आकार विश्लेषण (डिजिटल ज्यामिति)

From Vigyanwiki
Revision as of 20:24, 8 July 2023 by alpha>Indicwiki (Created page with "यह आलेख ज्यामितीय आकृतियों का विश्लेषण और प्रसंस्करण करने के लिए ...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

यह आलेख ज्यामितीय आकृतियों का विश्लेषण और प्रसंस्करण करने के लिए आकार विश्लेषण का वर्णन करता है।

विवरण

आकृति विश्लेषण (अधिकतर) है[clarification needed] ज्यामितीय आकृतियों का स्वचालित विश्लेषण, उदाहरण के लिए डेटाबेस में समान आकार की वस्तुओं या एक साथ फिट होने वाले हिस्सों का पता लगाने के लिए कंप्यूटर का उपयोग करना। कंप्यूटर द्वारा स्वचालित रूप से ज्यामितीय आकृतियों का विश्लेषण और प्रसंस्करण करने के लिए, वस्तुओं को डिजिटल रूप में प्रस्तुत करना होगा। आमतौर पर सीमा प्रतिनिधित्व का उपयोग वस्तु को उसकी सीमा (आमतौर पर बाहरी आवरण, मॉडल गिनती भी देखें) के साथ वर्णित करने के लिए किया जाता है। हालाँकि, अन्य आयतन आधारित अभ्यावेदन (जैसे रचनात्मक ठोस ज्यामिति) या बिंदु आधारित अभ्यावेदन (बिंदु बादल) का उपयोग आकार का प्रतिनिधित्व करने के लिए किया जा सकता है।

एक बार ऑब्जेक्ट दिए जाने के बाद, या तो मॉडलिंग (कंप्यूटर-सहायता प्राप्त डिज़ाइन), स्कैनिंग (3 3डी स्कैनर) द्वारा या 2 डी या 3 डी छवियों से आकार निकालकर, तुलना प्राप्त करने से पहले उन्हें सरल बनाना होगा। सरलीकृत निरूपण को अक्सर आकृति वर्णनकर्ता (या फ़िंगरप्रिंट, हस्ताक्षर) कहा जाता है। ये सरलीकृत निरूपण अधिकांश महत्वपूर्ण जानकारी को ले जाने का प्रयास करते हैं, जबकि सीधे आकृतियों की तुलना में इन्हें संभालना, संग्रहीत करना और तुलना करना आसान होता है। एक पूर्ण आकार विवरणक एक प्रतिनिधित्व है जिसका उपयोग मूल वस्तु को पूरी तरह से पुनर्निर्माण करने के लिए किया जा सकता है (उदाहरण के लिए औसत दर्जे का अक्ष परिवर्तन)।

आवेदन फ़ील्ड

आकृति विश्लेषण का उपयोग कई अनुप्रयोग क्षेत्रों में किया जाता है:

  • उदाहरण के लिए, पुरातत्व, समान वस्तुओं या लापता भागों को खोजने के लिए
  • उदाहरण के लिए वास्तुकला, उन वस्तुओं की पहचान करना जो स्थानिक रूप से एक विशिष्ट स्थान में फिट होती हैं
  • बीमारी से संबंधित आकार में बदलाव को समझने या सर्जिकल योजना में सहायता के लिए मेडिकल इमेजिंग
  • कॉपीराइट उद्देश्यों के लिए वस्तुओं की पहचान करने के लिए आभासी वास्तविकता या 3डी मॉडल पर
  • सुरक्षा अनुप्रयोग जैसे चेहरे की पहचान प्रणाली
  • मनोरंजन उद्योग (फिल्में, खेल) ज्यामितीय मॉडल या एनिमेशन का निर्माण और प्रसंस्करण करने के लिए
  • मैकेनिकल पार्ट्स या डिज़ाइन ऑब्जेक्ट के डिज़ाइन को संसाधित करने और तुलना करने के लिए कंप्यूटर-एडेड डिज़ाइन और कंप्यूटर-एडेड विनिर्माण।

आकार वर्णनकर्ता

आकृति वर्णनकर्ताओं को संबंधित आकृति परिभाषा में अनुमत परिवर्तनों के संबंध में उनके अपरिवर्तनीयता के आधार पर वर्गीकृत किया जा सकता है। कई वर्णनकर्ता सर्वांगसमता के संबंध में अपरिवर्तनीय हैं, जिसका अर्थ है कि सर्वांगसम आकार (आकृतियाँ जिन्हें अनुवादित, घुमाया और प्रतिबिंबित किया जा सकता है) में एक ही वर्णनकर्ता होगा (उदाहरण के लिए क्षण (गणित) या गोलाकार हार्मोनिक आधारित वर्णनकर्ता या बिंदु बादलों पर काम करने वाले प्रोक्रस्टेस विश्लेषण)।

आकार वर्णनकर्ताओं का एक अन्य वर्ग (जिसे आंतरिक आकार वर्णनकर्ता कहा जाता है) आइसोमेट्री के संबंध में अपरिवर्तनीय है। ये वर्णनकर्ता आकृति के विभिन्न सममितीय एम्बेडिंग के साथ नहीं बदलते हैं। उनका लाभ यह है कि उन्हें विकृत वस्तुओं (उदाहरण के लिए विभिन्न शारीरिक मुद्राओं में एक व्यक्ति) पर अच्छी तरह से लगाया जा सकता है क्योंकि इन विकृतियों में ज्यादा खिंचाव नहीं होता है लेकिन वास्तव में ये लगभग-आइसोमेट्रिक होते हैं। ऐसे विवरणक आमतौर पर किसी वस्तु की सतह के साथ जियोडेसिक दूरी के माप या अन्य आइसोमेट्री अपरिवर्तनीय विशेषताओं जैसे लाप्लास-बेल्ट्रामी ऑपरेटर | लाप्लास-बेल्ट्रामी स्पेक्ट्रम (कार्यात्मक विश्लेषण) (वर्णक्रमीय आकार विश्लेषण भी देखें) पर आधारित होते हैं।

अन्य आकार वर्णनकर्ता भी हैं, जैसे औसत अक्ष या रिब ग्राफ ़ जैसे ग्राफ़-आधारित वर्णनकर्ता जो ज्यामितीय और/या टोपोलॉजिकल जानकारी को कैप्चर करते हैं और आकार प्रतिनिधित्व को सरल बनाते हैं लेकिन उन वर्णनकर्ताओं की तुलना में आसानी से नहीं किया जा सकता है जो संख्याओं के वेक्टर के रूप में आकार का प्रतिनिधित्व करते हैं .

इस चर्चा से यह स्पष्ट हो जाता है कि विभिन्न आकार वर्णनकर्ता आकार के विभिन्न पहलुओं को लक्षित करते हैं और एक विशिष्ट अनुप्रयोग के लिए उपयोग किए जा सकते हैं। इसलिए, एप्लिकेशन के आधार पर, यह विश्लेषण करना आवश्यक है कि एक डिस्क्रिप्टर रुचि की विशेषताओं को कितनी अच्छी तरह पकड़ता है।

यह भी देखें

संदर्भ

  • De Floriani, Leila; Spagnuolo, Michela (2007). Shape Analysis and Structuring. Springer. ISBN 978-3540332640.
  • Delfour, Michel C.; Zolésio, J.P. (2001). Shapes and Geometries: Analysis, Differential Calculus, and Optimization. SIAM. ISBN 978-0898714890.
  • Application of Shape Analysis. 9-ème Colloque Franco-Roumain de Mathématiques Appliquées: 28 août–2 septembre 2008, Braşov, Roumanie : livre des résumés. University of Transilvania. 2008. ISBN 978-973-598-341-3.


बाहरी संबंध