बेट्टी संख्या
बीजगणितीय टोपोलॉजी में, n-आयामी सरलीकृत परिसरों की संयोजकता के आधार पर टोपोलॉजिकल रिक्त स्थान को अलग करने के लिए बेट्टी संख्याओं का उपयोग किया जाता है। सबसे उचित परिमित-आयामी स्थानों (जैसे कॉम्पैक्ट मैनिफोल्ड्स, परिमित सरल जटिल या सीडब्ल्यू जटिल) के लिए, बेट्टी संख्याओं का अनुक्रम कुछ बिंदु से 0 है (बेट्टी संख्याएं अंतरिक्ष के आयाम से ऊपर लुप्त हो जाती हैं), और वे सभी परिमित हैं।
nवीं बेट्टी संख्या nवें समरूपता समूह की रैंक का प्रतिनिधित्व करती है, जिसे Hn दर्शाया जाता है, जो हमें बताता है कि सतह को दो टुकड़ों या 0-चक्र, 1-चक्र, आदि में अलग करने से पहले अधिकतम निगमन की जा सकती है।[1] उदाहरण के लिए, यदि तो यदि फिर , यदि तो , आदि। ध्यान दें कि केवल अपरिमित समूहों की रैंक पर विचार किया जाता है, उदाहरण के लिए यदि , जहाँ तो, क्रम 2 का परिमित चक्रीय समूह है . समरूपता समूहों के ये सीमित घटक उनके टॉरशन उपसमूह हैं, और उन्हें टॉरशन गुणांक द्वारा दर्शाया जाता है।
"बेट्टी नंबर्स" शब्द एनरिको बेट्टी के बाद हेनरी पोनकारे द्वारा बनाया गया था। आधुनिक फॉर्मूलेशन एमी नोएदर के कारण है। बेट्टी नंबरों का उपयोग आज सरल गृहविज्ञान, कंप्यूटर विज्ञान और डिजिटल छवियों जैसे क्षेत्रों में किया जाता है।
ज्यामितीय व्याख्या
अनौपचारिक रूप से, kवें बेट्टी संख्या टोपोलॉजिकल सतह पर k-आयामी छिद्रों की संख्या को संदर्भित करता है। "के-डायमेंशनल होल" K-डायमेंशनल चक्र है जो (k+1)-डायमेंशनल ऑब्जेक्ट की सीमा नहीं है।
पहले कुछ बेट्टी नंबरों में 0-आयामी, 1-आयामी और 2-आयामी सरलीकृत जटिल के लिए निम्नलिखित परिभाषाएँ हैं:
- b0 जुड़े हुए घटकों की संख्या है;
- b1 एक-आयामी या गोलाकार छिद्रों की संख्या है;
- b2 द्वि-आयामी रिक्तियों या गुहाओं की संख्या है।
इस प्रकार, उदाहरण के लिए, टोरस में जुड़ा हुआ सतह घटक होता है इसलिए b2 = 1, दो गोलाकार छिद्र (भूमध्यरेखीय और आंचलिक और मध्याह्न रेखा) इसलिए b1 = 2, और सतह के भीतर एकल गुहा घिरा हुआ है इसलिए b2 = 1.
bk की अन्य व्याख्या k-आयामी वक्रों की अधिकतम संख्या है जिन्हें ऑब्जेक्ट के जुड़े रहने के पर्यन्त हटाया जा सकता है। उदाहरण के लिए, टोरस दो 1-आयामी वक्रों (भूमध्यरेखीय और मध्याह्न रेखा) को हटाने के बाद भी जुड़ा रहता है इसलिए b1 = 2.[2]
द्वि-आयामी बेट्टी संख्या को समझना आसान है क्योंकि हम दुनिया को 0, 1, 2 और 3 आयामों में देख सकते हैं।
औपचारिक परिभाषा
गैर-ऋणात्मक पूर्णांक k के लिए, kवें बेट्टी संख्या bk(X) के X को एबेलियन समूह Hk(X) के एबेलियन समूह (रैखिक रूप से स्वतंत्र जनरेटर की संख्या) की रैंक के रूप में परिभाषित किया गया है, X का kवें होमोलॉजी समूह है। kवें होमोलॉजी समूह है, s सरल परिसर के सीमा मानचित्र और Hk की रैंक हैं kवाँ बेट्टी संख्या है। समान रूप से, कोई इसे Hk(X; Q) के सदिश समष्टि आयाम के रूप में परिभाषित कर सकता है चूँकि इस स्तिथि में समरूपता समूह 'Q' के ऊपर एक सदिश समष्टि है। सार्वभौमिक गुणांक प्रमेय, एक बहुत ही सरल टॉरशन-मुक्त स्तिथि में, दर्शाता है कि ये परिभाषाएँ समान हैं।
अधिक सामान्यतः, फ़ील्ड (गणित) F दिए जाने पर bk(X, F) को परिभाषित कर सकता है, F में गुणांक के साथ kवें बेट्टी संख्या, Hk(X, F) के सदिश स्पेस आयाम के रूप में परिभाषित कर सकता है।
पोंकारे बहुपद
किसी सतह के पोंकारे बहुपद को उसकी बेट्टी संख्याओं का जनक फलन माना जाता है। उदाहरण के लिए, टोरस की बेट्टी संख्या 1, 2, और 1 है; इस प्रकार इसका पोनकेरे बहुपद है। यही परिभाषा किसी भी टोपोलॉजिकल स्पेस पर लागू होती है जिसमें एक सीमित रूप से उत्पन्न होमोलॉजी होती है।
एक टोपोलॉजिकल स्पेस को देखते हुए जिसमें परिमित रूप से उत्पन्न समरूपता है, पोंकारे बहुपद को बहुपद के माध्यम से, इसके बेट्टी संख्याओं के जनक फलन के रूप में परिभाषित किया गया है, जहां का गुणांक है।
उदाहरण
ग्राफ़ की बेट्टी संख्या
टोपोलॉजिकल ग्राफ सिद्धांत G पर विचार करें जिसमें शीर्षों का समूह V है, किनारों का समूह E है, और जुड़े हुए घटकों का समूह C है। जैसा कि ग्राफ समरूपता पर पेज में बताया गया है, इसके होमोलॉजी समूह इस प्रकार दिए गए हैं:
इसे किनारों की संख्या पर गणितीय प्रेरण द्वारा सीधे सिद्ध किया जा सकता है। एक नया किनारा या तो 1-चक्रों की संख्या बढ़ाता है या जुड़े हुए घटकों की संख्या घटाता है।
इसलिए, शून्य-वें बेट्टी संख्या b0(G) |C| के बराबर है, जो कि केवल जुड़े हुए घटकों की संख्या है।[3]
पहला बेट्टी संख्या b1(G) |E| + |C| - |V|| बराबर है। इसे चक्रीय संख्या भी कहा जाता है - यह शब्द बेट्टी के पेपर से पहले गुस्ताव किरचॉफ द्वारा पेश किया गया था।[4] सॉफ्टवेयर इंजीनियरिंग के अनुप्रयोग के लिए चक्रीय जटिलता देखें।
अन्य सभी बेट्टी संख्याएँ 0 हैं।
सरल सम्मिश्र की बेट्टी संख्याएँ
0-सिम्पलेक्स के साथ एक सरल जटिल पर विचार करें: a, b, c, और d, 1-सिम्पलेक्स: E, F, G, H और I, और एकमात्र 2-सिंप्लेक्स J है, जो चित्र में छायांकित क्षेत्र है। यह स्पष्ट है कि इस आंकड़े में एक जुड़ा हुआ घटक है (b0); एक छेद, जो कि अछायांकित (b1) क्षेत्र है; और कोई (b2) "रिक्त स्थान" या "गुहा" नहीं।
इसका अर्थ यह है कि की रैंक 1 है, की रैंक 1 है और की रैंक 0 है।
इस आकृति के लिए बेट्टी संख्या अनुक्रम 1, 1, 0, 0, ... है; पोनकेरे बहुपद है।
प्रक्षेप्य तल की बेट्टी संख्या
प्रक्षेप्य तल P के समरूपता समूह हैं:[5]
यहां, Z2 क्रम 2 का चक्रीय समूह है। 0-वीं बेट्टी संख्या फिर से 1 है। हालाँकि, पहली-वीं बेट्टी संख्या 0 है। इसका कारण यह है कि H1(P) एक परिमित समूह है - इसका कोई अपरिमित घटक नहीं है। समूह के परिमित घटक को P का टॉरशन गुणांक कहा जाता है। (तर्कसंगत) बेट्टी संख्या bk(X) समरूप समूहों में किसी भी टॉरशन को ध्यान में नहीं रखती है, लेकिन वे बहुत उपयोगी बुनियादी टोपोलॉजिकल इनवेरिएंट हैं। सबसे सहज शब्दों में, वे विभिन्न आयामों के छेदों की संख्या गणना की अनुमति देते हैं।
गुण
यूलर विशेषता
परिमित CW-जटिल K के लिए हमारे पास है
जहाँ K और किसी फ़ील्ड F की यूलर विशेषता को दर्शाता है।
कार्टेशियन उत्पाद
हमारे पास किन्हीं दो स्थानों X और Y के लिए है
जहाँ X के पोंकारे बहुपद को दर्शाता है, (सामान्यतः, अपरिमित-आयामी स्थानों के लिए हिल्बर्ट-पोंकारे श्रृंखला), यानी, X की बेट्टी संख्याओं का मूल फलन:
कुनेथ प्रमेय देखें।
समरूपता
यदि X, n-आयामी मैनिफोल्ड है, तो समरूपता का अन्तर्विनिमय और होता है किसी के लिए :
शर्तों के तहत (क्लोज्ड और ओरिएंटेड मनिफोल्ड); पोंकारे द्वंद्व देखें.
विभिन्न गुणांक
क्षेत्र F पर निर्भरता केवल इसकी विशेषता के माध्यम से है। यदि समरूपता समूह टॉरशन-मुक्त हैं, तो बेट्टी संख्याएं F से स्वतंत्र हैं। विशेषता P के लिए P-टॉरशन और बेट्टी संख्या का संयोजन, P अभाज्य संख्या के लिए, सार्वभौमिक गुणांक प्रमेय द्वारा विस्तार से दिया गया है (टोर फ़ंक्शनर्स पर आधारित) लेकिन एक साधारण स्तिथि में)।
अधिक उदाहरण
- वृत्त के लिए बेट्टी संख्या अनुक्रम 1, 1, 0, 0, 0, ... है;
- पोंकारे बहुपद है
- .
- पोंकारे बहुपद है
- तीन-टोरस्र्स के लिए बेट्टी संख्या अनुक्रम 1, 3, 3, 1, 0, 0, 0, ... है।
- पोंकारे बहुपद है
- .
- पोंकारे बहुपद है
- इसी तरह, n-टोरस के लिए,
- पोंकारे बहुपद है
- (कुनेथ प्रमेय के अनुसार), इसलिए बेट्टी संख्याएँ द्विपद गुणांक हैं।
- पोंकारे बहुपद है
उन स्थानों के लिए यह संभव है जो अनिवार्य रूप से अपरिमित-आयामी हैं, जिनमें गैर-शून्य बेट्टी संख्याओं का अपरिमित अनुक्रम हो। उदाहरण अपरिमित-आयामी जटिल प्रक्षेप्य स्थान है, जिसमें अनुक्रम 1, 0, 1, 0, 1, ... है, जो आवधिक है, अवधि की लंबाई 2 के साथ है।
इस स्तिथि में पोंकारे फलन बहुपद नहीं बल्कि अपरिमित श्रृंखला है
- ,
जो, ज्यामितीय श्रृंखला होने के नाते, तर्कसंगत कार्य के रूप में व्यक्त किया जा सकता है
अधिक सामान्यतः, कोई भी अनुक्रम जो आवधिक है, उपरोक्त को सामान्यीकृत करते हुए, ज्यामितीय श्रृंखला के योग के रूप में व्यक्त किया जा सकता है। उदाहरण के लिए उत्पन्न करने का कार्य है
और अधिक सामान्यतः रैखिक पुनरावर्ती अनुक्रम बिल्कुल परिमेय फलन द्वारा उत्पन्न अनुक्रम होते हैं; इस प्रकार पोंकारे श्रृंखला परिमेय फलन के रूप में व्यक्त की जा सकती है यदि और केवल यदि बेट्टी संख्याओं का अनुक्रम रैखिक पुनरावर्ती अनुक्रम है।
सघन सरल लाई समूहों के पोंकारे बहुपद हैं:
विभेदक रूपों के रिक्त स्थान के आयामों के साथ संबंध
ज्यामितीय स्थितियों में जब एक बंद कई गुना है, बेट्टी संख्याओं का महत्व अलग दिशा से उत्पन्न हो सकता है, अर्थात् वे बंद अंतर रूपों के वेक्टर स्पेस के आयामों की भविष्यवाणी करते हैं मॉडुलो सटीक अंतर रूपों। ऊपर दी गई परिभाषा के साथ संबंध तीन बुनियादी परिणामों के माध्यम से है, डे रैहम का प्रमेय और पोइनकार द्वैतता (जब वे लागू होते हैं), और होमोलॉजी सिद्धांत का सार्वभौमिक गुणांक प्रमेय के माध्यम से है।
वैकल्पिक पाठन है, अर्थात् बेट्टी संख्याएँ हार्मोनिक रूपों के स्थानों के आयाम देती हैं। इसके लिए हॉज लाप्लासियन पर हॉज सिद्धांत के कुछ परिणामों के उपयोग की आवश्यकता होती है।
इस सेटिंग में, मोर्स सिद्धांत किसी दिए गए सूचकांक के मोर्स फलन के महत्वपूर्ण बिंदुओं की संख्या के संबंधित वैकल्पिक योग के संदर्भ में बेट्टी संख्याओं के वैकल्पिक योग के लिए असमानताओं का समूह देता है:
एडवर्ड विटेन ने डी रामा परिसर में बाहरी व्युत्पन्न को संशोधित करने के लिए मोर्स फ़ंक्शन का उपयोग करके इन असमानताओं की व्याख्या दी है।[6]
यह भी देखें
- टोपोलॉजिकल डेटा विश्लेषण
- टॉरशन गुणांक (टोपोलॉजी)
- यूलर विशेषता
संदर्भ
- ↑ Barile, and Weisstein, Margherita and Eric. "बेटी नंबर". From MathWorld--A Wolfram Web Resource.
- ↑ Archived at Ghostarchive and the Wayback Machine: Albin, Pierre (2019). "History of algebraic topology". YouTube.
- ↑ Per Hage (1996). Island Networks: Communication, Kinship, and Classification Structures in Oceania. Cambridge University Press. p. 49. ISBN 978-0-521-55232-5.
- ↑ Peter Robert Kotiuga (2010). राउल बॉट की गणितीय विरासत का उत्सव. American Mathematical Soc. p. 20. ISBN 978-0-8218-8381-5.
- ↑ Archived at Ghostarchive and the Wayback Machine: Wildberger, Norman J. (2012). "Delta complexes, Betti numbers and torsion". YouTube.
- ↑ Witten, Edward (1982), "Supersymmetry and Morse theory", Journal of Differential Geometry, 17 (4): 661–692, doi:10.4310/jdg/1214437492
- Warner, Frank Wilson (1983), Foundations of differentiable manifolds and Lie groups, New York: Springer, ISBN 0-387-90894-3.
- Roe, John (1998), Elliptic Operators, Topology, and Asymptotic Methods, Research Notes in Mathematics Series, vol. 395 (Second ed.), Boca Raton, FL: Chapman and Hall, ISBN 0-582-32502-1.