अम्ब्रल कैलकुलस

From Vigyanwiki
Revision as of 02:24, 9 July 2023 by alpha>Indicwiki (Created page with "{{Use American English|date = March 2019}} {{Short description|Historical term in mathematics}} 1970 के दशक से पहले गणित में, अम्ब...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

1970 के दशक से पहले गणित में, अम्ब्रल कैलकुलस शब्द का तात्पर्य प्रतीत होता है कि असंबद्ध बहुपद समीकरणों और उन्हें साबित करने के लिए उपयोग की जाने वाली कुछ छायादार तकनीकों के बीच आश्चर्यजनक समानता है। इन तकनीकों को जॉन ब्लिसार्ड द्वारा पेश किया गया था और कभी-कभी इन्हें ब्लिसार्ड की प्रतीकात्मक विधि भी कहा जाता है।[1] इनका श्रेय अक्सर एडौर्ड लुकास (या जेम्स जोसेफ सिल्वेस्टर) को दिया जाता है, जिन्होंने इस तकनीक का व्यापक रूप से उपयोग किया था।[2]


संक्षिप्त इतिहास

1930 और 1940 के दशक में, एरिक टेम्पल बेल ने अम्ब्रल कैलकुलस को कठोर स्तर पर स्थापित करने का प्रयास किया।

1970 के दशक में, स्टीवन रोमन, जियान-कार्लो रोटा और अन्य ने बहुपदों के स्थानों पर रैखिक कार्यात्मकताओं के माध्यम से अम्ब्रल कैलकुलस विकसित किया। वर्तमान में, अम्ब्रल कैलकुलस शेफ़र अनुक्रमों के अध्ययन को संदर्भित करता है, जिसमें द्विपद प्रकार के बहुपद अनुक्रम और एपेल अनुक्रम शामिल हैं, लेकिन इसमें परिमित अंतरों के कलन की व्यवस्थित पत्राचार तकनीक शामिल हो सकती है।

19वीं सदी का अम्ब्रल कैलकुलस

यह विधि एक सांकेतिक प्रक्रिया है जिसका उपयोग सूचकांकों को घातांक मानकर संख्याओं के अनुक्रमित अनुक्रमों से युक्त पहचान प्राप्त करने के लिए किया जाता है। शाब्दिक अर्थ में, यह बेतुका है, और फिर भी यह सफल है: अम्ब्रल कैलकुलस के माध्यम से प्राप्त पहचान को अधिक जटिल तरीकों से भी उचित रूप से प्राप्त किया जा सकता है जिन्हें तार्किक कठिनाई के बिना शाब्दिक रूप से लिया जा सकता है।

एक उदाहरण में बर्नौली बहुपद शामिल है। उदाहरण के लिए, सामान्य द्विपद विस्तार (जिसमें एक द्विपद गुणांक होता है) पर विचार करें:

और बर्नौली बहुपद पर उल्लेखनीय रूप से समान दिखने वाला संबंध:

सामान्य व्युत्पन्न की भी तुलना करें

बर्नौली बहुपद पर एक बहुत ही समान दिखने वाले संबंध के लिए:

ये समानताएं किसी को छत्र प्रमाण बनाने की अनुमति देती हैं, जो सतह पर, सही नहीं हो सकते हैं, लेकिन फिर भी काम करते प्रतीत होते हैं। इस प्रकार, उदाहरण के लिए, यह दिखावा करके कि सबस्क्रिप्ट n − k एक घातांक है:

और फिर अंतर करने पर वांछित परिणाम मिलता है:

उपरोक्त में, चर b एक छाया (छाया के लिए लैटिन) है।

फ़ौल्हाबर का सूत्र भी देखें।

अम्ब्रल टेलर श्रृंखला

अंतर कलन में, किसी फ़ंक्शन की टेलर श्रृंखला शब्दों का एक अनंत योग है जो एक ही बिंदु पर फ़ंक्शन के व्युत्पन्न के रूप में व्यक्त की जाती है। अर्थात्, एक वास्तविक-मूल्यवान फ़ंक्शन या जटिल-मूल्यवान फ़ंक्शन f (x) जो कि अनंत रूप से भिन्नात्मक फ़ंक्शन है इस प्रकार लिखा जा सकता है:


परिमित भिन्नताओं के सिद्धांत में भी समान संबंध देखे गए। टेलर श्रृंखला का छत्र संस्करण एक समान अभिव्यक्ति द्वारा दिया गया है जिसमें k-वें आगे के अंतर शामिल हैं एक बहुपद फलन f का,

कहाँ

यहां गिरते अनुक्रमिक उत्पाद के लिए पोचहैमर प्रतीक का उपयोग किया गया है। इसी तरह का संबंध पिछड़े मतभेदों और बढ़ते गुटबाजी के लिए भी है।

इस श्रृंखला को परिमित अंतर#न्यूटन_श्रृंखला या 'न्यूटन का अग्र अंतर विस्तार' के नाम से भी जाना जाता है। टेलर के विस्तार की सादृश्यता का उपयोग परिमित अंतरों की गणना में किया जाता है।

बेल और रिओर्डन

1930 और 1940 के दशक में, एरिक टेम्पल बेल ने इस प्रकार के तर्क को तार्किक रूप से कठोर बनाने का असफल प्रयास किया। साहचर्य जॉन रिओर्डन (गणितज्ञ) ने 1960 के दशक में प्रकाशित अपनी पुस्तक कॉम्बिनेटरी आइडेंटिटीज़ में इस प्रकार की तकनीकों का बड़े पैमाने पर उपयोग किया।

आधुनिक अम्ब्रल कैलकुलस

एक अन्य कॉम्बिनेटरियलिस्ट, जियान-कार्लो रोटा ने बताया कि यदि कोई z में बहुपदों पर रैखिक कार्यात्मक L पर विचार करता है तो रहस्य गायब हो जाता है।

फिर, बर्नौली बहुपद की परिभाषा और एल की परिभाषा और रैखिकता का उपयोग करके, कोई लिख सकता है

यह किसी को घटनाओं को प्रतिस्थापित करने में सक्षम बनाता है द्वारा , अर्थात्, n को एक सबस्क्रिप्ट से सुपरस्क्रिप्ट (अम्ब्रल कैलकुलस का मुख्य संचालन) में ले जाएँ। उदाहरण के लिए, अब हम यह सिद्ध कर सकते हैं:

रोटा ने बाद में कहा कि इस विषय में अक्सर होने वाले तीन तुल्यता संबंधों के बीच अंतर करने में विफलता के कारण बहुत भ्रम हुआ, जिनमें से सभी को = द्वारा दर्शाया गया था। 1964 में प्रकाशित एक पेपर में, रोटा ने बेल संख्याओं से संतुष्ट प्रत्यावर्तन फॉर्मूला स्थापित करने के लिए अम्ब्रल तरीकों का इस्तेमाल किया, जो परिमित सेटों के एक सेट के विभाजन की गणना करता है।

नीचे दिए गए रोमन और रोटा के पेपर में, अम्ब्रल कैलकुलस को अम्ब्रल बीजगणित के अध्ययन के रूप में वर्णित किया गया है, जिसे एक चर x में बहुपदों के सदिश स्थल पर रैखिक कार्यों के क्षेत्र पर बीजगणित के रूप में परिभाषित किया गया है। उत्पाद एल1L2 द्वारा परिभाषित रैखिक कार्यात्मकताओं की

जब बहुपद अनुक्रम संख्याओं के अनुक्रम को y की छवियों के रूप में प्रतिस्थापित करते हैंnरेखीय मानचित्रण एल के तहत, तब अम्ब्रल विधि को रोटा के विशेष बहुपद के सामान्य सिद्धांत का एक अनिवार्य घटक माना जाता है, और वह सिद्धांत शब्द की कुछ और आधुनिक परिभाषाओं के अनुसार 'अम्ब्रल कैलकुलस' है।[3] उस सिद्धांत का एक छोटा सा नमूना द्विपद प्रकार पर लेख में पाया जा सकता है। दूसरा शेफ़र अनुक्रम शीर्षक वाला लेख है।

रोटा ने बाद में संचयी के विभिन्न संयोजन गुणों का अध्ययन करने के लिए शेन के साथ अपने पेपर में बड़े पैमाने पर अम्ब्रल कैलकुलस लागू किया।[4]


यह भी देखें

टिप्पणियाँ

  1. *Blissard, John (1861). "Theory of generic equations". The Quarterly Journal of Pure and Applied Mathematics. 4: 279–305.
  2. E. T. Bell, "The History of Blissard's Symbolic Method, with a Sketch of its Inventor's Life", The American Mathematical Monthly 45:7 (1938), pp. 414–421.
  3. Rota, G. C.; Kahaner, D.; Odlyzko, A. (1973). "संयोजक सिद्धांत की नींव पर. आठवीं. परिमित संचालिका कलन". Journal of Mathematical Analysis and Applications. 42 (3): 684. doi:10.1016/0022-247X(73)90172-8.
  4. G.-C. Rota and J. Shen, "On the Combinatorics of Cumulants", Journal of Combinatorial Theory, Series A, 91:283–304, 2000.


संदर्भ


बाहरी संबंध