के संदर्भ में एक परिवर्तन वापस अनावश्यक था।
वैकल्पिक रूप से, कोई पहले अनिश्चित समाकल (#Antiderivatives) का पूरी तरह से मूल्यांकन कर सकता है, फिर सीमा शर्तों को लागू कर सकता है। यह विशेष रूप से आसान हो जाता है जब एकाधिक प्रतिस्थापन का उपयोग किया जाता है।
उदाहरण 2
अभिन्न के लिए
उपरोक्त प्रक्रिया में बदलाव की आवश्यकता है। प्रतिस्थापन जिसका अर्थ उपयोगी है क्योंकि . इस प्रकार हमारे पास है
परिणामी अभिन्न की गणना भागों द्वारा एकीकरण या त्रिकोणमितीय पहचानों की सूची # एकाधिक-कोण और अर्ध-कोण सूत्रों का उपयोग करके की जा सकती है, , उसके बाद एक और प्रतिस्थापन। कोई यह भी नोट कर सकता है कि एकीकृत किया जा रहा कार्य एक त्रिज्या के साथ एक वृत्त का ऊपरी दाहिना चौथाई है, और इसलिए ऊपरी दाएँ चौथाई को शून्य से एक तक एकीकृत करना इकाई चक्र के एक चौथाई के क्षेत्रफल के बराबर ज्यामितीय है, या .
एंटीडेरिवेटिव्स
प्रतिस्थापन का उपयोग एंटीडेरिवेटिव निर्धारित करने के लिए किया जा सकता है। एक के बीच एक संबंध चुनता है और , के बीच संबंधित संबंध निर्धारित करता है और अंतर करके, और प्रतिस्थापन करता है। उम्मीद है कि प्रतिस्थापित फ़ंक्शन के लिए एक एंटीडेरिवेटिव निर्धारित किया जा सकता है; के बीच मूल प्रतिस्थापन और फिर पूर्ववत है।
उपरोक्त उदाहरण 1 के समान, इस विधि से निम्नलिखित प्रतिअवकलज प्राप्त किए जा सकते हैं:
कहाँ एकीकरण का एक मनमाना स्थिरांक है।
रूपांतरण के लिए कोई अभिन्न सीमाएँ नहीं थीं, लेकिन मूल प्रतिस्थापन को वापस लाने के अंतिम चरण में आवश्यक था। प्रतिस्थापन द्वारा निश्चित समाकलों का मूल्यांकन करते समय, कोई पहले पूरी तरह से प्रतिपक्षी की गणना कर सकता है, फिर सीमा शर्तों को लागू कर सकता है। उस स्थिति में, सीमा शर्तों को बदलने की कोई आवश्यकता नहीं है।
स्पर्शरेखा समारोह को साइन और कोसाइन के संदर्भ में व्यक्त करके प्रतिस्थापन का उपयोग करके एकीकृत किया जा सकता है:
प्रतिस्थापन का उपयोग करना देता है और
एकाधिक चर के लिए प्रतिस्थापन
बहुभिन्नरूपी फ़ंक्शन को एकीकृत करते समय कोई भी प्रतिस्थापन का उपयोग कर सकता है। यहाँ प्रतिस्थापन समारोह (v1,...,vn) = φ(u1, ..., un) अंतःक्षेपी और निरंतर अवकलनीय होने की आवश्यकता है, और अवकलन इस रूप में परिवर्तित होते हैं
कहाँ det(Dφ)(u1, ..., un) के आंशिक डेरिवेटिव के जैकबियन मैट्रिक्स के निर्धारक को दर्शाता है φ बिंदु पर (u1, ..., un). यह सूत्र इस तथ्य को व्यक्त करता है कि एक मैट्रिक्स के निर्धारक का निरपेक्ष मान इसके स्तंभों या पंक्तियों द्वारा फैलाए गए Parallelepiped#Parallelotope के आयतन के बराबर होता है।
अधिक सटीक रूप से, चर सूत्र का परिवर्तन अगले प्रमेय में बताया गया है:
'प्रमेय'। होने देना U में एक खुला सेट हो Rn और φ : U → Rn निरंतर आंशिक डेरिवेटिव के साथ एक इंजेक्शन समारोह अलग-अलग फ़ंक्शन, जिसका जैकोबियन प्रत्येक के लिए गैर-शून्य है x में U. फिर किसी वास्तविक मूल्यवान, कॉम्पैक्ट रूप से समर्थित, निरंतर कार्य के लिए f, में निहित समर्थन के साथ φ(U),
प्रमेय पर शर्तों को विभिन्न तरीकों से कमजोर किया जा सकता है। सबसे पहले, आवश्यकता है कि φ लगातार अलग-अलग होने को कमजोर धारणा से बदला जा सकता है φ केवल अवकलनीय हो और एक सतत व्युत्क्रम हो।[4] इसे धारण करने की गारंटी है φ प्रतिलोम फलन प्रमेय द्वारा निरंतर अवकलनीय है। वैकल्पिक रूप से, आवश्यकता है कि det(Dφ) ≠ 0 सार्ड के प्रमेय को लागू करके समाप्त किया जा सकता है।[5] Lebesgue मापने योग्य कार्यों के लिए, प्रमेय को निम्नलिखित रूप में कहा जा सकता है:[6] प्रमेय। होने देना U का एक मापने योग्य उपसमुच्चय हो Rn और φ : U → Rn एक इंजेक्शन फ़ंक्शन, और प्रत्येक के लिए मान लीजिए x में U वहां मौजूद φ′(x) में Rn,n ऐसा है कि φ(y) = φ(x) + φ′(x)(y − x) + o(||y − x||) जैसा y → x (यहाँ o लन्दौ प्रतीक है#संबंधित स्पर्शोन्मुख संकेतन|थोड़ा-ओ अंकन)। तब φ(U) औसत दर्जे का है, और किसी भी वास्तविक-मूल्यवान कार्य के लिए f पर परिभाषित φ(U),
इस अर्थ में कि यदि कोई अभिन्न मौजूद है (उचित रूप से अनंत होने की संभावना सहित), तो दूसरा भी ऐसा ही करता है, और उनका मूल्य समान है।
माप सिद्धांत में एक और बहुत सामान्य संस्करण निम्नलिखित है:[7] प्रमेय। होने देना X एक सीमित रेडॉन माप से लैस एक स्थानीय रूप से कॉम्पैक्ट हॉसडॉर्फ स्पेस बनें μ, और जाने Y एक Σ-कॉम्पैक्ट स्पेस बनें|σ-कॉम्पैक्ट हौसडॉर्फ स्पेस एक सिग्मा परिमित माप के साथ|σ-फाइनाइट रैडॉन माप ρ. होने देना φ : X → Y एक बिल्कुल निरंतर कार्य हो (जहां बाद का मतलब है ρ(φ(E)) = 0 जब कभी भी μ(E) = 0). फिर एक वास्तविक मूल्यवान बोरेल बीजगणित मौजूद है w पर X ऐसा है कि प्रत्येक Lebesgue अभिन्न समारोह के लिए f : Y → R, कार्यक्रम (f ∘ φ) ⋅ w Lebesgue पर पूर्णांक है X, और
इसके अलावा, लिखना संभव है
कुछ बोरेल मापने योग्य कार्य के लिए g पर Y.
ज्यामितीय माप सिद्धांत में, प्रतिस्थापन द्वारा एकीकरण लिप्सचिट्ज़ कार्यों के साथ प्रयोग किया जाता है। एक द्वि-लिप्सचिट्ज़ समारोह एक लिप्सचिट्ज़ फ़ंक्शन है φ : U → Rn जो इंजेक्शन है और जिसका उलटा कार्य है φ−1 : φ(U) → U लिपशिट्ज भी है। रैडेमाकर के प्रमेय के अनुसार द्वि-लिप्सचिट्ज़ मैपिंग लगभग हर जगह अलग-अलग होती है। विशेष रूप से, द्वि-लिप्सचिट्ज़ मानचित्रण का जैकबियन निर्धारक det Dφ लगभग हर जगह अच्छी तरह से परिभाषित है। निम्नलिखित परिणाम तब धारण करता है:
प्रमेय। होने देना U का एक खुला उपसमुच्चय हो Rn और φ : U → Rn एक द्वि-लिप्सचिट्ज़ मैपिंग बनें। होने देना f : φ(U) → R मापने योग्य हो। तब
इस अर्थ में कि यदि कोई अभिन्न मौजूद है (या ठीक से अनंत है), तो दूसरा भी ऐसा ही करता है, और उनका मूल्य समान है।
उपरोक्त प्रमेय पहली बार यूलर द्वारा प्रस्तावित किया गया था जब उन्होंने 1769 में डबल इंटीग्रल की धारणा विकसित की थी। हालांकि 1773 में Lagrange द्वारा ट्रिपल इंटीग्रल के लिए सामान्यीकृत किया गया था, और एड्रियन मैरी लीजेंड्रे, लाप्लास, गॉस द्वारा उपयोग किया गया था, और पहले सामान्यीकृत n 1836 में मिखाइल ओस्ट्रोग्रैडस्की द्वारा चर, इसने आश्चर्यजनक रूप से लंबे समय के लिए पूरी तरह से कठोर औपचारिक प्रमाण का विरोध किया, और 125 साल बाद पहली बार संतोषजनक रूप से हल किया गया था, एली कार्टन द्वारा 1890 के दशक के मध्य में शुरू होने वाले पत्रों की एक श्रृंखला में।[8][9]
संभाव्यता में आवेदन
प्रायिकता में निम्नलिखित महत्वपूर्ण प्रश्न का उत्तर देने के लिए प्रतिस्थापन का उपयोग किया जा सकता है: एक यादृच्छिक चर दिया गया है संभाव्यता घनत्व के साथ और दूसरा यादृच्छिक चर ऐसा है कि इंजेक्शन समारोह के लिए (एक-से-एक) , के लिए प्रायिकता घनत्व क्या है ?
पहले थोड़े अलग प्रश्न का उत्तर देकर इस प्रश्न का उत्तर देना सबसे आसान है: इसकी क्या प्रायिकता है किसी विशेष उपसमुच्चय में मान लेता है ? इस संभावना को निरूपित करें . बेशक अगर संभाव्यता घनत्व है तो जवाब है
लेकिन यह वास्तव में उपयोगी नहीं है क्योंकि हम नहीं जानते ; हम इसे खोजने की कोशिश कर रहे हैं। हम चर में समस्या पर विचार करके प्रगति कर सकते हैं . में मान लेता है जब कभी भी में मान लेता है , इसलिए
चर से बदल रहा है को देता है
इसे हमारे पहले समीकरण के साथ जोड़कर देता है
इसलिए
मामले में जहां और कई असंबद्ध चरों पर निर्भर करता है, अर्थात और , ऊपर चर्चा किए गए कई चरों में प्रतिस्थापन द्वारा पाया जा सकता है। परिणाम है
यह भी देखें
- संभाव्यता सघनता फ़ंक्शन
- चर का प्रतिस्थापन
- त्रिकोणमितीय प्रतिस्थापन
- वीयरस्ट्रास प्रतिस्थापन
- यूलर प्रतिस्थापन
- ग्लासर का मास्टर प्रमेय
- आगे बढ़ाने का उपाय
टिप्पणियाँ
- ↑ Swokowski 1983, p. 257
- ↑ Swokowsi 1983, p. 258
- ↑ Briggs & Cochran 2011, pg.361
- ↑ Rudin 1987, Theorem 7.26
- ↑ Spivak 1965, p. 72
- ↑ Fremlin 2010, Theorem 263D
- ↑ Hewitt & Stromberg 1965, Theorem 20.3
- ↑ Katz 1982
- ↑ Ferzola 1994
संदर्भ
- Briggs, William; Cochran, Lyle (2011), Calculus /Early Transcendentals (Single Variable ed.), Addison-Wesley, ISBN 978-0-321-66414-3
- Ferzola, Anthony P. (1994), "Euler and differentials", The College Mathematics Journal, 25 (2): 102–111, doi:10.2307/2687130, JSTOR 2687130
- Fremlin, D.H. (2010), Measure Theory, Volume 2, Torres Fremlin, ISBN 978-0-9538129-7-4.
- Hewitt, Edwin; Stromberg, Karl (1965), Real and Abstract Analysis, Springer-Verlag, ISBN 978-0-387-04559-7.
- Katz, V. (1982), "Change of variables in multiple integrals: Euler to Cartan", Mathematics Magazine, 55 (1): 3–11, doi:10.2307/2689856, JSTOR 2689856
- Rudin, Walter (1987), Real and Complex Analysis, McGraw-Hill, ISBN 978-0-07-054234-1.
- Swokowski, Earl W. (1983), Calculus with analytic geometry (alternate ed.), Prindle, Weber & Schmidt, ISBN 0-87150-341-7
- Spivak, Michael (1965), Calculus on Manifolds, Westview Press, ISBN 978-0-8053-9021-6.