नॉनबेलियन हॉज पत्राचार

From Vigyanwiki
Revision as of 18:20, 22 July 2023 by alpha>Jyotis

बीजगणितीय ज्यामिति और विभेदक ज्यामिति में, नॉनबेलियन हॉज पत्राचार या कॉर्लेट-सिम्पसन पत्राचार (केविन कोरलेट और चार्ल्स सिम्पसन के नाम पर) हिग्स बंडलों और चिकनी, प्रक्षेप्य विविधता समष्टि बीजगणितीय विविधता, या सघन स्थान मौलिक समूह के प्रतिनिधित्व के मध्य पत्राचार है स्पेस काहलर मैनिफोल्ड।

प्रमेय को नरसिम्हन-शेषाद्रि प्रमेय का विशाल सामान्यीकरण माना जा सकता है जो स्थिर सदिश बंडलों और कॉम्पैक्ट रीमैन सतह के मौलिक समूह के एकात्मक प्रतिनिधित्व के मध्य पत्राचार को परिभाषित करता है। वास्तव में नरसिम्हन-शेषाद्रि प्रमेय को हिग्स फ़ील्ड को शून्य पर समुच्चय करके नॉनबेलियन हॉज पत्राचार के विशेष स्थितियों के रूप में प्राप्त किया जा सकता है।

इतिहास

यह 1965 में एम.एस. नरसिम्हन और सी.एस. शेषाद्री द्वारा सिद्ध किया गया था कि कॉम्पैक्ट रीमैन सतह पर स्थिर सदिश बंडल मौलिक समूह के अपरिवर्तनीय प्रक्षेप्य एकात्मक प्रतिनिधित्व के अनुरूप हैं।[1] इस प्रमेय को 1983 में साइमन डोनाल्डसन के काम में नई रोशनी में व्यक्त किया गया था, जिन्होंने दिखाया कि स्थिर सदिश बंडल यांग-मिल्स कनेक्शन के अनुरूप हैं, जिनकी पवित्रता नरसिम्हन और शेषाद्रि के मौलिक समूह का प्रतिनिधित्व देती है।[2] नरसिम्हन-शेषाद्रि प्रमेय को कॉम्पैक्ट रीमैन सतहों के स्थितियों से लेकर बीजगणितीय सतहों के स्थितियों में डोनाल्डसन द्वारा कॉम्पैक्ट काहलर मैनिफोल्ड्स की स्थापना तक और सामान्यतः करेन उहलेनबेक और शिंग-तुंग याउ द्वारा सामान्यीकृत किया गया था।[3][4] स्थिर सदिश बंडलों और हर्मिटियन यांग-मिल्स कनेक्शन के मध्य इस पत्राचार को कोबायाशी-हिचिन पत्राचार के रूप में जाना जाता है।

नरसिम्हन-शेषाद्रि प्रमेय मौलिक समूह के एकात्मक प्रतिनिधित्व से संबंधित है। निगेल हिचिन ने बीजगणितीय वस्तु के रूप में हिग्स बंडल की धारणा प्रस्तुतकी, जिसे मौलिक समूह के समष्टि प्रतिनिधित्व के अनुरूप होना चाहिए (वास्तव में हिग्स बंडल शब्दावली हिचिन के काम के पश्चात् कार्लोस सिम्पसन द्वारा प्रस्तुतकी गई थी)। नॉनबेलियन हॉज प्रमेय का पहला उदाहरण हिचिन द्वारा सिद्ध किया गया था, जिन्होंने कॉम्पैक्ट रीमैन सतह पर रैंक दो हिग्स बंडलों के स्थितियों पर विचार किया था।[5] हिचिन ने दिखाया कि पॉलीस्टेबल हिग्स बंडल हिचिन के समीकरणों के समाधान से मेल खाता है, यांग-मिल्स समीकरणों के आयाम दो में आयामी कमी के रूप में प्राप्त अंतर समीकरणों की प्रणाली। इस स्थितियों में डोनाल्डसन द्वारा यह दिखाया गया कि हिचिन के समीकरणों के समाधान मौलिक समूह के प्रतिनिधित्व के अनुरूप हैं।[6] कॉम्पैक्ट रीमैन सतह पर रैंक दो के हिग्स बंडलों के लिए हिचिन और डोनाल्डसन के परिणामों को कार्लोस सिम्पसन और केविन कॉर्लेट द्वारा व्यापक रूप से सामान्यीकृत किया गया था। यह कथन कि पॉलीस्टेबल हिग्स बंडल हिचिन के समीकरणों के समाधान के अनुरूप हैं, सिम्पसन द्वारा सिद्ध किया गया था।[7][8] हिचिन के समीकरणों के समाधान और मौलिक समूह के प्रतिनिधित्व के मध्य पत्राचार कॉर्लेट द्वारा दिखाया गया था।[9]

परिभाषाएँ

इस खंड में हम नॉनबेलियन हॉज प्रमेय में रुचि की वस्तुओं को याद करते हैं।[7][8]

हिग्स बंडल

एक कॉम्पैक्ट काहलर मैनिफोल्ड पर हिग्स बंडल जोड़ी है कहाँ होलोमोर्फिक सदिश बंडल है और -मूल्यवान होलोमोर्फिक -पर प्रपत्र , जिसे हिग्स फ़ील्ड कहा जाता है। इसके अतिरिक्त, हिग्स फ़ील्ड को संतुष्ट करना होगा .

एक हिग्स बंडल (अर्ध) स्थिर है, यदि प्रत्येक उचित, गैर-शून्य सुसंगत शीफ के लिए जो हिग्स फील्ड द्वारा संरक्षित है, जिससे कि , किसी के पास

इस परिमेय संख्या को ढलान कहा जाता है, निरूपित किया जाता है , और उपरोक्त परिभाषा स्थिर सदिश बंडल को प्रतिबिंबित करती है। हिग्स बंडल पॉलीस्टेबल है यदि यह समान ढलान के स्थिर हिग्स बंडलों का प्रत्यक्ष योग है, और इसलिए अर्ध-स्थिर है।

हर्मिटियन यांग-मिल्स कनेक्शन और हिचिन के समीकरण

उच्च आयाम के लिए हिचिन के समीकरण के सामान्यीकरण को जोड़ी से निर्मित निश्चित कनेक्शन के लिए हर्मिटियन यांग-मिल्स समीकरणों के एनालॉग के रूप में दर्शाया जा सकता है। . हर्मिटियन मीट्रिक हिग्स बंडल पर चेर्न कनेक्शन को जन्म देता है और वक्रता . शर्त यह है कि होलोमोर्फिक को इस रूप में परिभाषित किया जा सकता है . हिचिन के समीकरण, कॉम्पैक्ट रीमैन सतह पर, यह बताते हैं

एक स्थिरांक के लिए . उच्च आयामों में यह समीकरण निम्नानुसार सामान्यीकृत होते हैं। कनेक्शन को परिभाषित करें पर द्वारा . इस कनेक्शन को हर्मिटियन यांग-मिल्स कनेक्शन (और मीट्रिक हर्मिटियन यांग-मिल्स मीट्रिक) कहा जाता है यदि
यह कॉम्पैक्ट रीमैन सतह के लिए हिचिन के समीकरणों को कम कर देता है। ध्यान दें कि कनेक्शन सामान्य अर्थों में हर्मिटियन यांग-मिल्स कनेक्शन नहीं है, क्योंकि यह एकात्मक नहीं है, और उपरोक्त स्थिति सामान्य HYM स्थिति का गैर-एकात्मक एनालॉग है।

मौलिक समूह और हार्मोनिक मेट्रिक्स का प्रतिनिधित्व

मौलिक समूह का प्रतिनिधित्व निम्नानुसार फ्लैट कनेक्शन के साथ सदिश बंडल को जन्म देता है। सार्वभौमिक आवरण का प्रमुख बंडल है संरचना समूह के साथ . इस प्रकार संबद्ध बंडल है द्वारा दिए गए

यह सदिश बंडल स्वाभाविक रूप से फ्लैट कनेक्शन से सुसज्जित है . यदि पर हर्मिटियन मीट्रिक है , ऑपरेटर को परिभाषित करें निम्नलिखित नुसार। विघटित प्रकार के ऑपरेटरों में और , क्रमश। होने देना प्रकार का अद्वितीय ऑपरेटर बनें ऐसे कि -कनेक्शन मीट्रिक को सुरक्षित रखता है . परिभाषित करना , और समुच्चय करें . की छद्मवक्रता को परिभाषित करें होना .

मीट्रिक यदि हार्मोनिक कहा जाता है

ध्यान दें कि स्थिति तीन स्थितियों के सामान्तर है , तब यदि फिर जोड़ी होलोमोर्फिक संरचना के साथ हिग्स बंडल को परिभाषित करता है Dolbeault ऑपरेटर द्वारा दिया गया .

यह कॉर्लेट का परिणाम है कि यदि हार्मोनिक है, तब यह स्वचालित रूप से संतुष्ट हो जाता है और इस प्रकार हिग्स बंडल को जन्म देता है।[9]

मोडुली रिक्त स्थान

तीन अवधारणाओं में से प्रत्येक के लिए: हिग्स बंडल, फ्लैट कनेक्शन, और मौलिक समूह का प्रतिनिधित्व, कोई मॉड्यूलि स्पेस को परिभाषित कर सकता है। इसके लिए इन वस्तुओं के मध्य समरूपता की धारणा की आवश्यकता होती है। निम्नलिखित में, सहज समष्टि सदिश बंडल को ठीक करें . प्रत्येक हिग्स बंडल को अंतर्निहित चिकनी सदिश बंडल माना जाएगा .

  • (हिग्स बंडल) समष्टि गेज परिवर्तनों का समूह समुच्चय पर अभिनय करता है सूत्र द्वारा हिग्स बंडलों की . यदि और अर्धस्थिर और स्थिर हिग्स बंडलों के उपसमुच्चय को क्रमशः निरूपित करें, फिर किसी को मॉड्यूलि स्पेस प्राप्त होता है
    जहां इन भागफलों को ज्यामितीय अपरिवर्तनीय सिद्धांत के अर्थ में लिया जाता है, इसलिए जिन कक्षाओं के समापन प्रतिच्छेद होते हैं उन्हें मॉड्यूलि स्पेस में पहचाना जाता है। इन मॉड्यूलि स्पेस को डॉल्बुल्ट मॉड्यूलि स्पेस कहा जाता है। ध्यान दें कि समुच्चयिंग करके , कोई अर्ध-स्थिर और स्थिर होलोमोर्फिक सदिश बंडलों के मॉड्यूलि स्पेस को सबसमुच्चय के रूप में प्राप्त करता है और . यह भी सत्य है कि यदि कोई मॉड्यूलि स्पेस को परिभाषित करता है पॉलीस्टेबल हिग्स बंडलों की तब यह स्थान अर्ध-स्थिर हिग्स बंडलों के स्थान के लिए समरूपी है, क्योंकि अर्ध-स्थिर हिग्स बंडलों की प्रत्येक गेज कक्षा में इसके समापन में पॉलीस्टेबल हिग्स बंडलों की अद्वितीय कक्षा होती है।
  • (फ्लैट कनेक्शन) समूह समष्टि गेज परिवर्तन भी समुच्चय पर कार्य करता है फ्लैट कनेक्शन का चिकने सदिश बंडल पर . मॉड्यूलि रिक्त स्थान को परिभाषित करें
    कहाँ इरेड्यूसेबल फ्लैट कनेक्शन से युक्त सबसमुच्चय को दर्शाता है जो प्रत्यक्ष योग के रूप में विभाजित नहीं होता है कुछ बंटवारे पर चिकने सदिश बंडल का . इन मॉड्यूलि स्पेस को डी राम मॉड्यूलि स्पेस कहा जाता है।
  • (प्रतिनिधित्व) अभ्यावेदन का समुच्चय के मौलिक समूह का अभ्यावेदन के संयुग्मन द्वारा सामान्य रैखिक समूह पर कार्य किया जाता है। सुपरस्क्रिप्ट द्वारा निरूपित करें और उपसमुच्चय में क्रमशः अर्धसरल निरूपण और अघुलनशील निरूपण सम्मिलित हैं। फिर मॉड्यूलि स्पेस को परिभाषित करें
    क्रमशः अर्धसरल और अघुलनशील अभ्यावेदन का। इन भागफलों को ज्यामितीय अपरिवर्तनीय सिद्धांत के अर्थ में लिया जाता है, जहां दो कक्षाओं की पहचान की जाती है यदि उनके समापन दूसरे को काटते हैं। इन मॉड्यूलि स्पेस को बेट्टी मॉड्यूलि स्पेस कहा जाता है।

कथन

नॉनबेलियन हॉज प्रमेय को दो भागों में विभाजित किया जा सकता है। पहला भाग डोनाल्डसन द्वारा कॉम्पैक्ट रीमैन सतह पर रैंक दो हिग्स बंडलों के स्थितियों में और सामान्यतः कॉर्लेट द्वारा सिद्ध किया गया था।[6][9]सामान्यतः नॉनबेलियन हॉज प्रमेय सहज समष्टि प्रक्षेप्य विविधता को मानता है , किन्तु पत्राचार के कुछ हिस्से कॉम्पैक्ट काहलर मैनिफोल्ड्स के लिए अधिक व्यापकता रखते हैं।

Nonabelian Hodge theorem (part 1) — A representation of the fundamental group is semisimple if and only if the flat vector bundle admits a harmonic metric. Furthermore the representation is irreducible if and only if the flat vector bundle is irreducible.

प्रमेय का दूसरा भाग हिचिन द्वारा कॉम्पैक्ट रीमैन सतह पर रैंक दो हिग्स बंडलों के स्थितियों में और सामान्यतः सिम्पसन द्वारा सिद्ध किया गया था।[5][7][8]

Nonabelian Hodge theorem (part 2) — A Higgs bundle has a Hermitian Yang–Mills metric if and only if it is polystable. This metric is a harmonic metric, and therefore arises from a semisimple representation of the fundamental group, if and only if the Chern classes and vanish. Furthermore, a Higgs bundle is stable if and only if it admits an irreducible Hermitian Yang–Mills connection, and therefore comes from an irreducible representation of the fundamental group.

एक साथ मिलाकर, पत्राचार को इस प्रकार व्यक्त किया जा सकता है:

Nonabelian Hodge theorem — A Higgs bundle (which is topologically trivial) arises from a semisimple representation of the fundamental group if and only if it is polystable. Furthermore it arises from an irreducible representation if and only if it is stable.

मॉड्यूलि स्पेस के संदर्भ में

नॉनबेलियन हॉज पत्राचार न केवल समुच्चयों का आक्षेप देता है, किंतु मोडुली रिक्त स्थान की होमोमोर्फिज्म भी देता है। वास्तव में, यदि दो हिग्स बंडल आइसोमोर्फिक हैं, इस अर्थ में कि वे गेज परिवर्तन से संबंधित हो सकते हैं और इसलिए डॉल्बौल्ट मॉड्यूलि स्पेस में ही बिंदु के अनुरूप हैं, तब संबंधित प्रतिनिधित्व भी आइसोमोर्फिक होंगे, और वही बिंदु देंगे बेटी मोडुली स्पेस. मॉड्यूलि स्पेस के संदर्भ में नॉनबेलियन हॉज प्रमेय को निम्नानुसार व्यक्त किया जा सकता है।

Nonabelian Hodge theorem (moduli space version) — There are homeomorphisms of moduli spaces which restrict to homeomorphisms .

सामान्यतः यह मॉड्यूलि स्पेस सिर्फ टोपोलॉजिकल स्पेस नहीं होंगे, किंतु इनमें कुछ अतिरिक्त संरचना भी होगी। उदाहरण के लिए, डॉल्बुल्ट मॉड्यूलि स्पेस और बेट्टी मॉड्यूलि स्पेस स्वाभाविक रूप से समष्टि बीजगणितीय किस्में हैं, और जहां यह चिकनी है, डी राम मोडुली स्पेस रीमैनियन मैनिफोल्ड है। सामान्य लोकस पर जहां यह मॉड्यूलि स्थान सुचारू हैं, मानचित्र भिन्नरूपता है, और तब से चिकने स्थान पर समष्टि अनेक गुना है, संगत रीमैनियन और समष्टि संरचना प्राप्त करता है, और इसलिए यह काहलर मैनिफोल्ड है।

इसी प्रकार, चिकनी लोकस पर, मानचित्र भिन्नरूपता है. चूँकि, यदि डॉल्बुल्ट और बेट्टी मोडुली स्पेस दोनों में प्राकृतिक समष्टि संरचनाएँ हैं, यह आइसोमॉर्फिक नहीं हैं। वास्तव में, यदि उन्हें निरूपित किया जाता है (संबंधित अभिन्न लगभग समष्टि संरचनाओं के लिए) तब . विशेष रूप से यदि कोई तीसरी लगभग समष्टि संरचना को परिभाषित करता है तब . यदि कोई इन तीन समष्टि संरचनाओं को रीमैनियन मीट्रिक से जोड़ता है , फिर चिकने स्थान पर मॉड्यूलि स्पेस हाइपरकेहलर मैनिफोल्ड बन जाता है।

हिचिन-कोबायाशी पत्राचार और एकात्मक प्रतिनिधित्व से संबंध

यदि कोई हिग्स फ़ील्ड समुच्चय करता है शून्य तक, तब हिग्स बंडल बस होलोमोर्फिक सदिश बंडल है। इससे समावेश मिलता है अर्ध-स्थिर होलोमोर्फिक सदिश बंडलों के मॉड्यूलि स्पेस का हिग्स बंडलों के मॉड्यूलि स्पेस में। हिचिन-कोबायाशी पत्राचार होलोमोर्फिक सदिश बंडलों और कॉम्पैक्ट काहलर मैनिफोल्ड्स पर हर्मिटियन यांग-मिल्स कनेक्शन के मध्य पत्राचार देता है, और इसलिए इसे नॉनबेलियन हॉज पत्राचार के विशेष स्थितियों के रूप में देखा जा सकता है।

जब अंतर्निहित सदिश बंडल टोपोलॉजिकल रूप से तुच्छ होता है, तब हर्मिटियन यांग-मिल्स कनेक्शन की होलोनॉमी मौलिक समूह के एकात्मक प्रतिनिधित्व को जन्म देगी, . एकात्मक अभ्यावेदन के अनुरूप बेट्टी मोडुली स्पेस का उपसमुच्चय, निरूपित , अर्ध-स्थिर सदिश बंडलों के मॉड्यूलि स्पेस पर आइसोमोर्फिक रूप से मानचित्र किया जाएगा .

उदाहरण

कॉम्पैक्ट रीमैन सतहों पर हिग्स बंडल को रैंक करें

विशेष मामला जहां अंतर्निहित सदिश बंडल की रैंक है, सरल पत्राचार को जन्म देता है।[10] सबसे पहले, प्रत्येक पंक्ति बंडल स्थिर है, क्योंकि कोई उचित गैर-शून्य उपशीर्ष नहीं हैं। इस स्थितियों में, हिग्स बंडल में जोड़ी होती है होलोमोर्फिक लाइन बंडल और होलोमोर्फिक -रूप, चूंकि लाइन बंडल की एंडोमोर्फिज्म तुच्छ है। विशेष रूप से, हिग्स फ़ील्ड को होलोमोर्फिक लाइन बंडल से भिन्न किया जाता है, इसलिए मॉड्यूलि स्पेस उत्पाद के रूप में विभाजित हो जाएगा, और एक-रूप स्वचालित रूप से शर्त को पूरा करता है . लाइन बंडल का गेज समूह क्रमविनिमेय है, और इसलिए हिग्स फ़ील्ड पर तुच्छ रूप से कार्य करता है संयुग्मन द्वारा. इस प्रकार मॉड्यूलि स्पेस को उत्पाद के रूप में पहचाना जा सकता है

जैकोबियन प्रकार के , सभी होलोमोर्फिक लाइन बंडलों को आइसोमोर्फिज्म और सदिश स्पेस तक वर्गीकृत करना होलोमोर्फिक का -रूप।

कॉम्पैक्ट रीमैन सतहों पर रैंक हिग्स बंडलों के स्थितियों में, किसी को मॉड्यूलि स्पेस का और विवरण प्राप्त होता है। कॉम्पैक्ट रीमैन सतह का मूल समूह, सतह समूह, द्वारा दिया गया है

कहाँ रीमैन सतह का जीनस (गणित) है। का प्रतिनिधित्व सामान्य रैखिक समूह में इसलिए द्वारा दिए गए हैं -गैर-शून्य सम्मिश्र संख्याओं के समूह:
तब से एबेलियन है, इस स्थान पर संयुग्मन तुच्छ है, और बेट्टी मोडुली स्थान है . दूसरी ओर, सेरे द्वंद्व द्वारा, होलोमोर्फिक का स्थान -फॉर्म शीफ़ कोहोमोलोजी के लिए दोहरा है . जैकोबियन प्रकार भागफल द्वारा दी गई एबेलियन प्रकार है
अतः सदिश समष्टि द्वारा स्पर्शरेखा समष्टि दी गई है , और कोटैंजेंट बंडल

अर्थात्, डॉल्बुल्ट मॉड्यूलि स्पेस, होलोमोर्फिक हिग्स लाइन बंडलों का मॉड्यूलि स्पेस, बस जैकोबियन का कोटैंजेंट बंडल है, होलोमोर्फिक लाइन बंडलों का मॉड्यूलि स्पेस। इसलिए नॉनबेलियन हॉज पत्राचार भिन्नता देता है

जो कि बायोहोलोमोर्फिज्म नहीं है। कोई यह जाँच सकता है कि इन दोनों स्थानों पर प्राकृतिक समष्टि संरचनाएँ भिन्न हैं, और संबंध को संतुष्ट करती हैं , जैकोबियन को कोटैंजेंट बंडल पर हाइपरकेहलर संरचना दे रहा है।

सामान्यीकरण

प्रिंसिपल की धारणा को परिभाषित करना संभव है -एक समष्टि रिडक्टिव बीजगणितीय समूह के लिए हिग्स बंडल , प्रमुख बंडलों की श्रेणी में हिग्स बंडलों का संस्करण। स्थिर प्रिंसिपल बंडल की धारणा है, और कोई स्थिर प्रिंसिपल को परिभाषित कर सकता है -हिग्स बंडल. नॉनबेलियन हॉज प्रमेय का संस्करण इन वस्तुओं के लिए संबंधित सिद्धांत रखता है -हिग्स मूल समूह के अभ्यावेदन को बंडल करता है .[7][8][11]

नॉनबेलियन हॉज सिद्धांत

हिग्स बंडलों और मौलिक समूह के प्रतिनिधित्व के मध्य पत्राचार को प्रकार के नॉनबेलियन हॉज सिद्धांत के रूप में परिभाषित किया जा सकता है, जिसका अर्थ है, काहलर मैनिफोल्ड की समष्टि प्रक्षेप्य किस्मों के लिए हॉज सिद्धांत हॉज सिद्धांत का सादृश्य, किन्तु गुणांक के साथ नॉनबेलियन समूह एबेलियन समूह के अतिरिक्त . यहां प्रदर्शनी कॉम्प्लेक्स मैनिफोल्ड्स पर वेल्स के डिफरेंशियल एनालिसिस के परिशिष्ट में ऑस्कर गार्सिया-प्राडा की चर्चा का अनुसरण करती है।[12]

हॉज अपघटन

एक कॉम्पैक्ट काहलर मैनिफोल्ड का हॉज अपघटन समष्टि डी गर्भ तीर्थयात्री के रूप में को उत्तम डोल्बौल्ट कोहोमोलॉजी में विघटित करता है:

डिग्री पर यह सीधा योग देता है

जहां हमने होलोमोर्फिक के शीफ के शीफ कोहोमोलॉजी के संदर्भ में डॉल्बौल्ट कोहोलॉजी को वाक्यांशित करने के लिए डॉल्बौल्ट प्रमेय को प्रयुक्त किया है -रूप और संरचना शीफ होलोमोर्फिक फ़ंक्शंस पर .

नॉनबेलियन कोहोमोलॉजी

शीफ कोहोमोलॉजी का निर्माण करते समय, गुणांक शीफ सदैव एबेलियन समूहों का समूह होता है। ऐसा इसलिए है क्योंकि एबेलियन समूह के लिए, प्रत्येक उपसमूह सामान्य उपसमूह है, इसलिए भागफल समूह है

शीफ कोबाउंड्रीज़ द्वारा शीफ ​​कोसाइकिलों को सदैव अच्छी तरह से परिभाषित किया जाता है। जब पूला एबेलियन नहीं है, यह भागफल आवश्यक रूप से अच्छी तरह से परिभाषित नहीं हैं, और इसलिए निम्नलिखित विशेष स्थितियों को छोड़कर, शीफ कोहोलॉजी सिद्धांत उपस्तिथ नहीं हैं:

  • : 0वां शीफ कोहोमोलॉजी समूह सदैव शीफ ​​के वैश्विक वर्गों का स्थान होता है , तब सदैव अच्छी तरह से परिभाषित होता है यदि नॉनबेलियन है.
  • : पहला शीफ ​​कोहोमोलॉजी समुच्चय नॉनबेलियन शीफ के लिए अच्छी तरह से परिभाषित है , किन्तु यह स्वयं भागफल समूह नहीं है।
  • : कुछ विशेष स्थितियों में, गेर्ब्स के सिद्धांत का उपयोग करके नॉनबेलियन शीव्स के लिए दूसरी डिग्री शीफ कोहोलॉजी का एनालॉग परिभाषित किया जा सकता है।

नॉनबेलियन कोहोमोलॉजी का प्रमुख उदाहरण तब होता है जब गुणांक शीफ होता है , होलोमोर्फिक का शीफ ​​समष्टि सामान्य रैखिक समूह में कार्य करता है। इस स्थितियों में यह सेच कोहोमोलॉजी से प्रसिद्ध तथ्य है कि कोहोमोलॉजी समुच्चय होता है

रैंक के होलोमोर्फिक सदिश बंडलों के समुच्चय के साथ एक-से-एक पत्राचार में है पर , समरूपता तक। ध्यान दें कि रैंक का विशिष्ट होलोमोर्फिक सदिश बंडल है , तुच्छ सदिश बंडल, इसलिए यह वास्तव में कोहोमोलॉजी नुकीला समुच्चय है। विशेष स्थितियों में सामान्य रैखिक समूह एबेलियन समूह है गुणन के संबंध में गैर-शून्य सम्मिश्र संख्याओं का। इस स्थितियों में किसी को समरूपता तक होलोमोर्फिक लाइन बंडलों का समूह प्राप्त होता है, जिसे अन्यथा पिकार्ड समूह के रूप में जाना जाता है।

नॉनबेलियन हॉज प्रमेय

पहला कोहोमोलोजी समूह मौलिक समूह से समरूपता के समूह के लिए समरूपी है को . इसे, उदाहरण के लिए, ह्यूरेविक्ज़ प्रमेय को प्रयुक्त करके समझा जा सकता है। इस प्रकार ऊपर उल्लिखित नियमित हॉज अपघटन को इस प्रकार परिभाषित किया जा सकता है

नॉनबेलियन हॉज पत्राचार नॉनबेलियन कोहोमोलॉजी के लिए हॉज प्रमेय के इस कथन का सादृश्य इस प्रकार देता है। हिग्स बंडल में जोड़ी होती है कहाँ होलोमोर्फिक सदिश बंडल है, और होलोमोर्फिक, सदिश-मूल्यवान विभेदक रूप|एंडोमोर्फिज्म-वैल्यू कॉम्प्लेक्स डिफरेंशियल फॉर्म|-प्रपत्र। होलोमोर्फिक सदिश बंडल के तत्व से पहचाना जा सकता है जैसा ऊपर उल्लिखित है। इस प्रकार हिग्स बंडल को प्रत्यक्ष उत्पाद का तत्व माना जा सकता है

नॉनबेलियन हॉज पत्राचार मॉड्यूलि स्पेस से समरूपता देता है -मौलिक समूह का प्रतिनिधित्व हिग्स बंडलों के मॉड्यूलि स्पेस के लिए, जिसे इसलिए आइसोमोर्फिज्म के रूप में लिखा जा सकता है

इसे उपरोक्त नियमित हॉज अपघटन के सादृश्य के रूप में देखा जा सकता है। अभ्यावेदन का मॉड्यूलि स्थान के प्रथम सहसंयोजी की भूमिका निभाता है नॉनबेलियन गुणांकों के साथ, कोहोमोलॉजी समुच्चय स्थान की भूमिका निभाता है , और समूह होलोमोर्फिक (1,0)-रूपों की भूमिका निभाता है .

यहाँ समरूपता लिखी गई है , किन्तु यह समुच्चयों की वास्तविक समरूपता नहीं है, क्योंकि हिग्स बंडलों का मॉड्यूलि स्पेस वस्तुतः उपरोक्त प्रत्यक्ष योग द्वारा नहीं दिया गया है, क्योंकि यह केवल सादृश्य है।

हॉज संरचना

मॉड्यूलि स्पेस अर्ध-स्थिर हिग्स बंडलों में गुणक समूह की प्राकृतिक क्रिया होती है , हिग्स फ़ील्ड को स्केल करके दिया गया: के लिए . एबेलियन कोहोमोलॉजी के लिए, जैसे कार्रवाई हॉज संरचना को जन्म देती है, जो कॉम्पैक्ट काहलर मैनिफोल्ड के कोहोलॉजी के हॉज अपघटन का सामान्यीकरण है। नॉनबेलियन हॉज प्रमेय को समझने का प्रणाली इसका उपयोग करना है मॉड्यूलि स्पेस पर कार्रवाई हॉज निस्पंदन प्राप्त करने के लिए। इससे अंतर्निहित मैनिफ़ोल्ड के नए टोपोलॉजिकल इनवेरिएंट उत्पन्न हो सकते हैं . उदाहरण के लिए, कोई इस बात पर प्रतिबंध प्राप्त कर सकता है कि कौन से समूह इस तरह से कॉम्पैक्ट काहलर मैनिफ़ोल्ड के मूलभूत समूहों के रूप में प्रकट हो सकते हैं।[7]

संदर्भ

  1. Narasimhan, M. S.; Seshadri, C. S. (1965). "एक कॉम्पैक्ट रीमैन सतह पर स्थिर और एकात्मक वेक्टर बंडल". Annals of Mathematics. 82 (3): 540–567. doi:10.2307/1970710. JSTOR 1970710. MR 0184252.
  2. Donaldson, Simon K. (1983), "A new proof of a theorem of Narasimhan and Seshadri", Journal of Differential Geometry, 18 (2): 269–277, doi:10.4310/jdg/1214437664, MR 0710055
  3. Donaldson, Simon K. (1985). "जटिल बीजगणितीय सतहों और स्थिर वेक्टर बंडल पर एंटी सेल्फ-डुअल यांग-मिल्स कनेक्शन". Proceedings of the London Mathematical Society. 3. 50 (1): 1–26. doi:10.1112/plms/s3-50.1.1. MR 0765366.
  4. Uhlenbeck, Karen; Yau, Shing-Tung (1986), "On the existence of Hermitian–Yang–Mills connections in stable vector bundles", Communications on Pure and Applied Mathematics, 39: S257–S293, doi:10.1002/cpa.3160390714, ISSN 0010-3640, MR 0861491
  5. 5.0 5.1 Hitchin, Nigel J. (1987). "रीमैन सतह पर आत्म-द्वैत समीकरण". Proceedings of the London Mathematical Society. 55 (1): 59–126. doi:10.1112/plms/s3-55.1.59. MR 0887284.
  6. 6.0 6.1 Donaldson, Simon K. (1987). "मुड़े हुए हार्मोनिक मानचित्र और स्व-द्वैत समीकरण". Proceedings of the London Mathematical Society. 55 (1): 127–131. doi:10.1112/plms/s3-55.1.127. MR 0887285.
  7. 7.0 7.1 7.2 7.3 7.4 Simpson, Carlos T. (1991), "Nonabelian Hodge theory", Proceedings of the International Congress of Mathematicians (Kyoto, 1990) (PDF), vol. 1, Tokyo: Math. Soc. Japan, pp. 747–756, MR 1159261
  8. 8.0 8.1 8.2 8.3 Simpson, Carlos T. (1992). "हिग्स बंडल और स्थानीय सिस्टम". Publications Mathématiques de l'IHÉS. 75: 5–95. doi:10.1007/BF02699491. MR 1179076. S2CID 56417181.
  9. 9.0 9.1 9.2 Corlette, Kevin (1988). "फ्लैट जी-विहित मेट्रिक्स के साथ बंडल". Journal of Differential Geometry. 28 (3): 361–382. doi:10.4310/jdg/1214442469. MR 0965220.
  10. Goldman, William M.; Xia, Eugene Z. (2008). "रैंक एक हिग्स बंडल और रीमैन सतहों के मौलिक समूहों का प्रतिनिधित्व". Memoirs of the American Mathematical Society (in English). 193 (904): viii+69 pp. arXiv:math/0402429. doi:10.1090/memo/0904. ISSN 0065-9266. MR 2400111. S2CID 2865489.
  11. Anchouche, Boudjemaa; Biswas, Indranil (2001). "Einstein–Hermitian connections on polystable principal bundles over a compact Kähler manifold" (PDF). American Journal of Mathematics. 123 (2): 207–228. doi:10.1353/ajm.2001.0007. MR 1828221. S2CID 122182133.
  12. Wells, Raymond O., Jr. (1980). जटिल मैनिफोल्ड्स पर विभेदक विश्लेषण. Graduate Texts in Mathematics. Vol. 65 (2nd ed.). New York-Berlin: Springer-Verlag. ISBN 0-387-90419-0. MR 0608414.{{cite book}}: CS1 maint: multiple names: authors list (link)