के-वितरण
Parameters | , , | ||
---|---|---|---|
Support | |||
Mean | |||
Variance | |||
MGF |
संभाव्यता और सांख्यिकी में, सामान्यीकृत के-वितरण निरंतर संभाव्यता वितरण का एक तीन-पैरामीटर परिवार है। वितरण दो गामा वितरणों को संयोजित करके उत्पन्न होता है। प्रत्येक मामले में, गामा वितरण के परिवार के सामान्य रूप का पुन: पैरामीट्रिजेशन उपयोग किया जाता है, जैसे कि पैरामीटर हैं:
- वितरण का माध्य,
- सामान्य आकार पैरामीटर।
के-वितरण विचरण-गामा वितरण का एक विशेष मामला है, जो बदले में सामान्यीकृत हाइपरबोलिक वितरण का एक विशेष मामला है। सामान्यीकृत के-वितरण के एक सरल विशेष मामले को अक्सर द के-वितरण के रूप में जाना जाता है।
घनत्व
मान लीजिए कि एक यादृच्छिक चर माध्य के साथ गामा वितरण है और आकार पैरामीटर , साथ इसे एक अन्य गामा वितरण वाले यादृच्छिक चर के रूप में माना जा रहा है, इस बार माध्य के साथ और आकार पैरामीटर . नतीजा यह है के लिए निम्नलिखित संभाव्यता घनत्व फ़ंक्शन (पीडीएफ) है :[1]
कहाँ दूसरे प्रकार का संशोधित बेसेल फ़ंक्शन है। ध्यान दें कि दूसरे प्रकार के संशोधित बेसेल फ़ंक्शन के लिए, हमारे पास है . इस व्युत्पत्ति में, K-वितरण एक मिश्रित संभाव्यता वितरण है। यह एक उत्पाद वितरण भी है:[1] यह दो स्वतंत्र यादृच्छिक चर के उत्पाद का वितरण है, एक में माध्य 1 और आकार पैरामीटर के साथ गामा वितरण होता है , दूसरे में माध्य के साथ गामा वितरण है और आकार पैरामीटर .
के-वितरण का एक सरल दो पैरामीटर औपचारिकीकरण सेटिंग द्वारा प्राप्त किया जा सकता है जैसा[2][3]
कहाँ आकार कारक है, स्केल फ़ैक्टर है, और दूसरे प्रकार का संशोधित बेसेल फलन है। उपरोक्त दो पैरामीटर औपचारिकता को सेटिंग द्वारा भी प्राप्त किया जा सकता है , , और , भले ही अलग-अलग भौतिक व्याख्या के साथ और पैरामीटर. इस दो पैरामीटर औपचारिकता को अक्सर के-वितरण के रूप में जाना जाता है, जबकि तीन पैरामीटर औपचारिकता को सामान्यीकृत के-वितरण के रूप में जाना जाता है।
यह वितरण एरिक जेकमैन और पीटर पुसी (1978) के एक पेपर से लिया गया है, जिन्होंने इसका उपयोग माइक्रोवेव समुद्री प्रतिध्वनि को मॉडल करने के लिए किया था।[4] जेकमैन एंड टफ (1987) ने वितरण को एक पक्षपाती रैंडम वॉक मॉडल से प्राप्त किया।[5] वार्ड (1981) ने दो यादृच्छिक चर, z = a y के लिए उत्पाद से वितरण प्राप्त किया, जहां a में chi वितरण है और y में एक जटिल गॉसियन वितरण है। z, |z| के मापांक में K-वितरण होता है।[6]
क्षण (गणित)
क्षण उत्पन्न करने वाला फलन किसके द्वारा दिया गया है?[7]
कहाँ और व्हिटेकर फ़ंक्शन है।
K-वितरण का n-वाँ क्षण किसके द्वारा दिया जाता है?[1]
तो माध्य और विचरण द्वारा दिए गए हैं[1]
अन्य गुण
वितरण के सभी गुण सममित हैं और [1]
अनुप्रयोग
के-वितरण कृत्रिम झिरीदार रडार (एसएआर) इमेजरी में प्रयुक्त सांख्यिकीय या संभाव्य मॉडल के परिणाम के रूप में उत्पन्न होता है। के-वितरण यौगिक संभाव्यता वितरण द्वारा दो अलग-अलग संभाव्यता वितरणों से बनता है, एक रडार क्रॉस-सेक्शन का प्रतिनिधित्व करता है, और दूसरा धब्बे का प्रतिनिधित्व करता है जो सुसंगत इमेजिंग की एक विशेषता है। इसका उपयोग वायरलेस संचार में समग्र तेज़ लुप्त होती और छाया प्रभाव को मॉडल करने के लिए भी किया जाता है।
टिप्पणियाँ
स्रोत
- Redding, Nicholas J. (1999), Estimating the Parameters of the K Distribution in the Intensity Domain (PDF), South Australia: DSTO Electronics and Surveillance Laboratory, p. 60, DSTO-TR-0839
- Bocquet, Stephen (2011), Calculation of Radar Probability of Detection in K-Distributed Sea Clutter and Noise (PDF), Canberra, Australia: Joint Operations Division, DSTO Defence Science and Technology Organisation, p. 35, DSTO-TR-0839
- Jakeman, E.; Pusey, P. N. (1978-02-27). "प्रकीर्णन प्रयोगों में K-वितरण का महत्व". Physical Review Letters. American Physical Society (APS). 40 (9): 546–550. doi:10.1103/physrevlett.40.546. ISSN 0031-9007.
- Jakeman, E.; Tough, R. J. A. (1987-09-01). "सामान्यीकृत K वितरण: कमजोर प्रकीर्णन के लिए एक सांख्यिकीय मॉडल". Journal of the Optical Society of America A. The Optical Society. 4 (9): 1764-1772. doi:10.1364/josaa.4.001764. ISSN 1084-7529.
- Ward, K.D. (1981). "उच्च विभेदन समुद्री अव्यवस्था का मिश्रित प्रतिनिधित्व". Electronics Letters. Institution of Engineering and Technology (IET). 17 (16): 561-565. doi:10.1049/el:19810394. ISSN 0013-5194.
- Bithas, P.S.; Sagias, N.C.; Mathiopoulos, P.T.; Karagiannidis, G.K.; Rontogiannis, A.A. (2006). "सामान्यीकृत-के लुप्त होते चैनलों पर डिजिटल संचार के प्रदर्शन विश्लेषण पर". IEEE Communications Letters. Institute of Electrical and Electronics Engineers (IEEE). 10 (5): 353–355. doi:10.1109/lcomm.2006.1633320. ISSN 1089-7798. S2CID 4044765.
- Long, M.W. (2001). भूमि और समुद्र की रडार परावर्तनशीलता (3rd ed.). Norwood, MA: Artech House. p. 560.
अग्रिम पठन
- Jakeman, E (1980-01-01). "On the statistics of K-distributed noise". Journal of Physics A: Mathematical and General. IOP Publishing. 13 (1): 31–48. doi:10.1088/0305-4470/13/1/006. ISSN 0305-4470.
- Ward, K. D.; Tough, Robert J. A; Watts, Simon (2006) Sea Clutter: Scattering, the K Distribution and Radar Performance, Institution of Engineering and Technology. ISBN 0-86341-503-2.