मॉड्यूल का प्रत्यक्ष योग

From Vigyanwiki
Revision as of 18:37, 8 July 2023 by alpha>Indicwiki (Created page with "{{Short description|Operation in abstract algebra}} {{for|the broader use of the term in mathematics|Direct sum}} अमूर्त बीजगणित में, प...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

अमूर्त बीजगणित में, प्रत्यक्ष योग एक निर्माण है जो कई मॉड्यूल (गणित) को एक नए, बड़े मॉड्यूल में जोड़ता है। मॉड्यूल का प्रत्यक्ष योग सबसे छोटा मॉड्यूल है जिसमें दिए गए मॉड्यूल को बिना किसी अनावश्यक बाधा के सबमॉड्यूल के रूप में शामिल किया जाता है, जो इसे सह-उत्पाद का एक उदाहरण बनाता है। प्रत्यक्ष उत्पाद के साथ तुलना करें, जो द्वैत (श्रेणी सिद्धांत) धारणा है।

इस निर्माण के सबसे परिचित उदाहरण तब मिलते हैं जब वेक्टर रिक्त स्थान (एक क्षेत्र (गणित) पर मॉड्यूल) और एबेलियन समूह (पूर्णांक के रिंग जेड पर मॉड्यूल) पर विचार करते हैं। निर्माण को बानाच स्थानों और हिल्बर्ट स्थानों को कवर करने के लिए भी बढ़ाया जा सकता है।

किसी मॉड्यूल को सबमॉड्यूल के प्रत्यक्ष योग के रूप में लिखने के तरीके के लिए मॉड्यूल का अपघटन लेख देखें।

सदिश स्थानों और एबेलियन समूहों के लिए निर्माण

हम इन दो मामलों में पहले निर्माण देते हैं, इस धारणा के तहत कि हमारे पास केवल दो वस्तुएं हैं। फिर हम मनमाने मॉड्यूल के एक मनमाने परिवार का सामान्यीकरण करते हैं। इन दो मामलों पर गहराई से विचार करने पर सामान्य निर्माण के प्रमुख तत्वों को अधिक स्पष्ट रूप से पहचाना जाता है।

दो सदिश स्थानों का निर्माण

मान लीजिए V और W क्षेत्र (गणित) K के ऊपर सदिश स्थान हैं। कार्तीय गुणन V × W को K के ऊपर एक सदिश स्थान की संरचना दी जा सकती है। (Halmos 1974, §18) संचालन को घटकवार परिभाषित करके:

  • (वि1, में1) + (वी2, में2) = (वी1 + वी2, में1 + डब्ल्यू2)
  • α (v, w) = (α v, α w)

वी के लिए, वी1, में2 ∈ वी, डब्ल्यू, डब्ल्यू1, में2 ∈ डब्ल्यू, और α ∈ के.

परिणामी सदिश समष्टि को V और W का प्रत्यक्ष योग कहा जाता है और इसे आमतौर पर एक वृत्त के अंदर प्लस चिह्न द्वारा दर्शाया जाता है:

किसी क्रमित योग के तत्वों को क्रमित जोड़े (v, w) के रूप में नहीं, बल्कि योग v + w के रूप में लिखने की प्रथा है।

V ⊕ W का उपस्थान V × {0}, V का समरूपी है और अक्सर इसे V से पहचाना जाता है; इसी प्रकार {0} × W और W के लिए। (नीचे आंतरिक प्रत्यक्ष योग देखें।) इस पहचान के साथ, V ⊕ W के प्रत्येक तत्व को V के एक तत्व और W के एक तत्व के योग के रूप में एक और केवल एक ही तरीके से लिखा जा सकता है। . V ⊕ W के सदिश समष्टि का आयाम V और W के आयामों के योग के बराबर है। एक प्राथमिक उपयोग पुनर्निर्माण है किसी भी उपसमष्टि W और उसके ऑर्थोगोनल पूरक से एक परिमित सदिश समष्टि का:

 

यह निर्माण वेक्टर स्थानों की किसी भी सीमित निर्धारित संख्या को आसानी से सामान्यीकृत करता है।

दो एबेलियन समूहों के लिए निर्माण

एबेलियन समूहों जी और एच के लिए जो योगात्मक रूप से लिखे गए हैं, जी और एच के प्रत्यक्ष उत्पाद को प्रत्यक्ष योग भी कहा जाता है (Mac Lane & Birkhoff 1999, §V.6). इस प्रकार कार्टेशियन उत्पाद G × H संचालन को घटकवार परिभाषित करके एक एबेलियन समूह की संरचना से सुसज्जित है:

(जी1, एच1) + (जी2, एच2) = (जी1 + जी2, एच1 + एच2)

जी के लिए1, जी2 जी में, और एच1, एच2 एच में।

इंटीग्रल गुणकों को समान रूप से घटकवार परिभाषित किया जाता है

एन(जी, एच) = (एनजी, एनएच)

G में g, H में h, और n एक पूर्णांक है। यह सदिश स्थानों के अदिश गुणनफल के विस्तार को उपरोक्त प्रत्यक्ष योग के समानांतर करता है।

परिणामी एबेलियन समूह को जी और एच का सीधा योग कहा जाता है और इसे आमतौर पर एक सर्कल के अंदर प्लस प्रतीक द्वारा दर्शाया जाता है:

किसी क्रमित योग के तत्वों को क्रमित जोड़े (g, h) के रूप में नहीं, बल्कि योग g + h के रूप में लिखने की प्रथा है।

G ⊕ H का उपसमूह G × {0}, G के समरूपी है और अक्सर इसे G के साथ पहचाना जाता है; इसी प्रकार {0} × H और H के लिए। (नीचे Direct_sum_of_modules#Internal_direct_sum देखें।) इस पहचान के साथ, यह सच है कि G ⊕ H के प्रत्येक तत्व को G और के एक तत्व के योग के रूप में एक और केवल एक ही तरीके से लिखा जा सकता है। H का एक तत्व। G ⊕ H के एबेलियन समूह की रैंक G और H की रैंक के योग के बराबर है।

यह निर्माण एबेलियन समूहों की किसी भी सीमित निर्धारित संख्या को आसानी से सामान्यीकृत करता है।

मॉड्यूल के एक मनमाने परिवार के लिए निर्माण

किसी को दो सदिश स्थानों और दो एबेलियन समूहों के प्रत्यक्ष योग की परिभाषाओं के बीच स्पष्ट समानता पर ध्यान देना चाहिए। वास्तव में, प्रत्येक दो मॉड्यूल (गणित) के प्रत्यक्ष योग के निर्माण का एक विशेष मामला है। इसके अतिरिक्त, परिभाषा को संशोधित करके कोई मॉड्यूल के अनंत परिवार के प्रत्यक्ष योग को समायोजित कर सकता है। सटीक परिभाषा इस प्रकार है (Bourbaki 1989, §II.1.6).

मान लीजिए R एक वलय है, और {Mi: i ∈ I} सेट (गणित) I द्वारा अनुक्रमित बाएं आर-मॉड्यूल का एक अनुक्रमित परिवार। {एम का सीधा योगi} को फिर सभी अनुक्रमों के सेट के रूप में परिभाषित किया गया है कहाँ और निश्चित रूप से अनेक सूचकांकों के लिए I. (प्रत्यक्ष उत्पाद अनुरूप है लेकिन सूचकांकों को निश्चित रूप से गायब होने की आवश्यकता नहीं है।)

इसे I से मॉड्यूल M के असंयुक्त संघ तक फ़ंक्शन (गणित) α के रूप में भी परिभाषित किया जा सकता हैi ऐसा कि α(i)∈Mi सभी i ∈ I और α(i) = 0 के लिए, निश्चित रूप से कई सूचकांकों के लिए। इन कार्यों को समान रूप से फाइबर ओवर के साथ इंडेक्स सेट I पर फाइबर बंडल के कॉम्पैक्ट समर्थन सेक्शन के रूप में माना जा सकता है प्राणी .

यह सेट घटक-वार जोड़ और स्केलर गुणन के माध्यम से मॉड्यूल संरचना प्राप्त करता है। स्पष्ट रूप से, ऐसे दो अनुक्रम (या फ़ंक्शन) α और β को लिखकर जोड़ा जा सकता है सभी i के लिए (ध्यान दें कि यह फिर से सभी लेकिन सीमित रूप से कई सूचकांकों के लिए शून्य है), और ऐसे फ़ंक्शन को परिभाषित करके R से एक तत्व r के साथ गुणा किया जा सकता है सबके लिए मैं इस प्रकार, प्रत्यक्ष योग बाएँ R-मॉड्यूल बन जाता है, और इसे दर्शाया जाता है

क्रम लिखने की प्रथा है एक राशि के रूप में . कभी-कभी एक प्रारंभिक सारांश इसका उपयोग यह इंगित करने के लिए किया जाता है कि निश्चित रूप से कई पद शून्य हैं।

गुण

  • प्रत्यक्ष योग मॉड्यूल एम के प्रत्यक्ष उत्पाद का एक सबमॉड्यूल हैi (Bourbaki 1989, §II.1.7). प्रत्यक्ष उत्पाद I से मॉड्यूल M के असंयुक्त संघ तक सभी कार्यों α का सेट हैi α(i)∈M के साथi, लेकिन जरूरी नहीं कि सभी के लिए गायब हो जाए, लेकिन सीमित रूप से कई लोगों के लिए मैं गायब हो जाऊं। यदि सूचकांक सेट I परिमित है, तो प्रत्यक्ष योग और प्रत्यक्ष उत्पाद बराबर हैं।
  • प्रत्येक मॉड्यूल एमi उन कार्यों से युक्त प्रत्यक्ष योग के सबमॉड्यूल के साथ पहचाना जा सकता है जो i से भिन्न सभी सूचकांकों पर गायब हो जाते हैं। इन पहचानों के साथ, प्रत्यक्ष योग के प्रत्येक तत्व x को मॉड्यूल एम से सीमित कई तत्वों के योग के रूप में एक और केवल एक ही तरीके से लिखा जा सकता है।i.
  • यदि एमi वास्तव में सदिश स्थान हैं, तो प्रत्यक्ष योग का आयाम एम के आयामों के योग के बराबर हैi. एबेलियन समूह की रैंक और मॉड्यूल की लंबाई के लिए भी यही सच है।
  • फ़ील्ड K के ऊपर प्रत्येक सदिश समष्टि K की पर्याप्त संख्या में प्रतियों के प्रत्यक्ष योग के समरूपी है, इसलिए एक अर्थ में केवल इन प्रत्यक्ष योगों पर ही विचार करना होगा। यह मनमाने रिंगों से अधिक मॉड्यूल के लिए सच नहीं है।
  • टेंसर उत्पाद निम्नलिखित अर्थों में प्रत्यक्ष योगों पर वितरित होता है: यदि एन कुछ सही आर-मॉड्यूल है, तो एम के साथ एन के टेंसर उत्पादों का प्रत्यक्ष योगi (जो एबेलियन समूह हैं) एम के प्रत्यक्ष योग के साथ एन के टेंसर उत्पाद के लिए स्वाभाविक रूप से आइसोमोर्फिक हैi.
  • प्रत्यक्ष योग क्रमविनिमेय और साहचर्य (समरूपता तक) होते हैं, जिसका अर्थ है कि इससे कोई फर्क नहीं पड़ता कि कोई किस क्रम में प्रत्यक्ष योग बनाता है।
  • आर-रैखिक मानचित्र का एबेलियन समूह सीधे योग से कुछ बाएं आर-मॉड्यूल एल तक, एम से आर-रैखिक समरूपता के एबेलियन समूहों के प्रत्यक्ष उत्पाद के लिए स्वाभाविक रूप से आइसोमोर्फिक है।i एल से:
    वास्तव में, बाईं ओर से दाईं ओर स्पष्ट रूप से एक समरूपता τ है, जहां τ(θ)(i) आर-रैखिक समरूपता है जो x∈M भेज रही हैi से θ(x) (एम के प्राकृतिक समावेशन का उपयोग करकेi सीधे योग में)। समरूपता का व्युत्क्रम τ द्वारा परिभाषित किया गया है
    मॉड्यूल एम के प्रत्यक्ष योग में किसी भी α के लिएi. मुख्य बात यह है कि τ की परिभाषा−1समझ में आता है क्योंकि α(i) सीमित रूप से अनेक i को छोड़कर सभी के लिए शून्य है, और इसलिए योग परिमित है।
    विशेष रूप से, सदिश स्थानों के प्रत्यक्ष योग का दोहरा स्थान उन स्थानों के दोहरे के प्रत्यक्ष उत्पाद के लिए समरूपी है।
  • मॉड्यूल का परिमित प्रत्यक्ष योग एक द्विउत्पाद है: यदि
    कैनोनिकल प्रोजेक्शन मैपिंग और हैं
    फिर, समावेशन मैपिंग हैं
    ए की पहचान रूपवाद के बराबर है1 ⊕ ⋯ ⊕ एn, और
    ए की पहचान रूपवाद हैk मामले में एल = के, और अन्यथा शून्य मानचित्र है।

आंतरिक प्रत्यक्ष योग

मान लीजिए एम कुछ आर-मॉड्यूल है, और एमi I में प्रत्येक i के लिए M का एक उपमॉड्यूल है। यदि M में प्रत्येक x को M के सीमित कई तत्वों के योग के रूप में एक और केवल एक ही तरीके से लिखा जा सकता हैi, तो हम कहते हैं कि एम सबमॉड्यूल एम का 'आंतरिक प्रत्यक्ष योग' हैi (Halmos 1974, §18). इस मामले में, एम स्वाभाविक रूप से एम के (बाहरी) प्रत्यक्ष योग के समरूपी हैi जैसा कि ऊपर परिभाषित किया गया है (Adamson 1972, p.61).

M का एक सबमॉड्यूल N, M का 'प्रत्यक्ष योग' है यदि M का कोई अन्य सबमॉड्यूल N' मौजूद है जैसे कि M, N और N' का आंतरिक प्रत्यक्ष योग है। इस मामले में, N और N′ 'पूरक सबमॉड्यूल' हैं।

सार्वभौम संपत्ति

श्रेणी सिद्धांत की भाषा में, प्रत्यक्ष योग एक सहउत्पाद है और इसलिए बाएं आर-मॉड्यूल की श्रेणी में एक सीमा (श्रेणी सिद्धांत) है, जिसका अर्थ है कि यह निम्नलिखित सार्वभौमिक संपत्ति की विशेषता है। I में प्रत्येक i के लिए, प्राकृतिक एम्बेडिंग पर विचार करें

जो एम के तत्वों को भेजता हैi उन कार्यों के लिए जो सभी तर्कों के लिए शून्य हैं लेकिन i. अब मान लीजिए कि M एक मनमाना R-मॉड्यूल है और fi : एमi → M प्रत्येक i के लिए मनमाना R-रेखीय मानचित्र हो, तो ठीक एक R-रेखीय मानचित्र मौजूद होता है

ऐसा कि एफ ओ जेi= एफi सबके लिए मैं

ग्रोथेंडिक समूह

प्रत्यक्ष योग वस्तुओं के संग्रह को एक Monoid#Commutative_monoid मोनोइड की संरचना देता है, जिसमें वस्तुओं का जोड़ परिभाषित होता है, लेकिन घटाव नहीं। वास्तव में, घटाव को परिभाषित किया जा सकता है, और प्रत्येक क्रमविनिमेय मोनोइड को एबेलियन समूह तक बढ़ाया जा सकता है। इस विस्तार को ग्रोथेंडिक समूह के नाम से जाना जाता है। विस्तार वस्तुओं के युग्मों के समतुल्य वर्गों को परिभाषित करके किया जाता है, जो कुछ युग्मों को व्युत्क्रम के रूप में मानने की अनुमति देता है। ग्रोथेंडिक समूह पर लेख में विस्तृत निर्माण, सार्वभौमिक है, इसमें अद्वितीय होने की सार्वभौमिक संपत्ति है, और एबेलियन समूह में एक कम्यूटेटिव मोनॉइड के किसी भी अन्य एम्बेडिंग के लिए समरूप है।

अतिरिक्त संरचना के साथ मॉड्यूल का प्रत्यक्ष योग

यदि जिन मॉड्यूलों पर हम विचार कर रहे हैं उनमें कुछ अतिरिक्त संरचना (उदाहरण के लिए, एक नॉर्म (गणित) या एक आंतरिक उत्पाद) शामिल है, तो मॉड्यूल का प्रत्यक्ष योग अक्सर इस अतिरिक्त संरचना को ले जाने के लिए भी बनाया जा सकता है। इस मामले में, हम अतिरिक्त संरचना वाले सभी वस्तुओं के उपयुक्त श्रेणी (श्रेणी सिद्धांत) में सह-उत्पाद प्राप्त करते हैं। बानाच स्पेस और हिल्बर्ट स्पेस के दो प्रमुख उदाहरण मिलते हैं।

कुछ शास्त्रीय ग्रंथों में, किसी क्षेत्र पर बीजगणित का प्रत्यक्ष योग वाक्यांश भी बीजगणितीय संरचना को दर्शाने के लिए पेश किया गया है जिसे वर्तमान में आमतौर पर बीजगणित का प्रत्यक्ष उत्पाद कहा जाता है; अर्थात्, घटकवार संचालन के साथ अंतर्निहित सेट का कार्टेशियन उत्पाद। हालाँकि, यह निर्माण बीजगणित की श्रेणी में एक सहउत्पाद प्रदान नहीं करता है, बल्कि एक प्रत्यक्ष उत्पाद प्रदान करता है (नीचे नोट देखें और प्रत्यक्ष योग#छल्लों का प्रत्यक्ष योग पर टिप्पणी देखें)।

बीजगणित का सीधा योग

किसी क्षेत्र पर बीजगणित का सीधा योग और उत्पाद के साथ सदिश स्थानों के रूप में सीधा योग है

इन शास्त्रीय उदाहरणों पर विचार करें:

विभाजित-जटिल संख्याओं के लिए रिंग समरूपता है, जिसका उपयोग अंतराल विश्लेषण में भी किया जाता है।
1848 में जेम्स कॉकल (वकील) द्वारा प्रस्तुत टेसरीन का बीजगणित है।
जिसे स्प्लिट-बाइक्वाटर्नियन्स कहा जाता है, 1873 में विलियम किंग्डन क्लिफोर्ड द्वारा पेश किया गया था।

जोसेफ वेडरबर्न ने हाइपरकॉम्प्लेक्स संख्याओं के अपने वर्गीकरण में बीजगणित के प्रत्यक्ष योग की अवधारणा का उपयोग किया। मैट्रिसेस पर उनका व्याख्यान (1934), पृष्ठ 151 देखें। वेडरबर्न प्रत्यक्ष योग और बीजगणित के प्रत्यक्ष उत्पाद के बीच अंतर को स्पष्ट करता है: प्रत्यक्ष योग के लिए अदिश का क्षेत्र दोनों भागों पर संयुक्त रूप से कार्य करता है: जबकि प्रत्यक्ष उत्पाद के लिए एक अदिश कारक को भागों के साथ वैकल्पिक रूप से एकत्र किया जा सकता है, लेकिन दोनों को नहीं: इयान आर. पोर्टियस उपरोक्त तीन प्रत्यक्ष योगों को दर्शाते हुए उनका उपयोग करते हैं क्लिफ़ोर्ड बीजगणित और शास्त्रीय समूह (1995) के अपने विश्लेषण में अदिश छल्लों के रूप में।

ऊपर वर्णित निर्माण, साथ ही वेडरबर्न द्वारा शब्दों का उपयोग direct sum और direct product श्रेणी सिद्धांत से भिन्न परंपरा का पालन करें। स्पष्ट शब्दों में, वेडरबर्न का direct sum एक उत्पाद (श्रेणी सिद्धांत) है, जबकि वेडरबर्न का direct product एक सहउत्पाद|सहउत्पाद (या श्रेणीबद्ध योग) है, जो (क्रमविनिमेय बीजगणित के लिए) वास्तव में बीजगणित के टेंसर उत्पाद से मेल खाता है।

बनच रिक्त स्थान का प्रत्यक्ष योग

दो बानाच स्थानों का सीधा योग और का सीधा योग है और मानक के साथ सदिश स्थान के रूप में माना जाता है सभी के लिए और आम तौर पर, अगर बानाच स्थानों का एक संग्रह है, जहां सूचकांक सेट को पार करता है फिर सीधा योग एक मॉड्यूल है जिसमें सभी फ़ंक्शन शामिल हैं किसी फ़ंक्शन का डोमेन ऐसा है कि सभी के लिए और

मानदंड उपरोक्त योग द्वारा दिया गया है। इस मानदंड के साथ सीधा योग फिर से एक बानाच स्थान है।

उदाहरण के लिए, यदि हम इंडेक्स सेट लेते हैं और फिर सीधा योग स्थान है जिसमें सभी अनुक्रम शामिल हैं परिमित मानदंड के साथ वास्तविकताओं का एक बंद उपस्थान एक बानाच स्थान का यदि कोई अन्य बंद उप-स्थान है तो पूरक उप-स्थान है का ऐसा है कि आंतरिक प्रत्यक्ष योग के बराबर है ध्यान दें कि प्रत्येक बंद उपस्थान पूरक नहीं है; जैसे सी0 स्पेस|में पूरक नहीं है


द्विरेखीय रूपों के साथ मॉड्यूल का प्रत्यक्ष योग

होने देना द्वारा अनुक्रमित एक अनुक्रमित परिवार बनें द्विरेखीय रूपों से सुसज्जित मॉड्यूल की। ऑर्थोगोनल प्रत्यक्ष योग द्विरेखीय रूप के साथ मॉड्यूल प्रत्यक्ष योग है द्वारा परिभाषित[1]

जिसमें अनंत सूचकांक सेटों के लिए भी योग समझ में आता है क्योंकि केवल सीमित रूप से बहुत से पद गैर-शून्य हैं।

हिल्बर्ट स्पेस का सीधा योग

यदि बहुत सारे हिल्बर्ट स्थान हैं दिए गए हैं, कोई उनके ऑर्थोगोनल प्रत्यक्ष योग को उपरोक्त के रूप में बना सकता है (क्योंकि वे वेक्टर स्थान हैं), आंतरिक उत्पाद को इस प्रकार परिभाषित करते हैं:

परिणामी प्रत्यक्ष योग एक हिल्बर्ट स्पेस है जिसमें दिए गए हिल्बर्ट स्पेस को पारस्परिक रूप से ओर्थोगोनल उप-स्पेस के रूप में शामिल किया गया है।

यदि अपरिमित रूप से अनेक हिल्बर्ट स्थान हों के लिए दिए गए हैं, हम वही निर्माण कार्य कर सकते हैं; ध्यान दें कि आंतरिक उत्पाद को परिभाषित करते समय, केवल सीमित रूप से कई सारांश गैर-शून्य होंगे। हालाँकि, परिणाम केवल एक आंतरिक उत्पाद स्थान होगा और यह आवश्यक रूप से बनच स्थान नहीं होगा। फिर हम हिल्बर्ट रिक्त स्थान के प्रत्यक्ष योग को परिभाषित करते हैं इस आंतरिक उत्पाद स्थान का पूरा होना।

वैकल्पिक रूप से और समकक्ष रूप से, कोई हिल्बर्ट रिक्त स्थान के प्रत्यक्ष योग को परिभाषित कर सकता है डोमेन के साथ सभी कार्यों के स्थान के रूप में α ऐसा है कि का एक तत्व है हरएक के लिए और:

ऐसे दो फ़ंक्शन α और β के आंतरिक उत्पाद को तब परिभाषित किया गया है:
यह स्थान पूरा हो गया है और हमें हिल्बर्ट स्थान मिलता है।

उदाहरण के लिए, यदि हम इंडेक्स सेट लेते हैं और फिर सीधा योग स्थान है जिसमें सभी अनुक्रम शामिल हैं परिमित मानदंड के साथ वास्तविकताओं का इसकी तुलना बानाच स्पेस के उदाहरण से करने पर, हम देखते हैं कि बानाच स्पेस डायरेक्ट योग और हिल्बर्ट स्पेस डायरेक्ट योग आवश्यक रूप से समान नहीं हैं। लेकिन अगर केवल सीमित रूप से कई सारांश हैं, तो बानाच अंतरिक्ष प्रत्यक्ष योग हिल्बर्ट अंतरिक्ष प्रत्यक्ष योग के समरूपी है, हालांकि मानक अलग होगा।

प्रत्येक हिल्बर्ट स्थान आधार क्षेत्र की पर्याप्त रूप से कई प्रतियों के प्रत्यक्ष योग के बराबर है, जो कि या तो है यह इस दावे के समतुल्य है कि प्रत्येक हिल्बर्ट स्थान का एक लंबात्मक आधार होता है। अधिक सामान्यतः, हिल्बर्ट स्पेस का प्रत्येक बंद उप-स्थान पूरक उप-स्थान है क्योंकि यह एक ऑर्थोगोनल पूरक को स्वीकार करता है। इसके विपरीत, लिंडेनस्ट्रॉस-तज़ाफरीरी प्रमेय का दावा है कि यदि बानाच स्थान के प्रत्येक बंद उप-स्थान को पूरक किया जाता है, तो बानाच स्थान हिल्बर्ट स्थान के लिए आइसोमोर्फिक (टोपोलॉजिकल रूप से) है।

यह भी देखें

संदर्भ

  1. Milnor, J.; Husemoller, D. (1973). सममित द्विरेखीय रूप. Ergebnisse der Mathematik und ihrer Grenzgebiete. Vol. 73. Springer-Verlag. pp. 4–5. ISBN 3-540-06009-X. Zbl 0292.10016.