चेबीशेव फ़िल्टर
चेबीशेव फिल्टर एनालॉग फिल्टर या डिजिटल फिल्टर हैं जिनमें बटरवर्थ फ़िल्टर की तुलना में तेज रोल-ऑफ होता है,और इसमें पासबैंड तरंग (टाइप I) या स्टॉपबैंड तरंग (टाइप II) होता है। चेबीशेव फिल्टर में यह गुण होता है कि वे फिल्टर की सीमा पर आदर्श और वास्तविक फिल्टर विशेषता के बीच त्रुटि को कम करते हैं(संदर्भ देखें उदाहरण के लिए; [डेनियल], [लुटोवैक]),[citation needed] लेकिन पासबैंड में तरंग के साथ ऐसा नहीं होता। इस टाइप के फिल्टर का नाम पफनुटी चेबीशेव के नाम पर रखा गया है क्योंकि इसकी गणितीय विशेषताएं चेबीशेव बहुपद से ली गई हैं। चेबीशेव फिल्टर को सामान्यतः "चेबीशेव फिल्टर" के रूप में संदर्भित किया जाता है, जबकि टाइप II फिल्टर को सामान्यतः विपरीत चेबीशेव फिल्टर कहा जाता है।
चेबीशेव फिल्टर में निहित पासबैंड तरंग के कारण, पासबैंड फिल्टर में एक नियमित प्रतिक्रिया, लेकिन स्टॉपबैंड फिल्टर में अधिक अनियमित प्रतिक्रिया कुछ अनुप्रयोगों के लिए पसंद की जाती है।[citation needed]
टाइप I चेबीशेव फिल्टर
टाइप I चेबीशेव फिल्टर, चेबीशेव फिल्टर के सबसे सामान्य टाइप हैं। लाभ (या आयाम ) प्रतिक्रिया, , कोणीय आवृत्ति के एक फलन के रूप में nवें क्रम का निम्न-पास फ़िल्टर स्थानांतरण फलन के निरपरक्ष मान के बराबर है, जिसका मूल्यांकन पर किया गया:
जहां पर तरंग कारक है, कटऑफ आवृत्ति है और nवें क्रम का एक चेबीशेव बहुपद है।
पासबैंड, तरंगफैक्टर ε द्वारा निर्धारित तरंग के साथ, समान व्यवहार प्रदर्शित करता है; पासबैंड चेबीशेव फिल्टर चेबीशेव बहुपद, -1 और 1 के बीच वैकल्पिक होता है, इसलिए फ़िल्टर G = 1 पर मैक्सिमा और पर मिनिमा प्राप्त होता है
इस टाइप I चेबीशेव फिल्टर में तरंगकारक ε डेसिबल में पासबैंड तरंग δ से संबंधित है:
कटऑफ आवृत्ति पर फिर से लाभ का मान है लेकिन आवृत्ति बढ़ने पर स्टॉपबैंड में कमी विद्यमान है। यह व्यवहार चित्र में दाईं ओर दिखाया गया है। −3 डीबी पर कटऑफ आवृत्ति को परिभाषित करने की सामान्य प्रथा सामान्यतः चेबीशेव फिल्टर पर लागू नहीं होती है; इसके बजाय कटऑफ को उस बिंदु के रूप में लिया जाता है जिस पर अंतिम समय के लिए लाभ तरंग पर कम हो जाता है।
3 डीबी आवृत्ति ωH, ω0से संबंधित है:
चेबीशेव फ़िल्टर का क्रम एनालॉग इलेक्ट्रॉनिक्स का उपयोग करके फ़िल्टर को जानने के लिए आवश्यक प्रतिक्रियाशील(इलेक्ट्रॉनिक्स) घटकों(उदाहरण के लिए, इंडिकेटर्स) की संख्या के बराबर है।
ध्रुव और शून्य

साधारण शब्दों में, यह माना जाता है कि कटऑफ आवृत्ति एक के बराबर है। चेबीशेव फिल्टर के लाभ फलन के ध्रुव लाभ फलन के हर के जीरो होते हैं। जटिल आवृत्ति s का उपयोग करते हुए, ये तब होता हैं जब:
परिभाषित और चेबीशेव बहुपद की त्रिकोणमितीय परिभाषा का उपयोग करते हुए:
के लिए हल करना
जहां पूर्णांक सूचकांक m का उपयोग करके चाप कोसाइन फलन के कई मान स्पष्ट किए जाते हैं। तब चेबीशेव लाभ फलन के ध्रुव हैं:
त्रिकोणमितीय और अतिपरवलय के फलन का उपयोग करते हुए, इसे स्पष्ट रूप से में लिखा जा सकता है:
-
-
-
- जहां m = 1, 2,..., n और
-
-
इसे समीकरण पैरामीट्रिक के रूप में देखा जा सकता है और यह दर्शाता है कि ध्रुव s = 0 पर केंद्रित s-स्परस में एक दीर्घवृत्त पर स्थित है, जिसकी लंबाई का एक वास्तविक अर्ध-अक्ष और लंबाई का एक काल्पनिक अर्ध-अक्ष है।
स्थानांतरण कार्य
उपरोक्त अभिव्यक्ति लाभ G के ध्रुवों को उत्पन्न करती है। प्रत्येक जटिल ध्रुव के लिए, एक जटिल संयुग्म है, और प्रत्येक संयुग्म जोड़ी के लिए दो और हैं जो जोड़ी के दो ऋणात्मक ध्रुव होते हैं। स्थानांतरण फलन स्थिर होना चाहिए, ताकि इसके ध्रुव लाभ के हों जिनमें ऋणात्मक वास्तविक भाग हों और जटिल आवृत्ति, स्थान के बाएं आधे तल में स्थित हों। तब स्थानांतरण फलन दिया जाता है:
जहाँ पर उपरोक्त समीकरण से प्राप्त वास्तविक पद के सामने ऋणात्मक चिन्ह के साथ लाभ के केवल वे ध्रुव हैं, जो उपरोक्त समीकरण से प्राप्त हुए हैं।
समूह विलंब
समूह विलंब को कोणीय आवृत्ति के संबंध में कला के व्युत्पन्न के रूप में परिभाषित किया गया है और विभिन्न आवृत्तियों के लिए कला अंतर द्वारा शुरू किए गए संकेत में विकृति का एक उपाय है।
फ़िल्टर पांचवें क्रम के टाइप I ε=0.5 के लिए लाभ और समूह विलंब को बाईं ओर के ग्राफ़ में प्लॉट किया गया है। यह देखा जा सकता है कि लाभ बिंदु में लहरें हैं और पासबैंड में समूह विलंब है लेकिन स्टॉपबैंड में नहीं है।
टाइप II चेबीशेव फिल्टर (उलटा चेबीशेव फिल्टर)
टाइप II उलटा चेबीशेव फिल्टर के रूप में भी जाना जाता है, चेबीशेव फिल्टर टाइप II कम सामान्य है क्योंकि यह टाइप I के रूप में तेजी से रोल नहीं करता है, और अधिक घटकों की आवश्यकता होती है। पासबैंड में इसका कोई तरंग नहीं है, लेकिन स्टॉपबैंड में इक्विरिपल लाभ है:
स्टॉपबैंड में, चेबीशेव बहुपद -1 और 1 के बीच दोलन करता है ताकि लाभ शून्य और निम्न सूत्र के बीच दोलन करे:
और सबसे छोटी आवृत्ति जिस पर यह अधिकतम प्राप्त किया जाता है वह कटऑफ आवृत्ति है। पैरामीटर ε इस टाइप II डेसिबल में स्टॉपबैंड क्षीणन से संबंधित है:
5 dB के स्टॉपबैंड क्षीणन के लिए, ε = 0.6801; 10 डीबी के क्षीणन के लिए, ε= 0.3333। f0 = ω0/2π कटऑफ आवृत्ति है। 3 डीबी आवृत्ति fH, f0 से निम्न प्रकार संबंधित है:
ध्रुव और शून्य

यह मानते हुए कि कटऑफ आवृत्ति एक के बराबर है, ध्रुव चेबीशेव फिल्टर लाभ के हर के शून्य हैं:
टाइप II चेबीशेव फ़िल्टर के लाभ के ध्रुव फ़िल्टर टाइप I के ध्रुवों के विपरीत हैं:
जहां m = 1, 2, ..., n। शून्य टाइप II चेबीशेव फ़िल्टर लाभ के अंश के शून्य हैं:
इसलिए टाइप II चेबीशेव फ़िल्टर के शून्य चेबीशेव बहुपद के शून्यों के व्युत्क्रम हैं।
m = 1, 2, ..., n के लिए।
स्थानांतरण कार्य
स्थानांतरण कार्य लाभ फलन के बाएं आधे तल में ध्रुवों द्वारा दिया जाता है, और इसमें एक समान शून्य होते हैं लेकिन ये शून्य दोहरे शून्य के बावजूद एकल होते हैं।
समूह विलंब
चेबीशेव फ़िल्टर पांचवें कोटि, टाइप II ε=0.1 के लिए लाभ और समूह विलंब को बाईं ओर के ग्राफ़ में प्लॉट किया गया है। यह देखा जा सकता है कि स्टॉपबैंड में लाभ में तरंग हैं लेकिन पासबैंड में नहीं।
कार्यप्रणाली
काउर टोपोलॉजी
एक काउर टोपोलॉजी (इलेक्ट्रॉनिक्स) का उपयोग करके एक निष्क्रिय एलसी चेबीशेव लो पास फिल्टर को महसूस किया जा सकता है। nवें क्रम के चेबीशेव प्रोटोटाइप फिल्टर के प्रेरक या संधारित्र मूल्यों की गणना निम्नलिखित समीकरणों से की जा सकती है:
G1, Gk संधारित्र या प्रेरक तत्व के मान हैं। fH, 3 dB आवृत्ति की गणना निम्न के साथ की जाती है:
गुणांक A, γ, β, Ak, और Bk निम्नलिखित समीकरणों से गणना की जा सकती है:
जहां पर पासबैंड तरंग डेसिबल में है। जो नंबर सटीक मान के आस पास है .
परिकलित Gk मान को तब शंट (विद्युत) संधारित्र और श्रृंखला परिपथ इंडक्टर्स में परिवर्तित किया जा सकता है जैसा कि दाईं ओर दिखाया गया है, या उन्हें श्रृंखला संधारित्र और शंट इंडक्टर्स में परिवर्तित किया जा सकता है। उदाहरण के लिए,
- C1 shunt = G1, L2 series = G2, ...
या
- L1 shunt = G1, C1 series = G2, ...
ध्यान दें कि जब G1 एक शंट संधारित्र या श्रृंखला प्रेरक है, G0 क्रमशः इनपुट प्रतिरोध या चालन से मेल खाती है। तब Gn+1 और Gn के लिए भी यही संबंध है। परिणामी परिपथ एक सामान्यीकृत उच्च पास फिल्टर है। आवृत्ति परिवर्तन और प्रतिबाधा स्केलिंग का उपयोग करके, सामान्यीकृत कम-पास फ़िल्टर को किसी भी वांछित कटऑफ आवृत्ति या बैंडविड्थ के उच्च-पास, बैंड-पास और बैंड-स्टॉप फ़िल्टर में परिवर्तित किया जा सकता है।
डिजिटल
अधिकांश एनालॉग फिल्टर के साथ, चेबीशेव को द्विरेखीय परिवर्तन के माध्यम से डिजिटल (असतत-समय) पुनरावर्ती फ़िल्टर फॉर्म में परिवर्तित किया जा सकता है। हालाँकि, डिजिटल फिल्टर में एक सीमित बैंडविड्थ होती है, इसलिए परिवर्तित चेबीशेव की प्रतिक्रिया आकृति विकृत होती है। वैकल्पिक रूप से, मिलान की गई जेड-ट्रांसफ़ॉर्म विधि का उपयोग किया जा सकता है, जो प्रतिक्रिया को विकृत नहीं करता है।
अन्य रैखिक फिल्टर के साथ तुलना
निम्नलिखित उदाहरण समान गुणांक (पांचवें क्रम) के साथ प्राप्त अन्य सामान्य फ़िल्टर प्रकारों के बगल में चेबीशेव फ़िल्टर दिखाता है:
बटरवर्थ फिल्टर की तुलना में चेबीशेव फिल्टर तेज होते हैं; वे दीर्घवृत्तीय फिल्टर की तरह तेज नहीं हैं, लेकिन वे बैंडविड्थ पर कम तरंगें दिखाते हैं।
यह भी देखें
- फ़िल्टर डिज़ाइन
- बेसेल फिल्टर
- कंघी फिल्टर
- अण्डाकार फिल्टर
- चेबीशेव नोड्स
- चेबीशेव बहुपद
संदर्भ
- Weinberg, Louis; Slepian, Paul (June 1960). "Takahasi's Results on Tchebycheff and Butterworth Ladder Networks". IRE Transactions on Circuit Theory. 7 (2): 88–101. doi:10.1109/TCT.1960.1086643.
- Daniels, Richard W. (1974). Approximation Methods for Electronic Filter Design. New York: McGraw-Hill. ISBN 0-07-015308-6.
- Williams, Arthur B.; Taylors, Fred J. (1988). Electronic Filter Design Handbook. New York: McGraw-Hill. ISBN 0-07-070434-1.
- Matthaei, George L.; Young, Leo; Jones, E. M. T. (1980). Microwave Filters, Impedance-Matching Networks, and Coupling Structures. Norwood, MA: Artech House. ISBN 0-89-006099-1.
- Lutovac, Miroslav, D. et al.: Filter Design for Signal Processing, Prentice Hall (2001).
बाहरी संबंध
Media related to चेबीशेव फ़िल्टर at Wikimedia Commons