गैर-मापने योग्य समुच्चय

From Vigyanwiki
Revision as of 13:30, 25 May 2023 by alpha>Indicwiki (Created page with "{{Short description|Set which cannot be assigned a meaningful "volume"}} {{More citations needed|date=August 2009}} गणित में, एक गैर-मापने...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, एक गैर-मापने योग्य सेट एक सेट (गणित) है जिसे एक अर्थपूर्ण मात्रा निर्दिष्ट नहीं किया जा सकता है। ऐसे समुच्चयों के गणितीय अस्तित्व को औपचारिक समुच्चय सिद्धांत में लंबाई, क्षेत्रफल और आयतन की धारणाओं के बारे में जानकारी प्रदान करने के लिए लगाया गया है। ज़र्मेलो-फ्रेंकेल सेट सिद्धांत में, पसंद का स्वयंसिद्ध गैर-मापने योग्य उपसमुच्चय पर जोर देता है अस्तित्व।

एक गैर-मापने योग्य सेट की धारणा इसकी शुरूआत के बाद से बड़े विवाद का स्रोत रही है। ऐतिहासिक रूप से, इसने एमिल बोरेल और Kolmogorov को सेट पर संभाव्यता सिद्धांत तैयार करने के लिए प्रेरित किया जो औसत दर्जे का होने के लिए विवश हैं। लाइन पर मापने योग्य सेट पुनरावृत्त गणनीय संघ और अंतराल के चौराहे (बोरेल सेट कहा जाता है) प्लस-माइनस शून्य सेट हैं। मानक गणित में उत्पन्न होने वाले सेट की हर बोधगम्य परिभाषा को शामिल करने के लिए ये सेट काफी समृद्ध हैं, लेकिन उन्हें यह साबित करने के लिए बहुत अधिक औपचारिकता की आवश्यकता होती है कि सेट मापने योग्य हैं।

1970 में, रॉबर्ट एम. सोलोवे ने कोकिला मॉडल का निर्माण किया, जो दर्शाता है कि यह बेशुमार पसंद के बिना मानक सेट सिद्धांत के अनुरूप है, कि वास्तविक के सभी उपसमुच्चय मापने योग्य हैं। हालांकि, सोलोवे का परिणाम एक दुर्गम कार्डिनल के अस्तित्व पर निर्भर करता है, जिसका अस्तित्व और स्थिरता मानक सेट सिद्धांत के भीतर सिद्ध नहीं की जा सकती।

ऐतिहासिक निर्माण

पहला संकेत कि एक मनमाना सेट के लिए लंबाई परिभाषित करने में समस्या हो सकती है, विटाली सेट | विटाली के प्रमेय से आया है।[1] एक और हालिया संयोजी निर्माण जो रॉबिन थॉमस के निर्माण के समान है, गैर-लेबेस्ग औसत दर्जे का सेट कुछ अतिरिक्त गुणों के साथ अमेरिकन मैथमेटिकल मंथली में दिखाई दिया। [2] किसी को उम्मीद होगी कि दो अलग-अलग सेटों के मिलन का माप दो सेटों के माप का योग होगा। इस प्राकृतिक संपत्ति के साथ एक माप को परिमित रूप से योज्य कहा जाता है। जबकि क्षेत्र के अधिकांश अंतर्ज्ञान के लिए एक सूक्ष्म योगात्मक माप पर्याप्त है, और रीमैन एकीकरण के अनुरूप है, इसे संभाव्यता के लिए अपर्याप्त माना जाता है, क्योंकि घटनाओं के अनुक्रमों के पारंपरिक आधुनिक उपचार या यादृच्छिक चर गणनीय योगात्मकता की मांग करते हैं।

इस संबंध में, तल रेखा के समान है; लेबेस्गु माप का विस्तार करने वाला एक सूक्ष्म योगात्मक उपाय है, जो सभी isometric ़ के तहत अपरिवर्तनीय है। उच्च आयामों के लिए तस्वीर खराब हो जाती है। हॉसडॉर्फ विरोधाभास और बानाच-टार्स्की विरोधाभास दिखाते हैं कि त्रिज्या 1 की त्रि-आयामी गेंद (गणित) को 5 भागों में विभाजित किया जा सकता है जिसे त्रिज्या 1 की दो गेंदों को बनाने के लिए फिर से इकट्ठा किया जा सकता है।

उदाहरण

विचार करना यूनिट सर्कल में सभी बिंदुओं का सेट, और ग्रुप एक्शन (गणित)। एक समूह द्वारा सभी परिमेय घुमावों से मिलकर बनता है (कोणों द्वारा घूर्णन जो परिमेय संख्या के गुणक हैं ). यहाँ गणनीय है (अधिक विशेष रूप से, के लिए आइसोमोर्फिक है ) जबकि बेशुमार है। इस तरह के तहत बेशुमार रूप से कई ऑर्बिट (समूह सिद्धांत) में टूट जाता है (कक्षा गणनीय समुच्चय है ). पसंद के स्वयंसिद्ध का उपयोग करते हुए, हम एक बेशुमार उपसमुच्चय प्राप्त करते हुए, प्रत्येक कक्षा से एक बिंदु चुन सकते हैं उस संपत्ति के साथ जो सभी तर्कसंगत अनुवाद करती है (फॉर्म की अनुवादित प्रतियां कुछ तर्कसंगत के लिए )[3] का द्वारा जोड़ो में अलग कर रहे हैं (अर्थात्, से अलग करना और एक दूसरे से)। उन लोगों का सेट एक सेट के विभाजन का अनुवाद करता है, सर्कल को अलग-अलग सेटों के एक गणनीय संग्रह में, जो सभी जोड़ीदार सर्वांगसम (तर्कसंगत घुमावों द्वारा) हैं। सेट पर किसी भी रोटेशन-इनवेरिएंट काउंटेबल योगात्मक प्रायिकता माप के लिए गैर-मापने योग्य नहीं होगा : अगर शून्य माप है, गणनीय योगात्मकता का अर्थ यह होगा कि पूरे वृत्त का माप शून्य है। अगर धनात्मक माप है, गणनीय योज्यता दर्शाती है कि वृत्त का माप अनंत है।

माप और प्रायिकता की संगत परिभाषाएं

बानाच-तर्स्की विरोधाभास से पता चलता है कि तीन आयामों में मात्रा को परिभाषित करने का कोई तरीका नहीं है, जब तक कि निम्नलिखित पांच रियायतों में से एक नहीं किया जाता है:

  1. घुमाए जाने पर सेट का आयतन बदल सकता है।
  2. दो अलग-अलग सेटों के मिलन का आयतन उनके आयतन के योग से भिन्न हो सकता है।
  3. कुछ सेटों को गैर-मापने योग्य टैग किया जा सकता है, और किसी को इसकी मात्रा के बारे में बात करने से पहले यह जांचना होगा कि कोई सेट औसत दर्जे का है या नहीं।
  4. ZFC के स्वयंसिद्ध (Zermelo-Fraenkel सेट सिद्धांत पसंद के स्वयंसिद्ध के साथ) को बदलना पड़ सकता है।
  5. की मात्रा है या .

मानक माप सिद्धांत तीसरा विकल्प लेता है। एक औसत दर्जे के समुच्चय के परिवार को परिभाषित करता है, जो बहुत समृद्ध है, और गणित की अधिकांश शाखाओं में स्पष्ट रूप से परिभाषित लगभग कोई भी समुच्चय इस परिवार में होगा। आमतौर पर यह साबित करना बहुत आसान होता है कि ज्यामितीय तल का एक विशिष्ट उपसमुच्चय मापने योग्य है। मौलिक धारणा यह है कि असम्बद्ध समुच्चय का एक अनगिनत अनंत अनुक्रम योग सूत्र को संतुष्ट करता है, एक संपत्ति जिसे सिग्मा योगात्मकता कहा जाता है|σ-संयोजकता।

1970 में, रॉबर्ट एम. सोलोवे ने प्रदर्शित किया कि लेबेस्ग उपाय के लिए एक गैर-मापने योग्य सेट का अस्तित्व ज़र्मेलो-फ्रेंकेल सेट सिद्धांत के ढांचे के भीतर एक अतिरिक्त स्वयंसिद्ध (जैसे कि पसंद का स्वयंसिद्ध) के अभाव में सिद्ध नहीं होता है। दिखा रहा है कि (एक दुर्गम कार्डिनल की स्थिरता को मानते हुए) ZF का एक मॉडल है, जिसे सोलोवे का मॉडल कहा जाता है, जिसमें गणनीय विकल्प होता है, हर सेट लेबेसेग औसत दर्जे का होता है और जिसमें पसंद का पूर्ण स्वयंसिद्ध विफल हो जाता है।

पसंद का स्वयंसिद्ध बिंदु-सेट टोपोलॉजी, टायकोनॉफ़ के प्रमेय के एक मौलिक परिणाम के बराबर है, और कार्यात्मक विश्लेषण के दो मौलिक परिणामों के संयोजन के लिए, बानाच-अलाग्लु प्रमेय और केरीन-मिलमैन प्रमेय। यह काफी हद तक अनंत समूहों के अध्ययन को भी प्रभावित करता है, साथ ही अंगूठी सिद्धांत और आदेश सिद्धांत (बूलियन प्रधान आदर्श प्रमेय देखें)। हालांकि, अधिकांश ज्यामितीय माप सिद्धांत, संभावित सिद्धांत, फूरियर श्रृंखला और फूरियर रूपांतरण के लिए निर्धारण और निर्भर पसंद के सिद्धांत एक साथ पर्याप्त हैं, जबकि वास्तविक रेखा लेबेसेग-मापने योग्य के सभी उपसमुच्चय बनाते हैं।

यह भी देखें

संदर्भ

टिप्पणियाँ

  1. Moore, Gregory H., Zermelo's Axiom of Choice, Springer-Verlag, 1982, pp. 100–101
  2. Sadhukhan, A. (December 2022). "A Combinatorial Proof of the Existence of Dense Subsets in without the "Steinhaus" like Property". Am. Math. Mon. (in English). 130 (2): 175. doi:10.1080/00029890.2022.2144665.
  3. Ábrego, Bernardo M.; Fernández-Merchant, Silvia; Llano, Bernardo (January 2010). "पॉइंट सेट में ट्रांसलेशन की अधिकतम संख्या पर". Discrete & Computational Geometry (in English). 43 (1): 1–20. doi:10.1007/s00454-008-9111-9. ISSN 0179-5376.


ग्रन्थसूची