जॉर्डन सामान्य रूप

From Vigyanwiki
जॉर्डन सामान्य रूप में मैट्रिक्स का उदाहरण। नहीं दिखाई गई सभी मैट्रिक्स प्रविष्टियाँ शून्य हैं। रेखांकित वर्गों को जॉर्डन ब्लॉक के रूप में जाना जाता है। प्रत्येक जॉर्डन ब्लॉक में इसके मुख्य विकर्ण पर नंबर लैम्ब्डा होता है, और मुख्य विकर्ण के ऊपर नंबर होता है। लैम्ब्डा मैट्रिक्स के आइगेनवैल्यू हैं; उन्हें अलग होने की आवश्यकता नहीं है.

रैखिक बीजगणित में, जॉर्डन सामान्य रूप, जिसे जॉर्डन विहित रूप (जेसीएफ) के रूप में भी जाना जाता है,[1][2]

विशेष रूप का ऊपरी त्रिकोणीय मैट्रिक्स है जिसे जॉर्डन मैट्रिक्स कहा जाता है जो कुछ आधार (रैखिक बीजगणित) के संबंध में परिमित-आयामी सदिश स्थल पर रैखिक ऑपरेटर का प्रतिनिधित्व करता है। ऐसे मैट्रिक्स में प्रत्येक गैर-शून्य ऑफ-विकर्ण प्रविष्टि 1 के समान होती है, मुख्य विकर्ण के ठीक ऊपर ( अतिविकर्ण पर), और बाईं ओर और उनके नीचे समान विकर्ण प्रविष्टियां होती हैं।

मान लीजिए V क्षेत्र (गणित) K पर सदिश समष्टि है। फिर आधार जिसके संबंध में मैट्रिक्स का आवश्यक रूप उपस्थित है, यदि मैट्रिक्स के सभी इगनवैल्यूज ​​K में हैं, या समकक्ष यदि ऑपरेटर की विशेषता बहुपद है K पर रैखिक गुणनखंडों में विभाजित हो जाता है। यदि K बीजगणितीय रूप से बंद है (उदाहरण के लिए, यदि यह जटिल संख्याओं का क्षेत्र है) तो यह स्थिति सदैव संतुष्ट होती है। सामान्य रूप की विकर्ण प्रविष्टियाँ इगनवैल्यूज ​​​​(ऑपरेटर के) हैं, और प्रत्येक इगनवैल्यू होने की संख्या को इगनवैल्यू की बीजगणितीय बहुलता कहा जाता है। Cite error: Invalid <ref> tag; invalid names, e.g. too many[3]<संदर्भ नाम = नेरिंग 1970 118-127 >Nering (1970, pp. 118–127)</ref>

यदि ऑपरेटर मूल रूप से वर्ग मैट्रिक्स एम के लिए दिया गया है, तो इसके जॉर्डन सामान्य रूप को एम का जॉर्डन सामान्य रूप भी कहा जाता है। किसी भी वर्ग मैट्रिक्स में जॉर्डन सामान्य रूप होता है यदि गुणांक के क्षेत्र को सभी इगनवैल्यूज ​​​​से युक्त तक बढ़ाया जाता है आव्यूह। इसके नाम के अतिरिक्त, किसी दिए गए एम के लिए सामान्य रूप पूरी तरह से अद्वितीय नहीं है, क्योंकि यह जॉर्डन ब्लॉक से बना ब्लॉक विकर्ण मैट्रिक्स है, जिसका क्रम निश्चित नहीं है; समान इगनवैल्यू के लिए ब्लॉकों को साथ समूहित करना पारंपरिक है, किन्तु इगनवैल्यूज ​​​​के बीच कोई क्रम नहीं लगाया जाता है, न ही किसी दिए गए इगनवैल्यू के लिए ब्लॉकों के बीच, चूंकि बाद वाले को कमजोर रूप से घटते आकार के आधार पर ऑर्डर किया जा सकता है।Cite error: Invalid <ref> tag; invalid names, e.g. too many[3]<रेफ नाम = नेरिंग 1970 118-127 />

जॉर्डन-चेवेल्ली अपघटन उस आधार के संबंध में विशेष रूप से सरल है जिसके लिए ऑपरेटर अपने जॉर्डन को सामान्य रूप लेता है। विकर्णीय मैट्रिक्स के लिए विकर्ण रूप, उदाहरण के लिए सामान्य मैट्रिक्स, जॉर्डन सामान्य रूप का विशेष स्थिति है।[4][5][6]

जॉर्डन सामान्य रूप का नाम केमिली जॉर्डन के नाम पर रखा गया है, जिन्होंने पहली बार 1870 में जॉर्डन अपघटन प्रमेय को बताया था।[7]


सिंहावलोकन

संकेतन

कुछ पाठ्यपुस्तकें उपविकर्ण पर होती हैं; अर्थात, सुपरविकर्ण के अतिरिक्त मुख्य विकर्ण के ठीक नीचे। आइगेनवैल्यू अभी भी मुख्य विकर्ण पर हैं।[8][9]

प्रेरणा

n × n मैट्रिक्स A विकर्णीय मैट्रिक्स है यदि और एकमात्र ईजेनस्पेस के आयामों का योग n है। या, समकक्ष रूप से, यदि और एकमात्र यदि A में n रैखिक रूप से स्वतंत्र इगनवेक्टर्स हैं। सभी आव्यूह विकर्णीय नहीं होते; वे आव्यूह जो विकर्णीय नहीं होते, दोषपूर्ण आव्यूह कहलाते हैं। निम्नलिखित मैट्रिक्स पर विचार करें:

बहुलता सहित, A के इगनवैल्यूज ​​​​λ = 1, 2, 4, 4 हैं। इगनवैल्यू 4 के अनुरूप इगनस्पेस का Hamel आयाम 1 (और 2 नहीं) है, इसलिए A विकर्णीय नहीं है। यद्यपि, व्युत्क्रमणीय मैट्रिक्स P इस प्रकार है कि J = P−1एपी, कहां

गणित का सवाल अधिकतर विकर्ण है. यह ए का जॉर्डन सामान्य रूप है। नीचे दिया गया अनुभाग उदाहरण गणना का विवरण भरता है।

संमिश्र आव्यूह

सामान्यतः, वर्ग जटिल मैट्रिक्स ए ब्लॉक विकर्ण मैट्रिक्स के समान (रैखिक बीजगणित) होता है

जहां प्रत्येक ब्लॉक जेiप्रपत्र का वर्ग मैट्रिक्स है

तो व्युत्क्रमणीय मैट्रिक्स P उपस्थित है जैसे कि P−1AP = J ऐसा है कि J की एकमात्र गैर-शून्य प्रविष्टियाँ विकर्ण और अतिविकर्ण पर हैं। J को A का 'जॉर्डन सामान्य रूप' कहा जाता है। प्रत्येक Ji ए का जॉर्डन ब्लॉक कहा जाता है। किसी दिए गए जॉर्डन ब्लॉक में, सुपर डायगोनल पर प्रत्येक प्रविष्टि 1 है।

इस परिणाम को मानते हुए, हम निम्नलिखित गुण निकाल सकते हैं:

  • बहुलताओं की गणना करते हुए, J के इगनवैल्यूज , और इसलिए A के, विकर्ण प्रविष्टियाँ हैं।
  • इगनवैल्यू λ दिया गया हैi, इसकी ज्यामितीय बहुलता ker(Aλ का आयाम हैi I), जहां I पहचान मैट्रिक्स है, और यह λ के अनुरूप जॉर्डन ब्लॉक की संख्या हैi.[10]
  • इगनवैल्यू λ के अनुरूप सभी जॉर्डन ब्लॉकों के आकार का योगi इसकी बीजगणितीय बहुलता है.[10]* A विकर्णीय है यदि और एकमात्र यदि, A के प्रत्येक इगनवैल्यू λ के लिए, इसकी ज्यामितीय और बीजगणितीय बहुलताएं मेल खाती हैं। विशेष रूप से, इस स्थितियों में जॉर्डन ब्लॉक 1 × 1 मैट्रिक्स हैं; अर्थात् अदिश होता है |
  • λ के अनुरूप जॉर्डन ब्लॉक λI + N के रूप का है, जहां N निलपोटेंट मैट्रिक्स है जिसे N के रूप में परिभाषित किया गया हैij =डीi,j−1 (जहाँ δ क्रोनकर डेल्टा है)। एफ(ए) की गणना करते समय एन की शून्यक्षमता का उपयोग किया जा सकता है जहां एफ जटिल विश्लेषणात्मक कार्य है। उदाहरण के लिए, सिद्धांत रूप में जॉर्डन फॉर्म घातीय exp(A) के लिए बंद-फॉर्म अभिव्यक्ति दे सकता है।
  • कम से कम j आकार के λ के अनुरूप जॉर्डन ब्लॉकों की संख्या मंद केर (A − λI) हैj − dim ker(A − λI)−1. इस प्रकार, j आकार के जॉर्डन ब्लॉकों की संख्या है
  • इगनवैल्यू λ दिया गया हैi, न्यूनतम बहुपद में इसकी बहुलता इसके सबसे बड़े जॉर्डन ब्लॉक के आकार के समान है।

उदाहरण

मैट्रिक्स पर विचार करें पिछले अनुभाग के उदाहरण से. जॉर्डन सामान्य रूप कुछ मैट्रिक्स समानता के लिए प्राप्त किया जाता है:

वह है,

होने देना कॉलम वैक्टर हैं , , तब

हमने देखा कि

के लिए अपने पास , वह है, का इगनवेक्टर है इगनवैल्यू के अनुरूप . के लिए , दोनों पक्षों को गुणा करने पर देता है

किन्तु , इसलिए

इस प्रकार, वेक्टर जैसे A के सामान्यीकृत इगनवेक्टर्स कहलाते हैं।

उदाहरण: सामान्य रूप प्राप्त करना

यह उदाहरण दिखाता है कि किसी दिए गए मैट्रिक्स के जॉर्डन सामान्य रूप की गणना कैसे करें।

मैट्रिक्स पर विचार करें

जिसका उल्लेख लेख की शुरुआत में किया गया है।

A का अभिलक्षणिक बहुपद है

इससे पता चलता है कि बीजगणितीय बहुलता के अनुसार इगनवैल्यूज ​​​​1, 2, 4 और 4 हैं। इगनवैल्यू 1 के अनुरूप इगनस्पेस समीकरण Av = λv को हल करके पाया जा सकता है। यह कॉलम वेक्टर v = (−1, 1, 0, 0) के लिए फैलाया गया हैटी. इसी प्रकार, इगनवैल्यू 2 के संगत इगनस्पेस को w = (1, −1, 0, 1) के लिए फैलाया गया है।टी. अंत में, इगनवैल्यू 4 के अनुरूप इगनस्पेस भी एक-आयामी है (भले ही यह दोहरा इगनवैल्यू है) और x = (1, 0, −1, 1) के लिए फैला हुआ हैटी. तो, तीनों इगनवैल्यूज ​​​​में से प्रत्येक की ज्यामितीय बहुलता (अर्थात, दिए गए इगनवैल्यू के इगनस्पेस का आयाम) है। इसलिए, 4 के समान दो इगनवैल्यूज ​​​​ एकल जॉर्डन ब्लॉक के अनुरूप हैं, और मैट्रिक्स ए का जॉर्डन सामान्य रूप मैट्रिक्स जोड़ # प्रत्यक्ष योग है

तीन सामान्यीकृत ईजेनवेक्टर#जॉर्डन श्रृंखलाएं हैं। दो की लंबाई है: {v} और {w}, जो क्रमशः इगनवैल्यूज ​​​​1 और 2 के अनुरूप हैं। इगनवैल्यू 4 के अनुरूप लंबाई दो की श्रृंखला है। इस श्रृंखला को खोजने के लिए, गणना करें

जहां I 4 × 4 पहचान मैट्रिक्स है। उपरोक्त अवधि में वेक्टर चुनें जो A − 4I के कर्नेल में नहीं है; उदाहरण के लिए, y = (1,0,0,0)टी. अब, (A − 4I)y = x और (A − 4I)x = 0, इसलिए {y, x} इगनवैल्यू 4 के अनुरूप लंबाई दो की श्रृंखला है।

संक्रमण मैट्रिक्स P इस प्रकार है कि P−1AP = J इन सदिशों को दूसरे के बगल में रखकर इस प्रकार बनाया जाता है

गणना से पता चलता है कि समीकरण पी−1एपी = जे वास्तव में कायम है।

यदि हमने उस क्रम को बदल दिया है जिसमें चेन वैक्टर दिखाई देते हैं, अर्थात, v, w और {x, y} के क्रम को साथ बदलते हुए, जॉर्डन ब्लॉकों को आपस में बदल दिया जाएगा। यद्यपि, जॉर्डन रूप जॉर्डन रूपों के समकक्ष हैं।

सामान्यीकृत ईजेनवेक्टर

इगनवैल्यू λ दिया गया है, प्रत्येक संबंधित जॉर्डन ब्लॉक रैखिक रूप से स्वतंत्र वैक्टर पी की 'जॉर्डन श्रृंखला' को जन्म देता हैi, i = 1, ..., b, जहां b जॉर्डन ब्लॉक का आकार है। 'जनरेटर', या 'लीड वेक्टर', पीbश्रृंखला का सामान्यीकृत इगनवेक्टर है जैसे कि (A − λ'I')बीb = 0. वेक्टर पी1 = (ए - λ'आई')b−1pb λ के अनुरूप साधारण इगनवेक्टर है। सामान्यतः, पीi पी की पूर्व छवि हैi−1 A - λ'I' के अंतर्गत। तो लीड वेक्टर A - λ'I' से गुणा करके श्रृंखला उत्पन्न करता है।[11][2]इसलिए यह कथन कि प्रत्येक वर्ग मैट्रिक्स ए को जॉर्डन में सामान्य रूप में रखा जा सकता है, इस दावे के समान है कि अंतर्निहित वेक्टर स्थान का आधार जॉर्डन श्रृंखलाओं से बना है।

प्रमाण

हम प्रेरण के लिए प्रमाण देते हैं कि किसी भी जटिल-मूल्य वर्ग मैट्रिक्स ए को जॉर्डन सामान्य रूप में रखा जा सकता है। चूँकि अंतर्निहित सदिश स्थान दिखाया जा सकता है[12] इगनवैल्यूज ​​​​से जुड़े अपरिवर्तनीय उप-स्थानों का प्रत्यक्ष योग होने के लिए, A को एकमात्र इगनवैल्यू λ माना जा सकता है। 1×1 स्थिति है. मान लीजिए A n × n मैट्रिक्स है। A - λ'I' के फलन की सीमा, जिसे Ran(A - λ'I के लिए निरूपित किया जाता है, A का अपरिवर्तनीय उपस्थान है। इसके अतिरिक्त, चूँकि λ A का इगनवैल्यू है, Ran(A - λ) का आयाम 'I'), r, n से बिल्कुल कम है, इसलिए, आगमनात्मक परिकल्पना के अनुसार, Ran(A - λ'I') का आधार है (रैखिक बीजगणित) {p1, …, पी r}जॉर्डन श्रृंखलाओं से बना है।

इसके बाद कर्नेल (रैखिक बीजगणित) पर विचार करें, अर्थात, रैखिक उपस्थान केर (ए − λ'I')। अगर

वांछित परिणाम रैंक-शून्यता प्रमेय से तुरंत प्राप्त होता है। (यह स्थिति होगा, उदाहरण के लिए, यदि ए हर्मिटियन मैट्रिक्स था।)

अन्यथा, यदि

माना Q का आयाम s ≤ r है। Q में प्रत्येक वेक्टर इगनवेक्टर है, इसलिए Ran(A − λ'I') में s रैखिक रूप से स्वतंत्र इगनवेक्टर्स के अनुरूप s जॉर्डन श्रृंखला होनी चाहिए। इसलिए आधार {p1, ..., पीr} में s सदिश होना चाहिए, मान लीजिए {prs+1, ..., पीr}, जो इन जॉर्डन श्रृंखलाओं के प्रमुख वैक्टर हैं। हम इन लीड वैक्टरों की पूर्वछवियाँ लेकर श्रृंखलाओं का विस्तार कर सकते हैं। (यह मुख्य कदम है।) चलो qi ऐसा हो कि

सेट {qi}, रैखिक रूप से स्वतंत्र सेट {p. की पूर्वछवियाँ होने के नातेi}ए - λ 'आई' के तहत, भी रैखिक रूप से स्वतंत्र है। स्पष्टतः q का कोई गैर-तुच्छ रैखिक संयोजन नहीं हैi {p के लिए ker(A − λI) में स्थित हो सकता हैi}i=rs+1, ..., r रैखिक रूप से स्वतंत्र है. इसके अतिरिक्त, q का कोई गैर-तुच्छ रैखिक संयोजन नहीं हैi Ran(A − λ 'I') से संबंधित हो सकता है क्योंकि तब यह मूल वैक्टर p का रैखिक संयोजन होगा1, ..., पीr, और इस रैखिक संयोजन में मूल वैक्टर का योगदान होगा जो कि केर (ए - λI) में नहीं है क्योंकि अन्यथा यह केर (ए - λI) से संबंधित होगा। दोनों रैखिक संयोजनों पर ए - λI की कार्रवाई तब लीड वैक्टर के गैर-तुच्छ रैखिक संयोजन और गैर-लीड वैक्टर के ऐसे रैखिक संयोजन की समानता उत्पन्न करेगी, जो (पी) की रैखिक स्वतंत्रता का खंडन करेगी।1, ..., पीr).

अंततः, हम कोई भी रैखिकतः स्वतंत्र समुच्चय {z चुन सकते हैं1, ..., साथt} जिसका प्रक्षेपण फैला हुआ है

प्रत्येक zi 1 लंबाई की जॉर्डन श्रृंखला बनाता है। निर्माण से, तीन सेटों का मिलन {पी1, ..., पीr}, {क्यूrs +1, ..., क्यूr}, और {z1, ..., साथt} रैखिक रूप से स्वतंत्र है, और इसके सदस्य मिलकर जॉर्डन श्रृंखला बनाते हैं। अंत में, रैंक-शून्यता प्रमेय के लिए , संघ की कार्डिनैलिटी n है। दूसरे शब्दों में, हमें जॉर्डन श्रृंखलाओं से बना आधार मिला है, और इससे पता चलता है कि ए को जॉर्डन के सामान्य रूप में रखा जा सकता है।

विशिष्टता

यह दिखाया जा सकता है कि किसी दिए गए मैट्रिक्स ए का जॉर्डन सामान्य रूप जॉर्डन ब्लॉक के क्रम तक अद्वितीय है।

आइजेनवैल्यू की बीजगणितीय और ज्यामितीय बहुलताओं को जानना ए के जॉर्डन सामान्य रूप को निर्धारित करने के लिए पर्याप्त नहीं है। यह मानते हुए कि आइजेनवैल्यू λ की बीजगणितीय बहुलता एम(λ) ज्ञात है, जॉर्डन फॉर्म की संरचना को रैंकों का विश्लेषण करके पता लगाया जा सकता है। शक्तियां (ए - λI)एम(λ). इसे देखने के लिए, मान लीजिए कि n × n मैट्रिक्स A का एकमात्र इगनवैल्यू λ है। तो m(λ) = n. सबसे छोटा पूर्णांक k1 ऐसा है कि

ए के जॉर्डन रूप में सबसे बड़े जॉर्डन ब्लॉक का आकार है (यह संख्या k1 इसे λ का सूचकांक भी कहा जाता है। निम्नलिखित अनुभाग में चर्चा देखें।) की रैंक

k आकार के जॉर्डन ब्लॉकों की संख्या है1. इसी प्रकार, का पद

k आकार के जॉर्डन ब्लॉकों की संख्या दोगुनी है1 साथ ही k आकार के जॉर्डन ब्लॉकों की संख्या1- 1. सामान्य स्थिति समान है।

इसका उपयोग जॉर्डन रूप की विशिष्टता दिखाने के लिए किया जा सकता है। चलो जे1 और जे2 ए के दो जॉर्डन सामान्य रूप बनें। फिर जे1 और जे2 समान हैं और इनका स्पेक्ट्रम भी समान है, जिसमें आइगेनवैल्यू की बीजगणितीय बहुलताएं भी सम्मलित हैं। पिछले पैराग्राफ में उल्लिखित प्रक्रिया का उपयोग इन मैट्रिक्स की संरचना निर्धारित करने के लिए किया जा सकता है। चूँकि मैट्रिक्स की रैंक समानता परिवर्तन के लिए संरक्षित होती है, जे के जॉर्डन ब्लॉकों के बीच आपत्ति होती है1 और जे2. यह कथन की विशिष्टता वाले भाग को सिद्ध करता है।

वास्तविक आव्यूह

यदि A वास्तविक मैट्रिक्स है, तो इसका जॉर्डन रूप अभी भी गैर-वास्तविक हो सकता है। जैसा कि ऊपर चर्चा की गई है, इसे जटिल इगनवैल्यूज ​​​​और सुपरडायगोनल पर प्रस्तुत करने के बजाय, वास्तविक उलटा मैट्रिक्स P उपस्थित है जैसे कि P−1एपी = जे वास्तविक ब्लॉक विकर्ण मैट्रिक्स है जिसमें प्रत्येक ब्लॉक वास्तविक जॉर्डन ब्लॉक है।[13] वास्तविक जॉर्डन ब्लॉक या तो जटिल जॉर्डन ब्लॉक के समान होता है (यदि संबंधित इगनवैल्यू वास्तविक है), या स्वयं ब्लॉक मैट्रिक्स है, जिसमें 2×2 ब्लॉक सम्मलित हैं (गैर-वास्तविक आइजेनवैल्यू के लिए)। फॉर्म की दी गई बीजगणितीय बहुलता के साथ)।

और गुणन का वर्णन करें जटिल तल में. सुपरडायगोनल ब्लॉक 2×2 पहचान मैट्रिक्स हैं और इसलिए इस प्रतिनिधित्व में मैट्रिक्स आयाम जटिल जॉर्डन फॉर्म से बड़े हैं। पूर्ण वास्तविक जॉर्डन ब्लॉक के लिए दिया गया है

यह वास्तविक जॉर्डन स्वरूप जटिल जॉर्डन स्वरूप का परिणाम है। वास्तविक मैट्रिक्स के लिए गैर-वास्तविक ईजेनवेक्टर और सामान्यीकृत ईजेनवेक्टर को सदैव जटिल संयुग्म जोड़े बनाने के लिए चुना जा सकता है। वास्तविक और काल्पनिक भाग (वेक्टर और उसके संयुग्म का रैखिक संयोजन) लेते हुए, नए आधार के संबंध में मैट्रिक्स का यह रूप है।

फ़ील्ड में प्रविष्टियों के साथ मैट्रिक्स

जॉर्डन घटना को किसी भी वर्गीकृत मैट्रिक्स M के लिए विस्तारित किया जा सकता है जिसके अंश क्षेत्र K में होते हैं। परिणाम के अनुसार, किसी भी M को योग के रूप में लिखा जा सकता है, जहां D अर्धसरल ऑपरेटर है, N शून्यभूत है, और DN = ND है। इसे जॉर्डन-चेवली विघटन कहा जाता है। जब भी K M के इजनमानों को सम्मिलित करता है, विशेष रूप से जब K बीजगणितीय बंद होता है, नियमित रूप जॉर्डन-चेवली विघटन को जॉर्डन ब्लॉकों के प्रत्यक्ष योग के रूप में स्पष्ट रूप से व्यक्त किया जा सकता है।

K को चरण संख्याओं के रूप में अंशों की ज्यामिति जहां 1 ≤ k ≤ m के लिए (MλI)k के कर्नलों की आयामों को जानना, एम के जॉर्डन रूप को निर्धारित करने में सहायता करता है, यहां m ईजनमान की बहुपदिता है। हम विचार करके K[x]-मॉड्यूल के रूप में उपस्थित वेक्टर स्थान V को K-रेखांकितता के रूप में देख सकते हैं, जिसमें x की क्रिया को M के अनुप्रयोग के रूप में माना जाता है और K-रेखांकितता के लिए विस्तार किया जाता है। तब पॉलिनोमियल (xλ)k M के तत्व विभाजक होते हैं, और जॉर्डन नियमित रूप को प्राथमिकताओं से जुड़े ब्लॉकों के लिए प्रस्तुत करने में लगे होते हैं।

जॉर्डन सामान्य रूप का प्रमाण सामान्यतः प्रमुख आदर्श डोमेन पर अंतिम रूप से उत्पन्न मॉड्यूल के लिए संरचना प्रमेय के रिंग (गणित) K[x] के अनुप्रयोग के रूप में किया जाता है, जिसका यह परिणाम होता है।

परिणाम

जॉर्डन नियमित रूप को स्वतंत्रता सूत्र का तथ्य के रूप में देखा जा सकता है जो वर्गीकरण मैट्रिक्सों के लिए होता है, और इसलिए रूप से कई महत्वपूर्ण परिणाम रूप में उसके परिणाम के रूप में देखे जा सकते हैं।

स्पेक्ट्रल मैपिंग प्रमेय

जॉर्डन नियमित रूप का उपयोग करके, सीधी गणना से प्रारम्भिक विभाजक के लिए स्पेक्ट्रल मैपिंग सूत्र मिलता है: A n × n मैट्रिक्स हो, जिसके इजनमान हैं λ1, ..., λn, तो किसी भी बहुपद p के लिए, p(A) के इजनमान होंगे p(λ1), ..., p(λn)।

अभिलक्षणिक बहुपद

A का लक्षणिक बहुपद है समान मैट्रिक्सों का ही लक्षणिक बहुपद होता है। इसलिए यहां का ith मूल है और इसकी अवधिकता है, क्योंकि यह स्पष्ट रूप से A के जॉर्डन रूप का लक्षणिक बहुपद है।

केली-हैमिल्टन प्रमेय

केली-हैमिल्टन उपन्यास के अनुसार, हर मैट्रिक्स A अपनी लक्षणिक समीकरण को पूरा करती है: यदि p A A का लक्षणिक बहुपद है, तो यह जॉर्डन रूप में सीधी गणना के माध्यम से दिखाया जा सकता है, क्योंकि यदि λ ई अवधिकता का इजनमान है, तो इसका जॉर्डन खंड J ई निश्चित रूप से संपूर्ण करता है अगर यहां संपूर्ण खंड को एक-दूसरे को प्रभावित नहीं करते हैं, तो का i वाला नुकताचीन खंड होता है । इसलिए .

जॉर्डन रूप को यहां माना जा सकता है कि यह मैट्रिक्स की मूलभूत ज्यामिति का क्षेत्र होता है, उदाहरण के लिए p के विभाजन क्षेत्र के ऊर्ध्वाधिक्य के लिए; इस क्षेत्र का विस्तार मैट्रिक्स p(A) को किसी भी विधि से नहीं बदलता है।

न्यूनतम बहुपद

वर्गीकृत मैट्रिक्स A का न्यूनतम बहुपद (रैखिक बीजगणित) P वह एकमान्य मोनिक बहुपद है, जिसकी अवधि m कम से कम होती है, ऐसा कि P(A) = 0 होता है। वैकल्पिक रूप से, दी गई A को समाप्त करने वाले बहुपदों का सेट बहुपदों का आईडीयल I बनाता है, C[x] में बहुपदों के प्रमुख आईडीयल डोमेन, जिसमें घटाक संख्याओं के अनुरूप। I को उत्पन्न करने वाला मोनिक तत्व बिल्कुल P होता है।

λ1, …, λq को A के अलग-अलग इजनमानों का प्रतिनिधित्व करने वाले प्रतिष्ठित इजनमानों का आकार si होने पर प्रकट है। जॉर्डन रूप से स्पष्ट है कि A के न्यूनतम बहुपद का डिग्री Σsi होता है।

जबकि जॉर्डन नियमित रूप न्यूनतम बहुपद को निर्धारित करता है, विपरीत बात यह है। इससे प्रारंभिक विभाजकों की धारणा होती है। वर्गीकृत मैट्रिक्स A के प्रारंभिक विभाजक उसके जॉर्डन खंडों के वैशिष्ट्यक पहचानक बहुपद होते हैं। m के घटक अल्पकोण न्यूनतम बहुपद होते हैं, जो अलग-अलग इजनमानों के अनुरूप सबसे बड़े डिग्री के प्रारंभिक विभाजक होते हैं।

प्रारंभिक विभाजक का डिग्री उससे संबंधित जॉर्डन खंड का आकार होता है, इसलिए उससे संबंधित नियामक उपस्थिति का आयाम। यदि सभी प्रारंभिक विभाजक रैखिक होते हैं, तो A वैज्ञानिक होता है।

अपरिवर्तनीय उप-स्थान अपघटन

n × n मैट्रिक्स A का जॉर्डन रूप खंडगदीय होता है, और इसलिए n आयामी यूक्लिडीय स्थान का स्वतंत्र उपविभाजन देता है। प्रत्येक जॉर्डन खंड Ji का प्रतिनिधित्व करने वाला अविभाज्य उपस्थान Xi होता है। चिह्नित रूप में, हम लिखते हैं

जहां प्रत्येक Xi, संबंधित जॉर्डन श्रृंखला के तारक के अंक की स्पैन होता है, और k जॉर्डन श्रृंखलाओं की संख्या होती है।

जॉर्डन रूप के माध्यम से हम थोड़ा अलग उपविभाजन भी प्राप्त कर सकते हैं। इजनमान λi के के लिए , उसके सबसे बड़े संबंधित जॉर्डन ब्लॉक का आकार si को उसकी सूची कहते हैं और v(λi) के लिए चिह्नित किया जाता है। (इसलिए, न्यूनतम बहुपद का डिग्री सभी सूचकों के योग होता है.) Yi के लिए उपस्थान Yi की परिभाषा कीजिए

इससे यह उपविभाजन देता है

जहां l, A के विभिन्न इजनमानों की संख्या होती है। अवचित्र रूप से, हम समान इजनमान के लिए जॉर्डन खंड अविभाज्य उपस्थानों को एकत्रित करते हैं। चरम स्थितियों में जब A पहचान मात्रिका का गुणक होता है, तब हमें k = n और l = 1 होता है।

Yi पर परावर्तन को और सभी अन्य Yj (j ≠ i) के अतिरिक्त के रूप में विधायक प्रोजेक्शन कहा जाता है, जिसे vi पर A का आधारभूत विधायक प्रोजेक्शन के रूप में चिह्नित किया जाता है। स्पेक्ट्रल प्रोजेक्शन एक-दूसरे के साथ अपरस्पष्टता करते हैं, जिसका अर्थ है कि P(λi ; A) P(vj ; A) = 0 यदि i ≠ j है। इसके अतिरिक्त, वे A के साथ संघात करते हैं और उनका योग पहचान मात्रिका होता है। J में हर vi को में बदलते हैं और अन्य सभी प्रविष्टियों को शून्य करते हैं, फिर P(vi ; J) मिलता है, और यदि U J U−1 समानता परिवर्तन है जिसके लिए A = U J U−1 होता है, तब P(λi ; A) = U P(λi ; J) होता है। यह सीमित आयामसे बाहर नहीं होते हैं। कॉम्पैक्ट ऑपरेटर्स के लिए उनके इस्पाती उपयोग के लिए नीचे देखें, और और सामान्य चर्चा के लिए होलोमोर्फिक कार्यात्मक कैलकुलस में नीचे देखें।

दो उपविभाजनों को तुलना करते हुए, ध्यान दें कि सामान्य रूप में, l ≤ k होता है। जब A सामान्य होता है, तो प्रथम उपविभाजन में Xi's उपस्थान एक-आयामी होते हैं और एक-दूसरे के लिए संघाती होते हैं। यह सामान्य ऑपरेटर्स के लिए स्पेक्ट्रल सिद्धांत है। दूसरा उपविभाजन आयामीय उपविभाजनों के लिए अधिक सरलतापूर्ण रूप से सामान्य संकुचित ऑपरेटर्स पर बढ़ता है।

यहां नुकताचीन सूचकांक की कुछ गुणधर्मों का उल्लेख करना दिलचस्प हो सकता है। अधिक सामान्यतः, समान्य संख्या λ के लिए, उसकी सूचकांक को उस नकारात्मक अथवा नानात्विक संख्या ν(λ) की अल्पतम अगतिशाखा के रूप में परिभाषित किया जा सकता है, जो यह साबित करता है कि

इसलिए ν(v) > 0 अगर और एकमात्र अगर λ A का इजनमान है। सीमित आयामी स्थितियों में, ν(λ) ≤ वैज्ञानिक अनुपात है।

समतल (सपाट) सामान्य रूप

जॉर्डन रूप का उपयोग मात्रिकाओं की समकोण तक समरूपता के लिए साधारण रूप खोजने के लिए किया जाता है, जिसके परिणामस्वरूप साधारण मात्रिकाएँ मूल मात्रिका स्थान में न्यूनतम स्थानिकीय डिग्री की बीजगणित संख्याओं का समूह होता है।

जॉर्डन रूप के लिए मात्रिका समरूपता के प्रतिनिधित्वकों के सेट, या विशाल मात्रिका स्थान में राष्ट्रीय गणितिक रूप में विभाजन के लिए, सामान्य रूप से रेखांकित या एफ़ाइन सबस्थान नहीं बनाते हैं।

व्लादिमीर अर्नोल्ड ने पोज़ दियाने समस्या पूछी[14] क्षेत्र में मात्रिका समरूपता वर्गों के प्रतिनिधित्वकों का सेट एफाइन रैखिक उपस्थिति (फ्लैट) के संयोजन की समान्तर रूप हो। दूसरे शब्दों में, मात्रिका समरूपता वर्गों के सेट को प्रारंभिक मात्रिका सेट में सुरक्षित रूप से एक-विद्यमान करें जिससे इस संबद्धन की छवि - सभी साधारण मात्रिकाओं का सेट, सबसे कम संभावित डिग्री होता है - यह खिसे हुए रेखांकित उपविभाजनों का संयोजन होता है।

यह बीजगणितिक बंद क्षेत्रों के लिए पीटरिस डौगुलिस ने बीजगणित बंदों के निर्माण को समस्या का हल किया। मात्रिका के अद्वितीय निर्धारित विमान निरूपण का निर्माण जॉर्डन रूप को विचार करके शुरू होता है।[15]

मैट्रिक्स फ़ंक्शंस

जॉर्डन श्रृंखला का अनुक्रमणिका विविध और प्रयोजनों के लिए विस्तार को प्रेरित करता है। संख्यात्मक मैट्रिक्सों के लिए, मैट्रिक्स फ़ंक्शन मिलता है; इसे संकुचित ऑपरेटरों और होलोमोर्फिक कार्यात्मक विश्लेषण में विस्तारित किया जा सकता है, जैसा नीचे विवरण दिया गया है।

जॉर्डन साधारण रूप सबसे आसान है मैट्रिक्स फ़ंक्शनों की गणना के लिए (चूंकि यह कंप्यूटर की गणना के लिए सबसे अच्छा चयन नहीं हो सकता है)। f(z) संज्ञात्मकीय तार्किक चर का विश्लेषण हो। n×n जॉर्डन ब्लॉक J पर फ़ंक्शन का लागू होना, जिसमें इजीनमान λ होता है, ऊपरी त्रिकोणीय मैट्रिक्स देता है।

जिससे परिणामी मैट्रिक्स के k-th सुपरडायागोनल के तत्व हों। सामान्य जॉर्डन नियमित रूप की मैट्रिक्स के लिए उपरोक्त संवेदनशीलता को प्रत्येक जॉर्डन ब्लॉक पर लागू किया जाना चाहिए।

निम्नलिखित उदाहरण पावर फ़ंक्शन f(z)=zn के अनुप्रयोग को दिखाता है:

यहां बाइनोमियल संख्याओं की परिभाषा है यहां n के लिए पूर्णांक पॉजिटिव है, तो इसका मान आम परिभाषा के समान होता है। n के लिए नकारात्मक मान के लिए पहचान का उपयोग किया जा सकता है।

कॉम्पैक्ट ऑपरेटर

जॉर्डन सामान्य फॉर्म के अनुरूप परिणाम बनच स्थान पर कॉम्पैक्ट ऑपरेटरों के लिए होता है। इसलिए कॉम्पैक्ट ऑपरेटरों पर प्रतिबंधित होता है क्योंकि हर बिंदु x को कॉम्पैक्ट ऑपरेटर T के स्पेक्ट्रम का अवधारणीय बिंदु कहा जाता है; एकमात्र अपवाद यह है जब x स्पेक्ट्रम का सीमा बिंदु है। यह सामान्यतः बाध्य ऑपरेटरों के लिए सत्य नहीं है। इस सामान्यीकरण की विचार देने के लिए, हम पहले कार्यकला विश्लेषण को कार्यात्मक विश्लेषण की भाषा में पुनः रचते हैं।

होलोमोर्फिक कार्यात्मक कैलकुलस

X बैनाक स्थान हो, L(X) X पर सीमित ऑपरेटर्स हों, और σ(T) T ∈ L(X) का स्पेक्ट्रम हो। होलोमोर्फिक कार्यात्मक विश्लेषण निम्न रूप में परिभाषित होता है:

सीमित ऑपरेटर T को ठीक करें। σ(T) को सम्मलित करने वाले किसी खुले सेट G पर होलोमोर्फिक फ़ंक्शनका परिवार Hol(T) को विचार करें। Γ = {γi} संख्यात्मक जॉर्डन परिसंचय हो जिसमें σ(T) Γ के भीतर होता है, हम f(T) को निम्न रूप में परिभाषित करते हैं।

खुला सेट G, f के साथ भिन्न हो सकता है और इसे कनेक्ट करने की आवश्यकता नहीं है। इंटीग्रल को रीमैन योग की सीमा के रूप में परिभाषित किया गया है, जैसा कि अदिश स्थितियों में होता है। यद्यपि इंटीग्रल निरंतर एफ के लिए समझ में आता है, हम शास्त्रीय फ़ंक्शन सिद्धांत (उदाहरण के लिए, कॉची इंटीग्रल फॉर्मूला) से मशीनरी को लागू करने के लिए होलोमोर्फिक फ़ंक्शंस तक सीमित रखते हैं। यह धारणा कि σ(T) Γ के अंदर स्थित है, यह सुनिश्चित करता है कि f(T) अच्छी तरह से परिभाषित है; यह Γ की पसंद पर निर्भर नहीं है। कार्यात्मक कैलकुलस, Hol(T) से L(X) तक की मैपिंग Φ है

हमें इस कार्यात्मक कैलकुलस के निम्नलिखित गुणों की आवश्यकता होगी:

  1. Φ बहुपद कार्यात्मक कलन का विस्तार करता है।
  2. स्पेक्ट्रल मैपिंग सिद्धांत सत्य होता है: σ(f(T)) = f(σ(T))।.
  3. Φ बीजगणित मानक होता है।

परिमित-आयामी स्थिति

परिमित-आयामी स्थितियों में, σ(T) = {λi} कंप्लेक्स समतल में सीमित अस्पष्ट समूह होता है। लेट ei ऐसा फ़ंक्शन हो जो λi के कुछ खुले पड़ोस में 1 होता है और अन्यथा 0 होता है। कार्यकलाप की गुणधर्म 3 के के लिए ,

प्रक्षेपण होता है। इसके अतिरिक्त, νi λi का सूचकांक होता है और

विद्युतमान अनुक्रमणिका के अनुसार हमें बताता है

का स्पेक्ट्रम {0} होता है। गुणधर्म 1 के के लिए , f(T) को सीधे जॉर्डन रूप में निर्धारित किया जा सकता है, और निरीक्षण से, हम देखते हैं कि ऑपरेटर f(T)ei(टी) शून्य मैट्रिक्स है.

गुणधर्म 3 के के लिए , f(T) ei(T) = ei(T) f(T)। इसलिए ei(T) सीधे उन उपस्थिति पर प्रक्षेपण होता है

संबंध

से हमें मिलता है

जहां सूचकांक I, T के विशिष्ट इगनवैल्यूज ​​​​के माध्यम से चलता है। यह अपरिवर्तनीय उप-स्थान अपघटन है

यह पिछले अनुभाग में दिए गए अविचलित उपस्थिति विभाजन है। प्रत्येक e_i(T) λi के लिए जोर्डन श्रृंखलाओं के उपस्थिति के के लिए निर्धारित सशर्त पर्यायों की ओर प्रक्षेपण होता है। अन्य शब्दों में, e_i(T) = P(λi;T)। ऑपरेटर e_i(T) की इस स्पष्ट पहचान के लिए पटलिका के लिए स्पष्ट रूप दिया जाता है।

मैट्रिक्स के लिए लौरेंट श्रृंखला प्रतिस्थापन का स्पष्ट रूप भी देता है:

सभी f ∈ Hol(T) के लिए,

ध्यान दें कि f(T) का व्यक्तिगतीकरण सीमित योग है क्योंकि, हर प्रदेश में, हमने f की टेलर श्रृंखला को vi के लिए केंद्रित चुना है।

ऑपरेटर के ध्रुव

T सीमित ऑपरेटर हो, λ T के σ(T) का अलगावित बिंदु हों। (जैसा कि पहले कहा गया है, जब T संकुचित होता है, तो उसके स्पेक्ट्रम में हर बिंदु अलगावित बिंदु होता है, एकमात्र सीमा बिंदु 0 का सीमा बिंदु हो सकता है।)

ऑपरेटर T का बिंदु λ अग्रेय अवधि ν के साथ पोल कहलाता है अगर अग्निस्थापना समारेखी RT के लिए परिभाषित होती है

जो λ पर ν का ध्रुव (जटिल विश्लेषण) होता है।

हम दिखाएंगे कि, सीमित आयाम स्थितियों में, इजीनमान की आदेश उसके सूचकांक के साथ मेल खाती है। परिणाम संकुचित ऑपरेटर के लिए भी सत्य होता है।

λ के केंद्रित चक्र के पास आयामी इलाके A की विचार करें जिसमें ऐसा पर्याप्त छोटा त्रिज्या ε हो कि खुले वर्तुल Bε(λ) और σ(T) के प्राप्ति का छेद {λ} हों। आयामी RT A पर होलोमोर्फिक होती है। गणितीय कार्यकला से परिणाम का विस्तार करके, RT के पास A पर लॉरेंट श्रृंखला का प्रतिनिधित्व होती है:

जहां

और C छोटा चक्र λ को केंद्रित है।
पिछले चर्चा के आधार पर, हमने दिखाया है
जहाँ 1 पर है और अन्यत्र 0.

किन्तु हमने देखा है कि सबसे छोटा सकारात्मक पूर्णांक m ऐसा होता है

और

जहां ν(λ) इसके सबसे छोटा सकारात्मक पूर्णांक होता है। दूसरे शब्दों में, फ़ंक्शन RT के पास λ पर ν(λ) की पूर्णांक का पोल होता है।

संख्यात्मक विश्लेषण

यदि मैट्रिक्स A में कई इगनवैल्यूज ​​​​हैं, या कई इगनवैल्यूज ​​​​वाले मैट्रिक्स के निकट है, तो इसका जॉर्डन सामान्य रूप गड़बड़ी के प्रति बहुत संवेदनशील है। उदाहरण के लिए मैट्रिक्स पर विचार करें

यदि ε = 0, तो जॉर्डन सामान्य रूप सरल है

यद्यपि, ε ≠ 0 के लिए, जॉर्डन सामान्य रूप है

यह शर्त संख्या के कारण, जॉर्डन मानक रूप के लिए मजबूत संख्यात्मक एल्गोरिदम विकसित करना बहुत जटिल हो जाता है, क्योंकि परिणाम में निर्धारित किया जाता है कि क्या दो इजीनमान को समान माना जाता है या नहीं। इसी कारण संख्यात्मक विश्लेषण में जॉर्डन मानक रूप टाल सामान्यतः दिया जाता है; स्थिर शूर अपघटन[16] या छद्म छद्मस्पेक्ट्रम[17] उत्तम विकल्प हैं।

यह भी देखें

टिप्पणियाँ

  1. Shilov defines the term Jordan canonical form and in a footnote says that Jordan normal form is synonymous. These terms are sometimes shortened to Jordan form. (Shilov) The term Classical canonical form is also sometimes used in the sense of this article. (James & James, 1976)
  2. 2.0 2.1 Holt & Rumynin (2009, p. 9)
  3. 3.0 3.1 Golub & Van Loan (1996, p. 355)
  4. Beauregard & Fraleigh (1973, pp. 270–274)
  5. Golub & Van Loan (1996, p. 353)
  6. Nering (1970, pp. 113–118)
  7. Brechenmacher, "Histoire du théorème de Jordan de la décomposition matricielle (1870-1930). Formes de représentation et méthodes de décomposition", Thesis, 2007
  8. Cullen (1966, p. 114)
  9. Franklin (1968, p. 122)
  10. 10.0 10.1 Horn & Johnson (1985, §3.2.1)
  11. Bronson (1970, pp. 189, 194)
  12. Roe Goodman and Nolan R. Wallach, Representations and Invariants of Classical Groups, Cambridge UP 1998, Appendix B.1.
  13. Horn & Johnson (1985, Theorem 3.4.5)
  14. Arnold, Vladimir I, ed. (2004). Arnold's problems. Springer-Verlag Berlin Heidelberg. p. 127. doi:10.1007/b138219. ISBN 978-3-540-20748-1.
  15. Peteris Daugulis (2012). "मैट्रिक्स संयुग्मन कक्षा का एक पैरामीट्रिजेशन एफ़िन विमानों के संघ के रूप में सेट होता है". Linear Algebra and Its Applications. 436 (3): 709–721. arXiv:1110.0907. doi:10.1016/j.laa.2011.07.032. S2CID 119649768.
  16. See Golub & Van Loan (2014), §7.6.5; or Golub & Wilkinson (1976) for details.
  17. See Golub & Van Loan (2014), §7.9

संदर्भ