बानाच बीजगणित

From Vigyanwiki
Revision as of 10:57, 21 July 2023 by alpha>Ummai hani

गणित में, विशेष रूप से कार्यात्मक विश्लेषण में, स्टीफन बानाच के नाम पर एक बानाच बीजगणित वास्तविक संख्या या जटिल संख्याओं (या एक गैर-आर्किमिडीयन पूर्ण मानक क्षेत्र पर) पर एक सहयोगी बीजगणित है जो एक ही समय में एक बानाच स्थान भी है, अर्थात, एक मानक स्थान जो मानक से प्रेरित मीट्रिक में पूर्ण मीट्रिक स्थान है। मानक को पूरा करना आवश्यक है

यह सुनिश्चित करता है कि गुणन ऑपरेशन निरंतर कार्य (टोपोलॉजी) है।

एक बानाच बीजगणित को इकाईक कहा जाता है यदि इसमें गुणन के लिए एक पहचान तत्व होता है जिसका मानदंड है, और यदि इसका गुणनक्रमविनिमेय है तो इसे क्रमविनिमेय कहा जाता है। किसी भी बानाच बीजगणित A (तथापि इसमें कोई पहचान तत्व हो या नहीं) को एकल बानाच बीजगणित में आइसोमेट्री रूप से एम्बेड किया जा सकता है जिससे का एक बंद सेट आदर्श (बीजगणित) बनाया जा सके। अधिकांश कोई यह मान लेता है कि विचाराधीन बीजगणित एकात्मक है: क्योंकि पर विचार करके और फिर परिणाम को मूल बीजगणित में लागू करके अधिकांश सिद्धांत विकसित कर सकता है। चूँकि, प्रत्येक समय ऐसा नहीं होता है। उदाहरण के लिए, कोई भी बिना पहचान के बानाच बीजगणित में सभी त्रिकोणमितीय कार्यों को परिभाषित नहीं कर सकता है।

वास्तविक बानाच बीजगणित का सिद्धांत जटिल बानाच बीजगणित के सिद्धांत से बहुत भिन्न हो सकता है। उदाहरण के लिए, असतहीय जटिल बानाच बीजगणित के एक तत्व का स्पेक्ट्रम (कार्यात्मक विश्लेषण) कभी भी खाली नहीं हो सकता है, जबकि वास्तविक बानाच बीजगणित में यह कुछ तत्वों के लिए खाली हो सकता है।

बानाच बीजगणित को -एडिक संख्याओं के क्षेत्रों में भी परिभाषित किया जा सकता है। यह -एडिक विश्लेषण का भाग है।

उदाहरण

बानाच बीजगणित का प्रोटोटाइप उदाहरण है , स्थानीय रूप स्थानीय रूप से सघन (हॉसडॉर्फ़ स्थान) स्थान पर (जटिल-मूल्यवान) निरंतर कार्यों का स्थान जो अनंत पर गायब हो जाता है। इकाई है यदि और केवल यदि सघनता है. जटिल संयुग्मन समावेशन (गणित) है, वास्तव में C*-बीजगणित है। अधिक सामान्यतः, प्रत्येक C*-बीजगणित परिभाषा के अनुसार बानाच बीजगणित है।

  • वास्तविक (या सम्मिश्र) संख्याओं का समुच्चय बैनाच बीजगणित है जिसका मान निरपेक्ष मान द्वारा दिया जाता है।
  • सभी वास्तविक या जटिल का सेट -द्वारा- मैट्रिक्स (गणित) इकाई बीजगणित बानाच बीजगणित बन जाता है यदि हम इसे उप-गुणक मैट्रिक्स मानदंड से लैस करते हैं।
  • बानाच स्थान लें (या ) मानक के साथ और गुणन को घटकवार परिभाषित करें:
  • चतुर्भुज 4-आयामी वास्तविक बानाच बीजगणित बनाते हैं, जिसमें मानदंड चतुर्भुजों के निरपेक्ष मान द्वारा दिए जाते हैं।
  • किसी सेट पर परिभाषित सभी सीमित वास्तविक या जटिल-मूल्यवान कार्यों का बीजगणित (बिंदुवार गुणन और सर्वोच्च मानदंड के साथ) यूनिटल बानाच बीजगणित है।
  • कुछ स्थानीय रूप स्थानीय रूप से सघन स्थान पर सभी बंधे हुए निरंतर फ़ंक्शन (टोपोलॉजी) के वास्तविक या जटिल-मूल्य वाले फ़ंक्शन का बीजगणित (फिर से बिंदुवार संचालन और सर्वोच्च मानदंड के साथ) बानाच बीजगणित है।
  • बैनच स्पेस पर सभी निरंतर फ़ंक्शन (टोपोलॉजी) रैखिक परिवर्तन ऑपरेटरों का बीजगणित (गुणन के रूप में कार्यात्मक संरचना और मानदंड के रूप में ऑपरेटर मानदंड के साथ) यूनिटल बानाच बीजगणित है। सभी कॉम्पैक्ट ऑपरेटरों का सेट चालू है बानाच बीजगणित और बंद आदर्श है। यदि यह बिना पहचान के है [1]
  • अगर स्थानीय रूप से कॉम्पैक्ट हॉसडॉर्फ अंतरिक्ष टोपोलॉजिकल समूह है और इसका हार माप है, फिर बानाच स्थान के सभी -अभिन्न कार्य चालू कनवल्शन के तहत बानाच बीजगणित बन जाता है के लिए [2]
  • समान बीजगणित: बानाच बीजगणित जो जटिल बीजगणित का उपबीजगणित है सर्वोच्च मानदंड के साथ और जिसमें स्थिरांक शामिल हैं और बिंदुओं को अलग करता है (जो कॉम्पैक्ट हॉसडॉर्फ स्थान होना चाहिए)।
  • समान बीजगणित: समान बीजगणित जिसके सभी वर्णों का मूल्यांकन बिंदुओं पर किया जाता है
  • सी*-बीजगणित: बानाच बीजगणित जो कुछ हिल्बर्ट स्थान पर परिबद्ध संचालकों के बीजगणित का बंद *-उपबीजगणित है।
  • बीजगणित को मापें: बैनाच बीजगणित जिसमें कुछ स्थानीय रूप से कॉम्पैक्ट समूह पर सभी रेडॉन माप शामिल होते हैं, जहां दो उपायों का उत्पाद कन्वोल्यूशन # माप द्वारा दिया जाता है।[2]* चतुर्भुज का बीजगणित वास्तविक बानाच बीजगणित है, लेकिन यह जटिल बीजगणित नहीं है (और इसलिए जटिल बानाच बीजगणित नहीं है) इसका सरल कारण यह है कि चतुर्भुज का केंद्र वास्तविक संख्याएँ हैं, जिनमें जटिल संख्याओं की प्रतिलिपि नहीं हो सकती है।
  • एफ़िनॉइड बीजगणित गैर-आर्किमिडीयन क्षेत्र पर निश्चित प्रकार का बानाच बीजगणित है। एफ़िनॉइड बीजगणित कठोर विश्लेषणात्मक स्थान में बुनियादी निर्माण खंड हैं।

गुण

पावर श्रृंखला के माध्यम से परिभाषित कार्यों की कई सूची किसी भी यूनिटल बानाच बीजगणित में परिभाषित की जा सकती है; उदाहरणों में घातांकीय फलन और त्रिकोणमितीय फलन, और सामान्यतः कोई भी संपूर्ण फलन शामिल हैं। (विशेष रूप से, घातीय मानचित्र का उपयोग अमूर्त सूचकांक समूहों को परिभाषित करने के लिए किया जा सकता है।) ज्यामितीय श्रृंखला का सूत्र सामान्य इकाई बानाच बीजगणित में मान्य रहता है। द्विपद प्रमेय बानाच बीजगणित के दो आने वाले तत्वों के लिए भी मान्य है।

किसी भी यूनिटल बानाच बीजगणित में व्युत्क्रमणीय तत्वों का सेट खुला सेट है, और इस सेट पर व्युत्क्रम संचालन निरंतर होता है (और इसलिए होमोमोर्फिज्म है), जिससे यह गुणन के तहत टोपोलॉजिकल समूह बना सके।[3] यदि बानाच बीजगणित में इकाई है तब कम्यूटेटर (रिंग सिद्धांत) नहीं हो सकता; वह है, किसी के लिए यह है क्योंकि और संभवतः को छोड़कर समान स्पेक्ट्रम (कार्यात्मक विश्लेषण) है ऊपर दिए गए उदाहरणों में दिए गए कार्यों के विभिन्न बीजगणित में वास्तविक जैसे बीजगणित के मानक उदाहरणों से बहुत अलग गुण हैं। उदाहरण के लिए:

  • प्रत्येक वास्तविक बानाच बीजगणित जो कि विभाजन बीजगणित है, वास्तविक, संकुल, या चतुर्भुज के समरूपी है। इसलिए, एकमात्र जटिल बानाच बीजगणित जो विभाजन बीजगणित है, वह कॉम्प्लेक्स है। (इसे गेलफैंड-मज़ूर प्रमेय के रूप में जाना जाता है।)
  • प्रत्येक इकाई वास्तविक बानाच बीजगणित जिसमें कोई शून्य विभाजक नहीं है, और जिसमें प्रत्येक प्रमुख आदर्श बंद सेट है, वास्तविक, कॉम्प्लेक्स या चतुर्भुज के लिए आइसोमोर्फिक है।[4]
  • प्रत्येक क्रमविनिमेय वास्तविक इकाई नोथेरियन अंगूठी बानाच बीजगणित जिसमें कोई शून्य विभाजक नहीं है, वास्तविक या जटिल संख्याओं के लिए समरूपी है।
  • प्रत्येक क्रमविनिमेय वास्तविक इकाई नोथेरियन बानाच बीजगणित (संभवतः शून्य भाजक वाला) परिमित-आयामी है।
  • बानाच बीजगणित में स्थायी रूप से एकवचन तत्व शून्य के टोपोलॉजिकल विभाजक हैं, अर्थात, विस्तार पर विचार करते हुए बानाच बीजगणित का कुछ तत्व जो दिए गए बीजगणित में एकवचन हैं बानाच बीजगणित विस्तार में गुणात्मक व्युत्क्रम तत्व है शून्य इंच के टोपोलॉजिकल विभाजक किसी भी बानाच एक्सटेंशन में स्थायी रूप से एकवचन होते हैं का


वर्णक्रमीय सिद्धांत

जटिल क्षेत्र पर यूनिटल बानाच बीजगणित वर्णक्रमीय सिद्धांत विकसित करने के लिए सामान्य सेटिंग प्रदान करते हैं। किसी तत्व का स्पेक्ट्रम द्वारा चिह्नित , उन सभी जटिल अदिश (गणित) से मिलकर बना है ऐसा है कि में उलटा नहीं है किसी भी तत्व का स्पेक्ट्रम में बंद डिस्क का बंद उपसमुच्चय है त्रिज्या के साथ और केंद्र और इस प्रकार सघन स्थान है। इसके अलावा, स्पेक्ट्रम तत्व का गैर-रिक्त है और वर्णक्रमीय त्रिज्या सूत्र को संतुष्ट करता है:

दिया गया होलोमोर्फिक कार्यात्मक कैलकुलस परिभाषित करने की अनुमति देता है किसी भी समारोह के लिए के पड़ोस में होलोमोर्फिक फ़ंक्शन इसके अलावा, वर्णक्रमीय मानचित्रण प्रमेय मानता है:[5]
जब बानाच बीजगणित बीजगणित है जटिल बानाच स्थान पर बंधे हुए रैखिक ऑपरेटरों का (उदाहरण के लिए, वर्ग मैट्रिक्स का बीजगणित), स्पेक्ट्रम की धारणा ऑपरेटर सिद्धांत में सामान्य के साथ मेल खाता है। के लिए (कॉम्पैक्ट हॉसडॉर्फ स्पेस के साथ ), कोई यह देखता है:
सामान्य तत्व का आदर्श C*-बीजगणित का वर्णक्रमीय त्रिज्या से मेल खाता है। यह सामान्य ऑपरेटरों के लिए समान तथ्य का सामान्यीकरण करता है।

होने देना जटिल इकाई बानाच बीजगणित बनें जिसमें प्रत्येक गैर-शून्य तत्व हो व्युत्क्रमणीय (विभाजन बीजगणित) है। हरएक के लिए वहाँ है ऐसा है कि उलटा नहीं है (क्योंकि का स्पेक्ट्रम खाली नहीं है) इसलिए यह बीजगणित स्वाभाविक रूप से समरूपी है (गेलफैंड-मज़ूर प्रमेय का जटिल मामला)।

आदर्श और चरित्र

होने देना इकाई क्रमविनिमेय बानाच बीजगणित बनें तब से फिर इकाई के साथ क्रमविनिमेय वलय है, जिसका प्रत्येक गैर-उलटा तत्व है के कुछ अधिकतम आदर्श से संबंधित है अधिकतम आदर्श के बाद से में बन्द है, बानाच बीजगणित है जो क्षेत्र है, और यह गेलफैंड-मज़ूर प्रमेय से निम्नानुसार है कि सभी अधिकतम आदर्शों के सेट के बीच आपत्ति है और सेट से सभी गैर-शून्य समरूपताएँ को सेट का संरचना स्थान या वर्ण स्थान कहा जाता है और इसके सदस्यों के पात्र।

चरित्र पर रैखिक कार्यात्मक है वह ही समय में गुणक है, और संतुष्ट करता है प्रत्येक वर्ण स्वचालित रूप से निरंतर है को चूँकि किसी चरित्र का कर्नेल अधिकतम आदर्श है, जो बंद है। इसके अलावा, चरित्र का मानदंड (अर्थात, ऑपरेटर मानदंड) है। बिंदुवार अभिसरण की टोपोलॉजी से सुसज्जित (अर्थात, कमजोर-* टोपोलॉजी से प्रेरित टोपोलॉजी ), चरित्र स्थान, हॉसडॉर्फ़ कॉम्पैक्ट स्पेस है।

किसी के लिए

कहाँ गेलफैंड का प्रतिनिधित्व है इस प्रकार परिभाषित: से सतत कार्य है को द्वारा दिए गए का स्पेक्ट्रम उपरोक्त सूत्र में, बीजगणित के तत्व के रूप में स्पेक्ट्रम है कॉम्पैक्ट स्पेस पर जटिल निरंतर कार्यों का स्पष्ट रूप से,
बीजगणित के रूप में, इकाई क्रमविनिमेय बानाच बीजगणित अर्धसरल बीजगणित है (अर्थात्, इसका जैकबसन कट्टरपंथी शून्य है) यदि और केवल यदि इसके गेलफैंड प्रतिनिधित्व में सतहीय कर्नेल है। ऐसे बीजगणित का महत्वपूर्ण उदाहरण क्रमविनिमेय C*-बीजगणित है। दरअसल, जब क्रमविनिमेय इकाई C*-बीजगणित है, गेलफैंड प्रतिनिधित्व तब सममितीय *-समरूपता है और [lower-alpha 1]

बनाच *-बीजगणित

बानाच *-बीजगणित मानचित्र के साथ सम्मिश्र संख्याओं के क्षेत्र पर बानाच बीजगणित है जिसमें निम्नलिखित गुण हैं:

  1. सभी के लिए (इसलिए नक्शा इनवोलुशन (गणित) है)।
  2. सभी के लिए
  3. हरएक के लिए और हर यहाँ, के जटिल संयुग्म को दर्शाता है
  4. सभी के लिए

दूसरे शब्दों में, बानाच *-बीजगणित बानाच बीजगणित है वह भी *-बीजगणित है।

अधिकांश प्राकृतिक उदाहरणों में, किसी का यह भी मानना ​​है कि इन्वोल्यूशन आइसोमेट्री है, अर्थात,

कुछ लेखक इस सममितीय गुण को बानाच *-बीजगणित की परिभाषा में शामिल करते हैं।

बानाच *-बीजगणित संतोषजनक C*-बीजगणित है.

यह भी देखें

टिप्पणियाँ

  1. Proof: Since every element of a commutative C*-algebra is normal, the Gelfand representation is isometric; in particular, it is injective and its image is closed. But the image of the Gelfand representation is dense by the Stone–Weierstrass theorem.


संदर्भ

  1. Conway 1990, Example VII.1.8.
  2. 2.0 2.1 Conway 1990, Example VII.1.9.
  3. Conway 1990, Theorem VII.2.2.
  4. García, Miguel Cabrera; Palacios, Angel Rodríguez (1995). "गेलफ़ैंड-मज़ूर-कप्लांस्की प्रमेय का एक नया सरल प्रमाण". Proceedings of the American Mathematical Society. 123 (9): 2663–2666. doi:10.2307/2160559. ISSN 0002-9939. JSTOR 2160559.
  5. Takesaki 1979, Proposition 2.8.