विच्छेद आवृत्ति

From Vigyanwiki
Revision as of 09:23, 11 November 2022 by Admin (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
कम 3 डीबी विच्छेद आवृत्ति f1 और ऊपरी 3 डीबी विच्छेद आवृत्ति f2 के साथ एक बैंडपास फ़िल्टर का परिमाण स्थानांतरण कार्य।
बटरवर्थ फ़िल्टर आवृत्ति प्रतिक्रिया का एक बोड प्लॉट, कोने की फ़्रीक्वेंसी के साथ लेबल किया गया।

भौतिकी और विद्युत अभियन्त्रण (इलेक्ट्रिकल इंजीनियरिंग) में, एक विच्छेद आवृत्ति, कोने की आवृत्ति, या ब्रेक आवृत्ति एक प्रणाली की आवृत्ति प्रतिक्रिया में एक सीमा है जिस पर प्रणाली के माध्यम से बहने वाली ऊर्जा को गुजरने के बजाय कम (क्षीण या परावर्तित) करना प्रारम्भ हो जाता है।

विशिष्ट रूप से विद्युत प्रणाली जैसे फ़िल्टर और संचार चैनलों में, विच्छेद आवृत्ति एक निम्न आवृत्ति, उच्च आवृत्ति, बैंडपास, या बैंड-स्टॉप विशेषता में किनारे पर लागू होती है - एक आवृत्ति जो पारण बैंड और विराम बैंड के बीच की सीमा को दर्शाती है। इसे कभी-कभी फ़िल्टर प्रतिक्रिया में बिंदु के रूप में लिया जाता है जहां एक संक्रमण बैंड और पारण बैंड मिलते हैं, उदाहरण के लिए, जैसा कि अर्ध-शक्ति बिंदु द्वारा परिभाषित किया गया है (एक आवृत्ति जिसके लिए परिपथ का आउटपुट नाममात्र पारण बैंड मान का -3 डेसिबल है)l वैकल्पिक रूप से, एक विराम बैंड कोने की आवृत्ति को उस बिंदु के रूप में निर्दिष्ट किया जा सकता है जहां एक संक्रमण बैंड और एक विराम बैंड मिलते हैं एक आवृत्ति जिसके लिए क्षीणन आवश्यक विराम बैंड क्षीणन से बड़ा होता है, उदाहरण के लिए 30 डीबी या 100 डीबी हो सकता है।

तरंग पथक या एंटीना की स्थिति में, विच्छेद आवृत्तियां निचली और ऊपरी विच्छेद तरंगदैर्ध्य के अनुरूप होती हैं।

इलेक्ट्रानिक्स

इलेक्ट्रॉनिक्स में, विच्छेद आवृत्ति या कोने की आवृत्ति वह आवृत्ति है जो या तो ऊपर या नीचे होती है, जिससे परिपथ का विद्युत आउटपुट, जैसे कि लाइन, एम्पलीफायर, या इलेक्ट्रॉनिक फिल्टर पारण बैंड में विद्युत के दिए गए अनुपात में गिर जाता है। सामान्यता यह अनुपात पारण बैंड शक्ति का आधा होता है, जिसे 3 डीबी बिंदु भी कहा जाता है क्योंकि 3 डीबी की गिरावट लगभग आधी शक्ति के बराबर होती है। वोल्टेज अनुपात के रूप में यह पारण बैंड वोल्टेज के लगभग तक की गिरावट है।[1] 3 डीबी बिन्दु (dB point) के अलावा अन्य अनुपात भी प्रासंगिक हो सकते हैं, उदाहरण के लिए नीचे § चेबीशेव फ़िल्टर देखें। संक्रमण बैंड में विच्छेद आवृत्ति से दूर, आवृत्ति के लघुगणक के साथ क्षीणन (रोल-ऑफ) की वृद्धि की दर एक स्थिर के लिए स्पर्शोन्मुख है। प्रथम-क्रम नेटवर्क के लिए, रोल-ऑफ −20 dB प्रति दशक (−6 dB प्रति सप्तक) है।

एकल-ध्रुव स्थानांतरण प्रकार्य उदाहरण

सरलतम निम्न आवृत्ति फ़िल्टर के लिए स्थानांतरण कार्य

s = −1/α पर एक एकल ध्रुव है। j'ω समतल में इस फलन का परिमाण है।
विच्छेद पर,
इसलिए, कटऑफ आवृत्ति द्वारा दी गई है
जहाँ s, s- समतल चर है, ω कोणीय आवृत्ति है और j काल्पनिक इकाई है।

चेबीशेव फ़िल्टर

कभी-कभी अन्य अनुपात 3 डीबी बिंदु की तुलना में अधिक सुविधाजनक होते हैं। उदाहरण के लिए, चेबीशेव फिल्टर की स्थिति में विच्छेद आवृत्ति को आवृत्ति प्रतिक्रिया में अंतिम चरम के बाद के बिंदु के रूप में परिभाषित करना सामान्य है, जिस पर स्तर पारण बैंड तरंग के डिजाइन मान तक गिर गया है। फ़िल्टर के इस वर्ग में तरंग की मात्रा डिज़ाइनर द्वारा किसी भी वांछित मान पर निर्धारित की जा सकती है, इसलिए उपयोग किया गया अनुपात कोई भी मान हो सकता है।[2]

रेडियो संचार

रेडियो संचार में, आकाश तरंग संचार एक ऐसी तकनीक है जिसमें रेडियो तरंगें आकाश में एक कोण पर प्रसारित होती हैं और आयनमंडल में आवेशित कणों की परतों द्वारा पृथ्वी पर वापस परावर्तित होती हैं। इस संदर्भ में, विच्छेद आवृत्ति शब्द अधिकतम प्रयोग करने योग्य आवृत्ति को संदर्भित करता है, वह आवृत्ति जिसके ऊपर एक रेडियो तरंग परत से परावर्तन द्वारा दो निर्दिष्ट बिंदुओं के बीच संचरण के लिए आवश्यक घटना कोण पर आयनमंडल को प्रतिबिंबित करने में विफल रहती है।

तरंग पथक

विद्युत चुम्बकीय तरंग पथक की विच्छेद आवृत्ति सबसे कम आवृत्ति होती है, जिसके लिए एक बहुलक इसमें प्रचारित होगा। प्रकाशित तंतु में, विच्छेद तरंगदैर्ध्य पर विचार करना अधिक सामान्य है, अधिकतम तरंगदैर्ध्य जो प्रकाशित तंतु या तरंग पथक में प्रचारित होगा। विच्छेद आवृत्ति विद्युत चुम्बकीय तरंगों के लिए हेल्महोल्ट्ज़ समीकरण के विशिष्ट समीकरण के साथ पाई जाती है, जो विद्युत चुम्बकीय तरंग समीकरण से शून्य के बराबर अनुदैर्ध्य तरंग संख्या निर्धारित करके और आवृत्ति के लिए हल करके प्राप्त की जाती है। इस प्रकार, विच्छेद आवृत्ति से कम कोई भी उत्तेजक आवृत्ति प्रचार के बजाय क्षीण हो जाएगी। निम्नलिखित व्युत्पत्ति दोषरहित दीवारों को मानती है। c का मान, प्रकाश की गति, तरंग पथक में जो भी पदार्थ भरता है उसमें प्रकाश का समूह वेग माना जाना चाहिए।

एक आयताकार तरंग पथक के लिए, विच्छेद आवृत्ति है

जहाँ आयत की लंबाई के पक्षों के लिए बहुलक संख्याएँ क्रमशः तथा हैं। टीई (TE) बहुलक के लिए, (लेकिन अनुमति नहीं है), जबकि टीएम (TM) बहुलक के लिए

वृत्तिय अनुप्रस्थ काट (बिना कोणीय निर्भरता और सबसे कम रेडियल निर्भरता के साथ अनुप्रस्थ-चुंबकीय बहुलक) के तरंग पथक में TM01बहुलक (प्रमुख बहुलक TE11 से अगले उच्चतर) की विच्छेद आवृत्ति द्वारा दी गई है।

जहाँ तरंग पथक की त्रिज्या है, और , का प्रथम रूट है पहले प्रकार के क्रम का बेसेल फलन 1।

प्रमुख बहुलक TE11 विच्छेद आवृत्ति द्वारा दिया गया है।[3]

हालांकि, प्रमुख बहुलक विच्छेद आवृत्ति को वृत्तिय अनुप्रस्थ काट तरंग पथक के अंदर अवरोधक के प्रारम्भ से कम किया जा सकता है।[4] एकल-बहुलक प्रकाशिय तंतु के लिए, विच्छेद तरंग दैर्ध्य वह तरंग दैर्ध्य है जिस पर सामान्यीकृत आवृत्ति (प्रकाशिय तंतु) लगभग 2.405 के बराबर होती है।

गणितीय विश्लेषण

प्रारंभिक बिंदु तरंग समीकरण है (जो मैक्सवेल समीकरणों से प्राप्त होता है।),

जो केवल प्रपत्र के कार्यों पर विचार करके हेल्महोल्ट्ज़ समीकरण बन जाता है।
समय व्युत्पन्न को प्रतिस्थापित और मूल्यांकन करने से प्राप्त होता है।
फलन यहां उस क्षेत्र (विद्युत क्षेत्र या चुंबकीय क्षेत्र) को संदर्भित करता है जिसमें अनुदैर्ध्य दिशा में कोई वेक्टर घटक नहीं है - "अनुप्रस्थ" क्षेत्र। यह विद्युत चुम्बकीय तरंग पथक के सभी अभिलक्षणिक बहुलक का एक गुण है कि दो क्षेत्रों में से कम से कम एक अनुप्रस्थ है। z अक्ष को तरंग पथक के अक्ष के अनुदिश परिभाषित किया गया है। लाप्लासियन में "अनुदैर्ध्य" व्युत्पन्न को केवल प्रपत्र के कार्यों पर विचार करके कम किया जा सकता है।

जहाँ अनुदैर्ध्य तरंग संख्या है, जिसके परिणामस्वरूप

जहां अधोलेख टी (T) a 2-आयामी अनुप्रस्थ लाप्लासियन को इंगित करता है। अंतिम चरण तरंग पथक की ज्यामिति पर निर्भर करता है। हल करने के लिए सबसे आसान ज्यामिति आयताकार तरंग पथक है। उस स्थिति में, शेष लाप्लासियन का मूल्यांकन प्रपत्र के समाधानों पर विचार करके इसके विशिष्ट समीकरण के लिए किया जा सकता हैl



इस प्रकार आयताकार पथक के लिए लाप्लासियन का मूल्यांकन किया जाता है, और हम इस पर पहुंचते हैं।

अनुप्रस्थ तरंगो को एक आयताकार ज्यामिति अनुप्रस्थ काट के लिए आयाम a और b के लिए स्थायी तरंग सीमा स्थितियों से निर्दिष्ट किया जा सकता है।


जहाँ n और m दो पूर्णांक हैं जो एक विशिष्ट अभिलक्षणिक बहुलक को निरूपित करते हैं। अंतिम प्रतिस्थापन करते हुए, हमें प्राप्त होता है।

जो आयताकार तरंग पथक में फैलाव संबंध है। विच्छेद आवृत्ति प्रसार और क्षीणन के बीच महत्वपूर्ण आवृत्ति है, जो उस आवृत्ति से मेल खाती है जिस पर अनुदैर्ध्य तरंग संख्या शून्य है। दिया गया है।
तरंग समीकरण विच्छेद आवृत्ति के नीचे भी मान्य होते हैं, जहां अनुदैर्ध्य तरंग संख्या काल्पनिक होती है। इस स्थिति में, क्षेत्र तरंग पथक अक्ष के साथ तेजी से घटता है और तरंग इस प्रकार लुप्त होती है।

यह भी देखें

संदर्भ

  1. Van Valkenburg, M. E. Network Analysis (3rd ed.). pp. 383–384. ISBN 0-13-611095-9. Retrieved 2008-06-22.
  2. Mathaei, Young, Jones Microwave Filters, Impedance-Matching Networks, and Coupling Structures, pp.85-86, McGraw-Hill 1964.
  3. Hunter, I. C. (2001). Theory and design of microwave filters. Institution of Electrical Engineers. London: Institution of Electrical Engineers. p. 214. ISBN 978-0-86341-253-0. OCLC 505848355.
  4. Modi, Anuj Y.; Balanis, Constantine A. (2016-03-01). "PEC-PMC Baffle Inside Circular Cross Section Waveguide for Reduction of Cut-Off Frequency". IEEE Microwave and Wireless Components Letters. 26 (3): 171–173. doi:10.1109/LMWC.2016.2524529. ISSN 1531-1309.

बाहरी संबंध