K3 सतह

From Vigyanwiki
Revision as of 11:09, 22 July 2023 by alpha>Aashvani
3-स्पेस में स्मूथ चतुर्थक सतह यह आंकड़ा निश्चित जटिल K3 सतह (जटिल आयाम 2, इसलिए वास्तविक आयाम 4) में तर्कसंगत बिंदु (वास्तविक आयाम 2 का) का भाग प्रदर्शित करता है।

मोन तालमेल के दूसरे भाग में, K3 के विभिन्न प्रकारों के सम्बन्ध में जानकारी, कुमेर, काहलर, कोडैरा और K2 या कैशेमायर के सम्मान में नामांकित व्यक्ति

मेरी रिपोर्ट के दूसरे भाग में, हम काहलर प्रकारो के सम्बन्ध में चर्चा कर रहे हैं जिन्हें K3 के नाम से जाना जाता है, जिसका नाम कुमेर, काहलर, कोडैरा और कश्मीर के सुन्दर पर्वत K2 के सम्मान में रखा गया है।

आंद्रे Weil (1958, p. 546), "K3 "सतह" नाम का कारण बताते हुए

गणित में, जटिल विश्लेषणात्मक K3 सतह तुच्छ विहित बंडल और सतह शून्य की अनियमितता के साथ आयाम 2 का कॉम्पैक्ट कनेक्टेड जटिल विविध है। किसी भी क्षेत्र (गणित) पर (बीजगणितीय) K3 सतह का अर्थ है स्मूथ योजना उचित आकारवाद ज्यामितीय रूप से जुड़ी बीजगणितीय सतह जो समान स्थितियों को संतुष्ट करती है। सतहों के एनरिकेस-कोडैरा वर्गीकरण में, K3 सतहें कोडैरा आयाम शून्य की न्यूनतम सतहों के चार वर्गों में से एक बनाती हैं। सरल उदाहरण फ़र्मेट चतुर्थक सतह है:-

जटिल प्रक्षेप्य 3-स्थान में द्वि-आयामी कॉम्पैक्ट जटिल टोरी के साथ, K3 सतहें आयाम दो के कैलाबी-याउ विविध (और हाइपरकेहलर विविध) हैं। इस प्रकार, वे सकारात्मक रूप से घुमावदार डेल पेज़ो सतहों (जिन्हें वर्गीकृत करना सरल है) और सामान्य प्रकार की नकारात्मक घुमावदार सतहों (जो अनिवार्य रूप से अवर्गीकृत हैं) के मध्य, बीजीय सतहों के वर्गीकरण के केंद्र में हैं। K3 सतहों को सबसे सरल बीजगणितीय प्रकारें माना जा सकता है जिनकी संरचना बीजगणितीय वक्र या एबेलियन प्रकारों तक कम नहीं होती है, और फिर भी जहां पर्याप्त समझ संभव है। जटिल K3 सतह का वास्तविक आयाम 4 है, और यह स्मूथ 4-कई गुना के अध्ययन में महत्वपूर्ण भूमिका निभाता है। K3 सतहों को काक-मूडी बीजगणित, दर्पण समरूपता (स्ट्रिंग सिद्धांत) और स्ट्रिंग सिद्धांत पर प्रस्तावित किया गया है।

जटिल विश्लेषणात्मक K3 सतहों के व्यापक परिवार के भाग के रूप में जटिल बीजगणितीय K3 सतहों के सम्बन्ध में सोचना उपयोगी हो सकता है। कई अन्य प्रकार की बीजगणितीय प्रकारो में ऐसी अन्य-बीजगणितीय विकृतियाँ नहीं होती हैं।

परिभाषा

K3 सतहों को परिभाषित करने के कई समान उपाय हैं। तुच्छ विहित बंडल वाली मात्र कॉम्पैक्ट जटिल सतहें K3 और कॉम्पैक्ट कॉम्प्लेक्स टोरी हैं, और इसलिए कोई K3 सतहों को परिभाषित करने के लिए पश्चात् वाले को त्यागकर किसी भी नियम को जोड़ सकता है। उदाहरण के लिए, यह जटिल विश्लेषणात्मक K3 सतह को आयाम 2 के सरल रूप से जुड़े हुए कॉम्पैक्ट कॉम्प्लेक्स विविध के रूप में परिभाषित करने के समान है, जिसमें कहीं भी गायब नहीं होने वाला होलोमोर्फिक विभेदक रूप है। (पश्चात् वाले नियम यही कहते है कि विहित बंडल तुच्छ है।)

परिभाषा के कुछ प्रकार भी हैं। जटिल संख्याओं पर, कुछ लेखक केवल बीजीय K3 सतहों पर विचार करते हैं। ( बीजगणितीय K3 सतह स्वचालित रूप से प्रक्षेप्य प्रकार है।[1]) या कोई K3 सतहों को स्मूथ होने के अतिरिक्त डु वैल विलक्षणताएं (आयाम 2 की विहित विलक्षणताएं) रखने की अनुमति प्रदान कर सकता है।

बेट्टी संख्या की गणना

जटिल विश्लेषणात्मक K3 सतह की बेट्टी संख्याओं की गणना निम्नानुसार की जाती है।[2] ( समान तर्क L-एडिक कोहोमोलॉजी का उपयोग करके परिभाषित किसी भी क्षेत्र पर बीजगणितीय K3 सतह की बेट्टी संख्याओं के लिए समान उत्तर देता है।) परिभाषा के अनुसार, विहित बंडल तुच्छ है, और अनियमितता q(X) (आयाम सुसंगत शीफ़ कोहोमोलॉजी समूह का ) शून्य है. सेरे द्वैत द्वारा,

परिणामस्वरूप, X का अंकगणितीय जीनस (या होलोमोर्फिक यूलर विशेषता) है:

दूसरी ओर, सतहों के लिए रीमैन-रोच प्रमेय (नोएदर का सूत्र) कहता है:

जहाँ स्पर्शरेखा बंडल का i-वाँ चेर्न वर्ग है। तब से तुच्छ है, इसकी प्रथम चेर्न क्लास शून्य है, इत्यादि .

निकटतम, घातीय अनुक्रम कोहोमोलोजी समूहों का त्रुटिहीन क्रम देता है, , इसलिए . इस प्रकार बेट्टी संख्या शून्य है, और पोंकारे द्वंद्व द्वारा, शून्य भी है, टोपोलॉजिकल यूलर विशेषता के समान है

तब से और , यह इस प्रकार है कि [3]

गुण

  • कुनिहिको कोदैरा द्वारा कोई भी दो जटिल विश्लेषणात्मक K3 सतहें स्मूथ 4-विविध के रूप में भिन्न होती हैं।[4]
  • प्रत्येक जटिल विश्लेषणात्मक K3 सतह में यम-टोंग सिउ द्वारा काहलर आव्यूह होता है।[5] (अनुरूप रूप से, किन्तु अधिक सरल: क्षेत्र पर प्रत्येक बीजगणितीय K3 सतह प्रक्षेप्य है।) कैलाबी अनुमान के शिंग-तुंग याउ के समाधान से, यह निम्नानुसार है कि प्रत्येक जटिल विश्लेषणात्मक K3 सतह में रिक्की-सपाट काहलर आव्यूह है।
  • हॉज सिद्धांत किसी भी K3 सतह की जटिल प्रक्षेप्य प्रकारो के लिए हॉज सिद्धांत हॉज हीरे में सूचीबद्ध हैं:
    1
    00
    1201
    00
    1
    इसे प्रदर्शित करने का उपाय विशिष्ट K3 सतह के जैकोबियन आदर्श की गणना करना है, और पुनः बीजगणितीय K3 सतहों के मॉड्यूली स्थान पर हॉज संरचना की भिन्नता का उपयोग करके यह प्रदर्शित करना है कि ऐसी सभी K3 सतहों में समान हॉज संख्याएं हैं। हॉज संरचना के भागो के साथ-साथ बेट्टी संख्याओं की गणना का उपयोग करके अधिक कम-ब्रो स्वेच्छानुसार K3 सतह के लिए गणना की जा सकती है I इस सम्बन्ध में, हॉज समरूपता बल देता है, इस प्रकार . विशेषता (बीजगणित) p > 0 में K3 सतहों के लिए, यह प्रथम बार Lेक्सी रुडाकोव और इगोर शफ़ारेविच द्वारा प्रदर्शित किया गया था।[6]
  • जटिल विश्लेषणात्मक K3 सतह X के लिए, प्रतिच्छेदन प्रपत्र (या कप उत्पाद) पर पूर्णांकों में मानों वाला सममित द्विरेखीय रूप है, जिसे K3 जाली के रूप में जाना जाता है। यह सम रूपी जाली के समरूपी है I , या समकक्ष , जहां U रैंक 2 की अतिशयोक्तिपूर्ण E8 जाली है.[7]
  • युकिओ मात्सुमोतो का 4-विविध स्मूथ 11/8 अनुमान भविष्यवाणी करता है कि सम प्रतिच्छेदन फॉर्म के साथ प्रत्येक स्मूथ उन्मुखी 4-विविध X में दूसरा बेट्टी नंबर सिग्नेचर (टोपोलॉजी) के पूर्ण मूल्य से कम से कम 11/8 गुना है। यदि सत्य है तो यह इष्टतम होगा, क्योंकि समानता जटिल K3 सतह के लिए है, जिसका सिग्नेचर 3−19 = −16 है। अनुमान का अर्थ यह होगा कि सम प्रतिच्छेदन रूप के साथ प्रत्येक सरल रूप से जुड़ा हुआ स्मूथ 4-विविध K3 सतह और की प्रतियों के जुड़े योग के लिए होम्योमॉर्फिक है I[8]
  • रॉबर्ट फ्रीडमैन और जॉन मॉर्गन (गणितज्ञ) द्वारा प्रत्येक जटिल सतह जो K3 सतह से भिन्न होती है, K3 सतह होती है। दूसरी ओर, स्मूथ जटिल सतहें हैं (उनमें से कुछ प्रक्षेपी हैं) जो होमियोमॉर्फिक हैं किन्तु K3 सतह से भिन्न नहीं हैं, कोडैरा और माइकल फ्रीडमैन द्वारा।[9] इन समरूप K3 सतहों में कोडैरा आयाम 1 है।

उदाहरण

  • प्रक्षेप्य तल का शाखित आवरण X स्मूथ सेक्सटिक (डिग्री 6) वक्र के साथ शाखाबद्ध होता है, जो जीनस 2 की K3 सतह है (अर्थात, डिग्री 2g−2 = 2) I (इस शब्दावली का अर्थ है कि सामान्य हाइपरप्लेन की X में विपरीत छवि जीनस का सहज वक्र है (गणित) 2.)
  • स्मूथ चतुर्थक (डिग्री 4) सतह जीनस 3 (अर्थात डिग्री 4) की K3 सतह है।
  • कुमेर सतह क्रिया द्वारा द्वि-आयामी एबेलियन प्रकार A का भागफल है I इसके परिणामस्वरूप A के 2-मरोड़ बिंदुओं पर 16 विलक्षणताएँ होती हैं। इस विलक्षण सतह की विलक्षणताओं के समाधान को कुमेर सतह भी कहा जा सकता है; वह समाधान K3 सतह है। जब A जीनस 2 के वक्र की जैकोबियन प्रकार है, तो कुमेर ने भागफल प्रदर्शित किया I में एम्बेड किया जा सकता है, बीजगणितीय विविधता नोड्स के 16 अपूर्व बिंदु के साथ चतुर्थक सतह के रूप में किया जा सकता है।
  • अधिक सामान्यतः डु वैल विलक्षणताओं वाले किसी भी चतुर्थक सतह Y के लिए, Y का न्यूनतम समाधान बीजगणितीय K3 सतह है।
  • चतुर्भुज (बीजगणितीय ज्यामिति) और घन का प्रतिच्छेदन जीनस 4 (अर्थात्, डिग्री 6) की K3 सतह है।
  • तीन चतुर्भुजों का प्रतिच्छेदन जीनस 5 (अर्थात, डिग्री 8) की K3 सतह है।
  • भारित प्रक्षेप्य स्थानों में डु वैल विलक्षणताओं के साथ K3 सतहों के कई डेटाबेस हैं।[10]

पिकार्ड जाली

जटिल विश्लेषणात्मक K3 सतह X के पिकार्ड समूह पिक(X) का अर्थ है X पर जटिल विश्लेषणात्मक रेखा बंडलों का एबेलियन समूह, बीजीय K3 सतह के लिए, पिक(X) का अर्थ है जीन पियरे सेरे के गागा प्रमेय द्वारा जटिल बीजगणितीय K3 सतह आदि।

K3 सतह X का पिकार्ड समूह सदैव सीमित रूप से उत्पन्न एबेलियन समूह मुक्त एबेलियन समूह होता है; इसकी रैंक को 'पिकार्ड नंबर' कहा जाता है I जटिल सम्बन्ध में, पिक(X) का उपसमूह है I यह K3 सतहों की महत्वपूर्ण विशेषता है कि कई भिन्न-भिन्न पिकार्ड संख्याएँ हो सकती हैं। X के लिए जटिल बीजगणितीय K3 सतह, 1 और 20 के मध्य कोई भी पूर्णांक हो सकता है। जटिल विश्लेषणात्मक सम्बन्ध में, शून्य भी हो सकता है (उस स्थिति में, K3 सतह पर, पिकार्ड संख्या 22 के साथ)।

K3 सतह के 'पिकार्ड जाली' का अर्थ है एबेलियन समूह पिक(X) इसके प्रतिच्छेदन रूप के साथ, पूर्णांकों में मानों के साथ सममित द्विरेखीय रूप (ऊपर , प्रतिच्छेदन प्रपत्र का अर्थ है प्रतिच्छेदन प्रपत्र पर प्रतिबंध सामान्य क्षेत्र पर, विभाजक वर्ग समूह के साथ पिकार्ड समूह की पहचान करके, सतह पर वक्रों के प्रतिच्छेदन सिद्धांत का उपयोग करके प्रतिच्छेदन रूप को परिभाषित किया जा सकता है। K3 सतह का पिकार्ड जाली सदैव सम होती है, जिसका अर्थ है कि पूर्णांक प्रत्येक के लिए सम है I

हॉज सूचकांक प्रमेय का तात्पर्य है कि बीजगणितीय K3 सतह के पिकार्ड जाली में सिग्नेचर हैं I K3 सतह के कई गुण पूर्णांकों पर सममित द्विरेखीय रूप के रूप में, इसके पिकार्ड जाली द्वारा निर्धारित किए जाते हैं। इससे K3 सतहों के सिद्धांत और सममित द्विरेखीय रूपों के अंकगणित के मध्य शक्तिशाली संबंध बनता है। इस कनेक्शन के पूर्व उदाहरण के रूप में: जटिल विश्लेषणात्मक K3 सतह बीजगणितीय है यदि कोई साथ तत्व है I[11] सामान्यतः, सभी जटिल विश्लेषणात्मक K3 सतहों के स्थान का जटिल आयाम 20 है, जबकि K3 सतहों का स्थान पिकार्ड संख्या के साथ आयाम है (सुपरसिंगुलर केस को त्यागकर)। विशेष रूप से, बीजगणितीय K3 सतहें 19-आयामी परिवारों में होती हैं। K3 सतहों के मॉड्यूलि स्पेस के सम्बन्ध में अधिक विवरण नीचे दिए गए हैं।

K3 सतहों के पिकार्ड लैटिस के रूप में कौन सी जाली हो सकती है, इसका त्रुटिहीन विवरण जटिल है। व्याचेस्लाव निकुलिन और डेविड आर. मॉरिसन (गणितज्ञ) के कारण स्पष्ट कथन यह है कि सिग्नेचर की प्रत्येक सम जाली साथ कुछ जटिल प्रक्षेप्य K3 सतह की पिकार्ड जाली है।[12] ऐसी सतहों के स्थान में आयाम होता है I

दीर्घवृत्तीय K3 सतहें

K3 सतहों का महत्वपूर्ण उपवर्ग, सामान्य सम्बन्ध की तुलना में विश्लेषण करना सरल है, इसमें दीर्घवृत्तीय कंपन वाली K3 सतहें सम्मिलित होती हैं I दीर्घवृत्तीय का अर्थ है कि इस रूपवाद के सभी किन्तु सीमित रूप से कई फाइबर जीनस 1 के स्मूथ वक्र हैं। अपूर्व फाइबर रैशनल वक्रों के संघ हैं, जिनमें कोडैरा द्वारा वर्गीकृत संभावित प्रकार के अपूर्व फाइबर होते हैं। सदैव कुछ अपूर्व फाइबर होते हैं, क्योंकि अपूर्व फाइबर की टोपोलॉजिकल यूलर विशेषताओं का योग होता है I सामान्य दीर्घवृत्तीय K3 सतह में 24 अपूर्व फाइबर होते हैं, प्रत्येक प्रकार के ( नोडल घन वक्र) आदि I[13] K3 सतह दीर्घवृत्तीय है या नहीं, इसे इसके पिकार्ड जाली से पढ़ा जा सकता है। अर्थात्, विशेषता 2 या 3 में नहीं, K3 सतह X में दीर्घवृत्तीय कंपन होता है यदि और केवल तभी जब कोई अन्य-शून्य तत्व साथ हो I [14] (विशेषता 2 या 3 में, पश्चात् वाली स्थिति एनरिकेस-कोडैरा वर्गीकरण के अनुरूप भी हो सकती है कोडैरा आयाम 1 की सतहें अर्ध-दीर्घवृत्तीय फ़िब्रेशन।) यह इस प्रकार है कि दीर्घवृत्तीय फ़िब्रेशन होना K3 सतह पर कोडायमेंशन-1 स्थिति है। तो दीर्घवृत्तीय कंपन के साथ जटिल विश्लेषणात्मक K3 सतहों के 19-आयामी समूह हैं, और दीर्घवृत्तीय कंपन के साथ प्रक्षेप्य K3 सतहों के 18-आयामी मॉड्यूल स्थान हैं।

उदाहरण: प्रत्येक स्मूथ चतुर्थक सतह X इंच जिसमें रेखा L होती है उसमें दीर्घवृत्तीय कंपन होता है I , L से दूर प्रक्षेपित कर दिया गया है। सभी स्मूथ चतुर्थक सतहों (समरूपता तक) के मॉड्यूलि स्थान का आयाम 19 है, जबकि रेखा वाले चतुर्थक सतहों के उपस्थान का आयाम 18 है।

K3 सतहों पर परिमेय वक्र

डेल पेज़ो सतहों जैसी सकारात्मक रूप से घुमावदार प्रकारों के विपरीत, जटिल बीजगणितीय K3 सतह X अनियंत्रित प्रकार नहीं है, अर्थात्, यह तर्कसंगत वक्रों के सतत परिवार द्वारा कवर नहीं किया गया है। दूसरी ओर, सामान्य प्रकार की सतहों जैसे नकारात्मक रूप से घुमावदार प्रकारों के विपरीत, X में तर्कसंगत वक्रों (संभवतः अपूर्व) का बड़ा असतत समूह होता है। विशेष रूप से, फेडर बोगोमोलोव और डेविड मम्फोर्ड ने प्रदर्शित किया कि X पर प्रत्येक वक्र तर्कसंगत वक्रों के सकारात्मक रैखिक संयोजन के रैखिक रूप से समान है।[15] नकारात्मक रूप से घुमावदार प्रकारों का और विरोधाभास यह है कि जटिल विश्लेषणात्मक K3 सतह X पर कोबायाशी आव्यूह समान रूप से शून्य है। प्रमाण का उपयोग करता है कि बीजगणितीय K3 सतह X सदैव दीर्घवृत्तीय वक्रों की छवियों के सतत परिवार द्वारा कवर किया जाता है।[16] (ये वक्र X में अपूर्व हैं, जब तक कि X दीर्घवृत्तीय K3 सतह न हो।) प्रश्न जो विवृत रहता है वह यह है कि क्या प्रत्येक जटिल K3 सतह अन्य-अपक्षयी होलोमोर्फिक मानचित्र को स्वीकार करती है (जहां नॉनडीजेनरेट का अर्थ है कि मानचित्र का व्युत्पन्न किसी बिंदु पर समरूपता है)।[17]

अवधि मानचित्र

जटिल विश्लेषणात्मक K3 सतह X के अंकन को जालकों की समरूपता के रूप में परिभाषित करते है I K3 जाली के लिए चिह्नित कॉम्प्लेक्स K3 सतहों का स्पेस N, आयाम 20 का हॉसडॉर्फ़ स्थान कॉम्प्लेक्स विविध है।[18] जटिल विश्लेषणात्मक K3 सतहों के समरूपता वर्गों का समूह ऑर्थोगोनल समूह द्वारा N का भागफल है, किन्तु यह भागफल ज्यामितीय रूप से सार्थक मॉड्यूलि स्पेस नहीं है, क्योंकि क्रिया ठीक से संवृत होने से अधिक दूर है।[19] (उदाहरण के लिए, स्मूथ चतुर्थक सतहों का स्थान आयाम 19 का अपरिवर्तनीय है, और फिर भी 20-आयामी समूह N में प्रत्येक जटिल विश्लेषणात्मक K3 सतह में स्वेच्छानुसार उपाय से छोटी विकृतियाँ हैं जो स्मूथ चतुर्थक के समरूपी हैं।[20]) इसी कारण से, कम से कम 2 आयाम के कॉम्पैक्ट कॉम्प्लेक्स टोरी का कोई सार्थक मॉड्यूल स्पेस नहीं है।

अवधि मानचित्रण K3 सतह को उसकी हॉज संरचना में प्रेक्षित करती है। जब ध्यान से कहा जाता है, तो टोरेली प्रमेय मानता है: K3 सतह इसकी हॉज संरचना द्वारा निर्धारित की जाती है। पीरियड डोमेन को 20-आयामी कॉम्प्लेक्स विविध के रूप में परिभाषित किया गया है

अवधि मानचित्रण चिह्नित K3 सतह X को जटिल रेखा पर प्रेक्षित करता है I यह विशेषण है, और स्थानीय समरूपता है, किन्तु समरूपता नहीं है (विशेष रूप से क्योंकि D हॉसडॉर्फ है और N नहीं है)। चूँकि, K3 सतहों के लिए 'वैश्विक टोरेली प्रमेय' कहता है कि समुच्चय का भागफल मानचित्र

वस्तुनिष्ठ है I इससे यह निष्कर्ष निकलता है कि दो जटिल विश्लेषणात्मक K3 सतहें को , अर्थात्, एबेलियन समूहों का समरूपता जो प्रतिच्छेदन रूप को को संरक्षित करता है और प्रेक्षित करता है I[21]

प्रक्षेप्य K3 सतहों के मॉड्यूलि स्थान

जीनस g की ध्रुवीकृत K3 सतह X को प्रक्षेपी K3 सतह के साथ पर्याप्त रेखा बंडल L के रूप में परिभाषित किया गया है, जैसे कि L प्राथमिक है (अर्थात, 2 नहीं) या अधिक बार पर्याप्त लाइन बंडल) और इसे 2g−2 डिग्री की ध्रुवीकृत K3 सतह भी कहा जाता है।[22]

इन धारणाओं के अंतर्गत, L आधार-बिंदु-मुक्त है। विशेषता शून्य में, बर्टिनी के प्रमेय का तात्पर्य है कि विभाजकों की रैखिक प्रणाली |L| में स्मूथ वक्र C है ऐसे, सभी वक्रों में जीनस g होता है, जो बताता है कि क्यों (X,L) को जीनस g कहा जाता है।

L के अनुभागों के सदिश स्थान का आयाम g + 1 है, और इसलिए L, X से प्रक्षेप्य स्थान तक आकारिता प्रदान करता है I अधिकतर विषयों में, यह रूपवाद एम्बेडिंग है, जिससे X डिग्री 2g-2 की सतह पर आइसोमोर्फिक हो I

इरेड्यूसेबल मोटे मॉड्यूलि स्पेस है I प्रत्येक के लिए जीनस g की ध्रुवीकृत जटिल K3 सतहों की , इसे समूह अनिश्चितकालीन ऑर्थोगोनल समूह एसओ(2,19) के लिए शिमुरा प्रकार के ज़ारिस्की विवृत उपसमुच्चय के रूप में देखा जा सकता है। प्रत्येक g के लिए, आयाम 19 की अर्ध-प्रक्षेपी जटिल विविधता है।[23] विलोम ने प्रदर्शित किया कि यह मॉड्यूलि स्पेस अतार्किक है या , इन कंट्रास्ट, वालेरी गृत्सेंको, क्लॉस हुलेक एंड ग्रेगोरी संकरन शोवेद ठाट सामान्य प्रकार का है यदि या द्वारा इस क्षेत्र का सर्वेक्षण दिया गया Voisin (2008) है I

विभिन्न 19-आयामी मॉड्यूलि स्थान जटिल उपाय से ओवरलैप करते है। वास्तव में, प्रत्येक की कोडिमेंशन-1 उप-प्रकारों का अनगिनत अनंत समूह है I पिकार्ड संख्या की K3 सतहों के अनुरूप कम से कम 2 उन K3 सतहों में केवल 2g-2 ही नहीं, किन्तु अनंत रूप से कई भिन्न-भिन्न डिग्री का ध्रुवीकरण होता है। तो कोई यह कह सकता है कि अन्य मॉड्यूली रिक्त स्थान अनंत हैं I , यह त्रुटिहीन नहीं है, क्योंकि सभी मॉडुली स्थानों को समाहित करने वाला कोई अच्छा व्यवहार वाला स्थान नहीं है I चूँकि, इस विचार का ठोस संस्करण यह तथ्य है कि कोई भी दो जटिल बीजगणितीय K3 सतहें बीजगणितीय K3 सतहों के माध्यम से विरूपण-समतुल्य हैं।[24]

मान्यतः, जीनस g की अर्ध-ध्रुवीकृत K3 सतह का अर्थ है प्राथमिक नेफ लाइन बंडल और बड़ी लाइन बंडल लाइन बंडल L के साथ प्रक्षेप्य K3 सतह जैसे कि I ऐसा लाइन बंडल अभी भी रूपवाद प्रदान करता है, किन्तु अब यह परिमित रूप से कई (−2)-वक्रों को अनुबंधित कर सकता है, जिससे X की छवि Y अपूर्व हो। (किसी सतह पर '(−2)-वक्र' का अर्थ समरूपी वक्र है, स्व-प्रतिच्छेदन -2 के साथ।) जीनस g की अर्ध-ध्रुवीकृत K3 सतहों का मॉड्यूलि स्पेस अभी भी आयाम 19 का अपरिवर्तनीय है (पूर्व मॉड्यूलि स्पेस को विवृत उपसमुच्चय के रूप में सम्मिलित होती करते हुए)। औपचारिक रूप से, इसे डु वैल विलक्षणताओं के साथ K3 सतहों Y के मॉड्यूलि स्पेस के रूप में देखना अच्छा काम करता है।[25]

विस्तारित शंकु और वक्रों का शंकु

बीजगणितीय K3 सतहों की उल्लेखनीय विशेषता यह है कि पिकार्ड जाली सतह के कई ज्यामितीय गुणों को निर्धारित करती है, जिसमें पर्याप्त विभाजक के उत्तल शंकु (पिकार्ड जाली के ऑटोमोर्फिज्म तक) सम्मिलित होते हैं। पर्याप्त शंकु पिकार्ड जाली द्वारा निम्नानुसार निर्धारित किया जाता है। हॉज सूची प्रमेय के अनुसार, वास्तविक सदिश स्थान पर प्रतिच्छेदन सिग्नेचर बनता है I यह इस प्रकार है कि तत्वों का समुच्चय सकारात्मक स्व-प्रतिच्छेदन के साथ दो जुड़े हुए घटक (टोपोलॉजी) हैं। धनात्मक शंकु को वह घटक कहें जिसमें X पर कोई पर्याप्त भाजक हो।

केस 1: पिक(X) का कोई तत्व u नहीं है, तब पर्याप्त शंकु धनात्मक शंकु के समान होता है। इस प्रकार यह मानक गोल शंकु है।

केस 2: अन्यथा, , पिकार्ड जाली के आधारों का समूह आधार के ऑर्थोगोनल पूरक हाइपरप्लेन का समुच्चय बनाते हैं, जो सभी सकारात्मक शंकु से निकलते हैं। फिर पर्याप्त शंकु सकारात्मक शंकु में इन हाइपरप्लेन के पूरक का जुड़ा घटक है। ऐसे कोई भी दो घटक जाली पिक (X) के ऑर्थोगोनल समूह के माध्यम से आइसोमोर्फिक हैं, क्योंकि इसमें प्रत्येक रूट हाइपरप्लेन में प्रतिबिंब (गणित) सम्मिलित होती है। इस अर्थ में, पिकार्ड जाली समरूपता तक पर्याप्त शंकु निर्धारित करती है।[26]

सैंडोर कोवाक्स के कारण संबंधित कथन यह है कि पिक(X) में पर्याप्त भाजक A को जानने से X के वक्रों का पूर्ण शंकु निर्धारित होता है। अर्थात्, मान लीजिए कि X के पास पिकार्ड संख्या है I यदि जड़ों का समुच्चय रिक्त है, तो वक्रों का संवृत शंकु धनात्मक शंकु का संवृत होना है। अन्यथा, वक्रों का संवृत शंकु सभी तत्वों द्वारा विस्तारित हुआ संवृत उत्तल शंकु है I पूर्व सम्बन्ध में, X में कोई (−2)-वक्र नहीं है; दूसरे सम्बन्ध में, वक्रों का संवृत शंकु सभी (−2)-वक्रों द्वारा विस्तारित हुआ संवृत उत्तल शंकु है।[27] (यदि , अन्य संभावना है: वक्रों का शंकु (−2)-वक्र और स्व-प्रतिच्छेदन 0 के साथ वक्र द्वारा विस्तारित किया जा सकता है।) इसलिए वक्रों का शंकु या तो मानक गोल शंकु है, या फिर इसमें तीव्र कोने हैं (क्योंकि प्रत्येक (−2)-वक्र वक्रों के शंकु की पृथक चरम किरण तक विस्तारित होता है)।

ऑटोमोर्फिज्म समूह

बीजगणितीय प्रकारों के मध्य K3 सतहें कुछ सीमा तक असामान्य हैं क्योंकि उनके ऑटोमोर्फिज्म समूह अनंत, असतत और अत्यधिक नॉनबेलियन हो सकते हैं। टोरेली प्रमेय के संस्करण के अनुसार, जटिल बीजगणितीय K3 सतह X का पिकार्ड जाली अनुरूपता (समूह सिद्धांत) तक X के ऑटोमोर्फिज्म समूह को निर्धारित करता है। अर्थात्, मान लें कि 'वेइल समूह' W आधारों के समुच्चय में प्रतिबिंबों द्वारा उत्पन्न ऑर्थोगोनल समूह O(पिक(X)) का उपसमूह है, तब W, O(पिक(X)) का सामान्य उपसमूह है, और X का ऑटोमोर्फिज्म समूह भागफल समूह O(पिक(X))/W के अनुरूप है। हंस स्टर्क के कारण संबंधित कथन यह है कि ऑट (X) तर्कसंगत पॉलीहेड्रल मौलिक डोमेन के साथ X के नेफ शंकु पर कार्य करता है।[28]

स्ट्रिंग द्वंद्व से संबंध

K3 सतहें स्ट्रिंग द्वैत में लगभग सर्वव्यापी दिखाई देती हैं और इसे समझने के लिए महत्वपूर्ण उपकरण प्रदान करती हैं। कॉम्पैक्टीफिकेशन (भौतिकी) इन सतहों पर स्ट्रिंग सिद्धांत में कॉम्पैक्टीफिकेशन सामान्य नहीं है, फिर भी वे अपने अधिकांश गुणों का विस्तार से विश्लेषण करने के लिए सरल हैं। प्रकार IIA स्ट्रिंग, प्रकार IIB स्ट्रिंग, E8×E8 हेटेरोटिक स्ट्रिंग, स्पिन(32)/Z2 हेटेरोटिक स्ट्रिंग, और एम-सिद्धांत K3 सतह पर संघनन द्वारा संबंधित हैं। उदाहरण के लिए, K3 सतह पर संकुचित प्रकार IIA स्ट्रिंग 4-टोरस पर संकुचित हेटेरोटिक स्ट्रिंग के समान है (Aspinwall (1996)) I

इतिहास

चतुर्थक सतहों में अर्न्स्ट कुमेर, आर्थर केली, फ्रेडरिक शूर और अन्य 19वीं सदी के जियोमीटर द्वारा अध्ययन किया गया था। अधिक सामान्यतः, फेडरिको एनरिक्स ने 1893 में देखा कि विभिन्न संख्याओं g के लिए, डिग्री 2g−2 की सतहें तुच्छ विहित बंडल और अनियमितता शून्य के साथ होती हैं।[29] 1909 में, एनरिकेज़ ने प्रदर्शित किया कि ऐसी सतहें सभी के लिए उपस्थित हैं, , और फ्रांसिस सेवेरी ने प्रदर्शित किया कि ऐसी सतहों के मॉड्यूलि स्पेस में प्रत्येक g के लिए आयाम 19 है।[30]

आंद्रे वेल (1958) ने K3 सतहों को उनका नाम दिया (ऊपर उद्धरण देखें) और उनके वर्गीकरण के सम्बन्ध में कई प्रभावशाली अनुमान लगाए। कुनिहिको कोदैरा ने 1960 के निकट मूलरूप सिद्धांत पूर्ण किया, विशेष रूप से जटिल विश्लेषणात्मक K3 सतहों का प्रथम व्यवस्थित अध्ययन किया जो बीजगणितीय नहीं हैं। उन्होंने प्रदर्शित किया कि कोई भी दो जटिल विश्लेषणात्मक K3 सतहें विरूपण-समतुल्य हैं और इसलिए भिन्नरूपी हैं, जो बीजगणितीय K3 सतहों के लिए भी नया था। महत्वपूर्ण प्रगति जटिल बीजीय K3 सतहों के लिए इल्या पियाटेत्स्की-शापिरो और इगोर शफ़ारेविच (1971) द्वारा टोरेली प्रमेय का प्रमाण था, जिसे डैनियल बर्न्स और माइकल रैपोपोर्ट (1975) द्वारा जटिल विश्लेषणात्मक K3 सतहों तक विस्तारित किया गया था।

यह भी देखें

टिप्पणियाँ

  1. Huybrechts (2016), Remark 1.1.2
  2. Huybrechts (2016), section 2.3.
  3. Huybrechts (2016), section 2.4.
  4. Huybrechts (2016), Theorem 7.1.1.
  5. Barth et al. (2004), section IV.3.
  6. Huybrechts (2016), Theorem 9.5.1.
  7. Huybrechts (2016), Proposition 3.3.5.
  8. Scorpan (2005), section 5.3.
  9. Huybrechts (2016), Remark 1.3.6(ii).
  10. Graded Ring Database; K3 database for Magma.
  11. Barth et al. (2004), Theorem 6.1.
  12. Huybrechts (2016), Corollary 14.3.1 and Remark 14.3.7.
  13. Huybrechts (2016), Remark 11.1.12.
  14. Huybrechts (2016), Proposition 11.1.3.
  15. Huybrechts (2016), Corollary 13.1.5.
  16. Kamenova et al. (2014), Corollary 2.2; Huybrechts (2016), Corollary 13.2.2.
  17. Huybrechts (2016), section 13.0.3.
  18. Huybrechts (2016), section 6.3.3.
  19. Huybrechts (2016), section 6.3.1 and Remark 6.3.6.
  20. Huybrechts (2016), section 7.1.3.
  21. Huybrechts (2016), Theorem 7.5.3.
  22. Huybrechts (2016), Definition 2.4.1.
  23. Huybrechts (2016), Corollary 6.4.4.
  24. Huybrechts (2016), section 7.1.1.
  25. Huybrechts (2016), section 5.1.4 and Remark 6.4.5.
  26. Huybrechts (2016), Corollary 8.2.11.
  27. Huybrechts (2016), Corollary 8.3.12.
  28. Huybrechts (2016), Theorem 8.4.2.
  29. Enriques (1893), section III.6.
  30. Enriques (1909); Severi (1909).


संदर्भ


बाहरी संबंध