सीमा तुलना परीक्षण

From Vigyanwiki
Revision as of 16:52, 16 July 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, सीमा तुलना परीक्षण (एलसीटी) (संबंधित प्रत्यक्ष तुलना परीक्षण के विपरीत) एक अनंत श्रृंखला के अभिसरण के परीक्षण की एक विधि है।

कथन

मान लीजिए कि हमारे पास सभी के लिए के साथ दो श्रृंखलाएँ और हैं। फिर यदि के साथ हैं, तब या तो दोनों श्रृंखलाएं अभिसरण करती हैं या दोनों श्रृंखलाएं अलग हो जाती हैं।[1]


प्रमाण

क्योंकि हम जानते हैं कि प्रत्येक के लिए एक धनात्मक पूर्णांक होता है, जैसे कि सभी के लिए हमारे पास वह , या समकक्ष

होता है के रूप में हम को इतना छोटा चुन सकते हैं कि धनात्मक हो।

तो और प्रत्यक्ष तुलना परीक्षण से, यदि अभिसरण होता है तो भी अभिसरण करता है।

इसी तरह , तो यदि विचलन करता है, फिर से प्रत्यक्ष तुलना परीक्षण द्वारा, तो भी वैसा ही होता है, अर्थात, दोनों श्रृंखलाएँ अभिसरित होती हैं या दोनों श्रृंखलाएँ भिन्न होती हैं।

उदाहरण

हम यह निर्धारित करना चाहते हैं कि श्रृंखला अभिसरण करती है या नहीं। इसके लिए हम इसकी तुलना अभिसरण श्रृंखला से करते हैं, जैसा कि से पता चलता है कि मूल श्रृंखला भी अभिसरण करती है।

एकतरफ़ा संस्करण

लिमिट सुपीरियर का उपयोग करके कोई एक तरफा तुलना परीक्षण बता सकता है। मान लीजिए Z सभी n के लिए है। फिर यदि और के साथ अभिसरण करता है, तो आवश्यक रूप से अभिसरण होता है।

उदाहरण

मान लीजिए सभी प्राकृतिक संख्याओं के लिए और हैं। अब

 अस्तित्व में नहीं है, इसलिए हम मानक तुलना परीक्षण लागू नहीं कर सकते हैं। चूँकि,
 और चूंकि  अभिसरण होता है, एक तरफा तुलना परीक्षण का तात्पर्य है कि  अभिसरण होता है।

एकतरफ़ा तुलना परीक्षण का व्युत्क्रम

मान लीजिए कि सभी के लिए है। यदि विचलन करता है और अभिसरण करता है, तो आवश्यक रूप से

, होता है, जो कि,
 है। यहां आवश्यक सामग्री यह है कि कुछ अर्थों में संख्याएं  संख्याएं  से बड़ी हैं।

उदाहरण

मान लीजिए यूनिट डिस्क में विश्लेषणात्मक है और इसमें परिमित क्षेत्र की छवि है। पार्सेवल के सूत्र के अनुसार की छवि का क्षेत्रफल के समानुपाती होता है। इसके अतिरिक्त,

 विचलन करता है। इसलिए, तुलना परीक्षण के व्युत्क्रम से, हमारे पास

, है, जो कि, है।

यह भी देखें

संदर्भ

  1. Swokowski, Earl (1983), Calculus with analytic geometry (Alternate ed.), Prindle, Weber & Schmidt, p. 516, ISBN 0-87150-341-7


अग्रिम पठन

  • Rinaldo B. Schinazi: From Calculus to Analysis. Springer, 2011, ISBN 9780817682897, pp. 50
  • Michele Longo and Vincenzo Valori: The Comparison Test: Not Just for Nonnegative Series. Mathematics Magazine, Vol. 79, No. 3 (Jun., 2006), pp. 205–210 (JSTOR)
  • J. Marshall Ash: The Limit Comparison Test Needs Positivity. Mathematics Magazine, Vol. 85, No. 5 (December 2012), pp. 374–375 (JSTOR)


बाहरी संबंध