डीएनए क्षति (स्वाभाविक रूप से होने वाली)
डीएनए क्षति डीएनए की रासायनिक संरचना में एक परिवर्तन है, जैसे डीएनए के एक स्ट्रैंड में टूटना, डीएनए की रीढ़ से एक न्यूक्लियोबेस गायब होना, या 8-ओएचडीजी जैसे रासायनिक रूप से परिवर्तित आधार डीएनए क्षति स्वाभाविक रूप से या पर्यावरणीय कारकों के माध्यम से हो सकती है, लेकिन उत्परिवर्तन से स्पष्ट रूप से भिन्न है, हालांकि दोनों डीएनए में त्रुटि के प्रकार हैं। डीएनए क्षति डीएनए में एक असामान्य रासायनिक संरचना है, जबकि उत्परिवर्तन आधार जोड़े के अनुक्रम में परिवर्तन है। डीएनए क्षति आनुवंशिक सामग्री की संरचना में परिवर्तन का कारण बनती है और प्रतिकृति तंत्र को कार्य करने और ठीक से काम करने से रोकती है।[1] डीएनए क्षति प्रतिक्रिया (डीडीआर) एक जटिल सिग्नल ट्रांसडक्शन मार्ग है जो डीएनए क्षतिग्रस्त होने पर पहचानता है और क्षति के लिए सेलुलर प्रतिक्रिया शुरू करता है।[2]
डीएनए क्षति और उत्परिवर्तन के अलग-अलग जैविक परिणाम होते हैं। जबकि अधिकांश डीएनए क्षतियों की डीएनए मरम्मत की जा सकती है, ऐसी मरम्मत 100% कुशल नहीं है। बिना मरम्मत के डीएनए क्षति गैर-प्रतिकृति कोशिकाओं, जैसे वयस्क स्तनधारियों के मस्तिष्क या मांसपेशियों में कोशिकाओं में जमा हो जाती है, और उम्र बढ़ने का कारण बन सकती है।[3][4][5] (उम्र बढ़ने के डीएनए क्षति सिद्धांत को भी देखें।) प्रतिकृति कोशिकाओं में, जैसे कि बृहदान्त्र को अस्तर करने वाली कोशिकाएं, डीएनए के टेम्पलेट स्ट्रैंड में पिछली क्षति की प्रतिकृति पर या डीएनए क्षति की मरम्मत के दौरान त्रुटियां होती हैं। ये त्रुटियाँ उत्परिवर्तन या एपिजेनेटिक परिवर्तन को जन्म दे सकती हैं।[6] इन दोनों प्रकार के परिवर्तनों को दोहराया जा सकता है और बाद की कोशिका पीढ़ियों में पारित किया जा सकता है। ये परिवर्तन जीन के कार्य या जीन अभिव्यक्ति के नियमन को बदल सकते हैं और संभवतः कैंसर की प्रगति में योगदान कर सकते हैं।
कोशिका चक्र के दौरान यह सुनिश्चित करने के लिए विभिन्न चेकप्वाइंटस हैं कि कोशिका माइटोसिस की प्रगति के लिए अच्छी स्थिति में है। तीन मुख्य चेकप्वाइंट G1/s, G2/m पर हैं, और स्पिंडल असेंबली चेकपॉइंट पर एनाफेज के माध्यम से प्रगति को नियंत्रित करते हैं। G1 चरण और G2 चरण चेकप्वाइंटस में क्षतिग्रस्त डीएनए के लिए स्कैनिंग शामिल है।[5] एस चरण के दौरान कोशिका चक्र के किसी भी अन्य भाग की तुलना में कोशिका डीएनए क्षति के प्रति अधिक संवेदनशील होती है। G2 चेकपॉइंट क्षतिग्रस्त डीएनए और डीएनए प्रतिकृति पूर्णता के लिए जाँच करता है।
प्ररूप
स्वाभाविक रूप से होने वाले डीएनए को नुकसान चयापचय या हाइड्रोलिसिस प्रक्रियाओं से हो सकता है। उपापचय यौगिकों को रिलीज करता है जो डीएनए को नुकसान पहुंचाता है, जिसमें प्रतिक्रियाशील ऑक्सीजन प्रजातियां, प्रतिक्रियाशील नाइट्रोजन प्रजातियां, प्रतिक्रियाशील कार्बोनिल प्रजातियां, लिपिड पेरोक्सिडेशन उत्पाद और ऐल्किलन शामिल हैं, जबकि हाइड्रोलिसिस डीएनए में रासायनिक बंधनों को साफ करता है।[6] स्वाभाविक रूप से होने वाली ऑक्सीडेटिव डीएनए क्षति मनुष्यों में प्रति दिन प्रति कोशिका कम से कम 10,000 गुना और रैटस में प्रति दिन 100,000 प्रति दिन होती है।[1] जैसा कि नीचे प्रलेखित है।
ऑक्सीडेटिव डीएनए क्षति 20 से अधिक प्रकार के परिवर्तित आधारों[7][8] के साथ-साथ एकल स्ट्रैंड के टूटने का कारण बन सकती है।[9]
अन्य प्रकार की अंतर्जात डीएनए क्षति, उनकी घटना की आवृत्तियों के साथ नीचे दी गई है, जिसमें डिप्यूरिनेशन, डिपिरिमिडिनेशन, डबल-स्ट्रैंड ब्रेक, O6-मिथाइलगुआनिन और साइटोसिन डीमिनेशन शामिल हैं।
डीएनए पर्यावरणीय कारकों के माध्यम से भी क्षतिग्रस्त हो सकता है। यूपर्यावरणीय एजेंट जैसे यूवी प्रकाश, आयनीकृत विकिरण और जीनोटॉक्सिक रसायन क्षतिग्रस्त डीएनए के कारण प्रतिकृति कांटे रुक सकते हैं और डबल स्ट्रैंड टूटना भी डीएनए क्षति का एक रूप है।[10]
फ्रीक्वेंसी
नीचे दी गई सूची कुछ आवृत्तियों को दिखाती है जिसके साथ अंतर्जात सेलुलर प्रक्रियाओं के कारण प्रति दिन नए स्वाभाविक रूप से होने वाली डीएनए क्षति उत्पन्न होती है।
- ऑक्सीडेटिव नुकसान
- मनुष्य, प्रति कोशिका प्रति दिन:
- रैट, प्रति कोशिका प्रति दिन:
- डेपुरिनेशन
- डिपाइरिमिनेशन
- O6-मिथाइलगुआनिन्स
एक अन्य महत्वपूर्ण अंतर्जात डीएनए क्षति एम1डीजी है, जो (3-(2'-डीऑक्सी-बीटा-डी-एरिथ्रो-पेंटोफ्यूरानोसिल)-पाइरिमिडो[1,2-ए]-प्यूरिन-10(3एच)-वन) का संक्षिप्त रूप है। यूरिन में एम1डीजी का उत्सर्जन (घटना की संभावित प्रतिबिंबित दर) 8-ऑक्सोडजी की तुलना में 1,000 गुना कम हो सकता है।[23] हालाँकि, एक अधिक महत्वपूर्ण उपाय डीएनए में स्थिर-अवस्था का स्तर हो सकता है, जो घटना की दर और डीएनए की मरम्मत की दर दोनों को दर्शाता है। M1dG का स्थिर-अवस्था स्तर 8-ऑक्सोडजी से अधिक है।[24] यह इंगित करता है कि कम दर पर उत्पन्न होने वाली कुछ डीएनए क्षति की मरम्मत करना और डीएनए में उच्च स्थिर-अवस्था स्तर पर रहना मुश्किल हो सकता है। एम1डीजी[25] और 8-ऑक्सोडजी[26] दोनों उत्परिवर्तजन हैं।
स्थिर-अवस्था स्तर
डीएनए क्षति के स्थिर-अवस्था स्तर गठन और मरम्मत के बीच संतुलन का प्रतिनिधित्व करते हैं। 100 से अधिक प्रकार के ऑक्सीडेटिव डीएनए क्षति की विशेषता बताई गई है, और 8-ऑक्सोडजी डीएनए में स्थिर राज्य ऑक्सीडेटिव क्षति का लगभग 5% है।[15] हल्बेक एट अल[11]अनुमान है कि युवा रैटस में प्रति कोशिका 24,000 स्थिर अवस्था ऑक्सीडेटिव डीएनए व्यसन और पुराने रैटस में प्रति कोशिका 66,000 व्यसन थे। यह उम्र के साथ डीएनए क्षति के संचय को दर्शाता है। उम्र के साथ डीएनए क्षति संचय को आगे उम्र बढ़ने के डीएनए क्षति सिद्धांत में वर्णित किया गया है।
स्वेनबर्ग एट अल[27] स्तनधारी कोशिकाओं में चयनित स्थिर अवस्था अंतर्जात डीएनए क्षति की मापी गई औसत मात्रा उनके द्वारा मूल्यांकन किए गए सात सबसे आम नुकसान तालिका 1 में दिखाए गए हैं।
अंतर्जात विक्षति | Number per cell |
---|---|
Abasic sites | 30,000 |
N7-(2-hydroxethyl)guanine (7HEG) | 3,000 |
8-hydroxyguanine | 2,400 |
7-(2-oxoethyl)guanine | 1,500 |
Formaldehyde adducts | 960 |
Acrolein-deoxyguanine | 120 |
Malondialdehyde-deoxyguanine | 60 |
रैट, नाकामुरा और स्वेनबर्ग के विशिष्ट ऊतकों में स्थिर-अवस्था के नुकसान का मूल्यांकन[28] संकेत दिया कि मस्तिष्क में लीवर, किडनी और फेफड़े में लगभग 50,000 प्रति कोशिका से लेकर मस्तिष्क में लगभग 200,000 प्रति कोशिका तक एबेसिक साइटों की संख्या भिन्न होती है।
बायोमोलेक्यूलर पाथवे
अंतर्जात डीएनए क्षति को बढ़ावा देने वाले प्रोटीन की पहचान 2019 के पेपर में डीएनए क्षति-अप प्रोटीन (डीडीपी) के रूप में की गई थी।[29] डीडीपी तंत्र 3 समूहों में आते हैं:
- ट्रांसमेम्ब्रेन ट्रांसपोर्टर्स द्वारा प्रतिक्रियाशील ऑक्सीजन में वृद्धि,
- प्रतिकृति बंधन द्वारा गुणसूत्र हानि,
- प्रतिलेखन कारकों द्वारा प्रतिकृति रोकना।[29]
ज्ञात कैंसर ड्राइवरों में डीडीपी मानव समरूपता का अधिक प्रतिनिधित्व किया जाता है, और ट्यूमर में उनके आरएनए भारी उत्परिवर्तन और खराब पूर्वानुमान की भविष्यवाणी करते हैं।[29]
क्षतिग्रस्त डीएनए की मरम्मत
डीएनए क्षति की उपस्थिति में, कोशिका या तो क्षति की मरम्मत कर सकती है या क्षति की मरम्मत से परे होने पर कोशिका मृत्यु को प्रेरित कर सकती है।
प्रकार
डीएनए की मरम्मत के सात मुख्य प्रकार और क्षति सहिष्णुता का एक मार्ग, वे जिन घावों को संबोधित करते हैं, और मरम्मत की सटीकता (या सहनशीलता) इस तालिका में दिखाई गई हैं। मरम्मत के चरणों के संक्षिप्त विवरण के लिए डीएनए मरम्मत#यांत्रिकी देखें या प्रत्येक व्यक्तिगत मार्ग देखें।
Repair pathway | Lesions | Accuracy | Ref. |
---|---|---|---|
Base excision repair | corrects DNA damage from oxidation, deamination and ऐल्किलन, also single-strand breaks | accurate | [30][31] |
Nucleotide excision repair | oxidative endogenous lesions such as cyclopurine, sunlight-induced thymine dimers (cyclobutane dimers and pyrimidine (6-4) pyrimidone photoproducts) | accurate | [32][33][34] |
Homology-directed repair | double-strand breaks in the mid-S phase or mid-G2 phase of the cell cycle | accurate | [35] |
Non-homologous end joining | double-strand breaks if cells are in the G0 phase, the G1 phase, or the G2 phase of the cell cycle | somewhat inaccurate | [35] |
Microhomology-mediated end joining or alt-End joining | double-strand breaks in the S phase of the cell cycle | always inaccurate | [35] |
DNA mismatch repair | base substitution mismatches and insertion-deletion mismatches generated during DNA replication | accurate | [36] |
Direct reversal (MGMT and AlkB) | 6-O-methylguanine is reversed to guanine by MGMT, some other methylated bases are demethylated by AlkB | accurate | [37] |
Translesion synthesis | DNA damage tolerance process that allows the DNA replication machinery to replicate past DNA lesions | may be inaccurate | [38] |
बुढ़ापा और कैंसर
योजनाबद्ध आरेख उम्र बढ़ने और कैंसर में अपर्याप्त डीएनए की मरम्मत की भूमिका और कैंसर की रोकथाम में apoptosis की भूमिका को इंगित करता है। विशेष रूप से डीएनए मरम्मत एंजाइमों में विरासत में मिली कमियों के कारण स्वाभाविक रूप से होने वाली डीएनए क्षति की अधिकता, समय से पहले बुढ़ापा या कैंसर के बढ़ते जोखिम का कारण बन सकती है (डीएनए मरम्मत-कमी विकार देखें)। दूसरी ओर, कैंसर की रोकथाम के लिए अतिरिक्त मरम्मत न किए गए डीएनए क्षति की उपस्थिति में एपोप्टोसिस को ट्रिगर करने की क्षमता महत्वपूर्ण है।[39]
एपोप्टोसिस और कैंसर की रोकथाम
डीएनए की मरम्मत करने वाले प्रोटीन अक्सर सक्रिय या प्रेरित होते हैं जब डीएनए को नुकसान होता है। हालांकि, अत्यधिक डीएनए क्षति एपोप्टोसिस (यानी, क्रमादेशित कोशिका मृत्यु) की शुरुआत कर सकती है यदि डीएनए क्षति का स्तर मरम्मत क्षमता से अधिक हो। एपोप्टोसिस कोशिकाओं को अतिरिक्त डीएनए क्षति के साथ उत्परिवर्तजन और कैंसर की प्रगति से रोक सकता है।[40] सूजन # कैंसर में मध्यस्थ और डीएनए की क्षति अक्सर संक्रमण के कारण होती है, जैसे कि हेपेटाइटिस बी वायरस (एचबीवी), हेपेटाइटिस सी वायरस (एचसीवी) या हैलीकॉप्टर पायलॉरी । जीर्ण सूजन भी मोटापे की एक केंद्रीय विशेषता है।[41][42][43][44] इस तरह की सूजन ऑक्सीडेटिव डीएनए क्षति का कारण बनती है। यह विभिन्न इंट्रासेल्युलर भड़काऊ मध्यस्थों द्वारा प्रतिक्रियाशील ऑक्सीजन प्रजातियों (आरओएस) को शामिल करने के कारण है।[45][46][47] एचबीवी और एचसीवी संक्रमण, विशेष रूप से, क्रमशः इंट्रासेल्युलर आरओएस उत्पादन में 10,000 गुना और 100,000 गुना वृद्धि का कारण बनते हैं।[48] सूजन-प्रेरित आरओएस जो डीएनए क्षति का कारण बनता है, एपोप्टोसिस को ट्रिगर कर सकता है,[49][50] लेकिन कैंसर का कारण भी बन सकता है अगर मरम्मत और एपोप्टोटिक प्रक्रियाएं अपर्याप्त रूप से सुरक्षात्मक हैं।[42]
पित्त अम्ल, पित्त यूरिनाशय में संग्रहीत, आहार में वसा के जवाब में छोटी आंत में छोड़े जाते हैं। वसा का उच्च स्तर अधिक रिलीज का कारण बनता है।[51] पित्त अम्ल डीएनए की क्षति का कारण बनते हैं, जिसमें ऑक्सीडेटिव डीएनए क्षति, डबल-स्ट्रैंड डीएनए टूटना, aeuploidy और गुणसूत्र टूटना शामिल है।[52] बाइल एसिड डीऑक्सीकोलिक एसिड के उच्च-सामान्य स्तर मानव कोलन कोशिकाओं में एपोप्टोसिस का कारण बनते हैं,[53] लेकिन अगर मरम्मत और एपोप्टोटिक बचाव अपर्याप्त हैं तो यह कोलन कैंसर का कारण भी बन सकता है।[54] एपोप्टोसिस ट्यूमरजेनिसिस के खिलाफ एक सुरक्षा तंत्र के रूप में कार्य करता है।[55] यह बढ़े हुए उत्परिवर्तजनन को रोकता है जो प्रतिकृति पर अतिरिक्त डीएनए क्षति का कारण बन सकता है।[56] कम से कम 17 डीएनए मरम्मत प्रोटीन, पांच डीएनए मरम्मत मार्गों के बीच वितरित, डीएनए क्षति के जवाब में दोहरी भूमिका निभाते हैं। मध्यम स्तर के डीएनए क्षति के साथ, ये प्रोटीन डीएनए की मरम्मत शुरू करते हैं या योगदान करते हैं। हालांकि, जब डीएनए क्षति के अत्यधिक स्तर मौजूद होते हैं, तो वे एपोप्टोसिस को ट्रिगर करते हैं।[40]
डीएनए क्षति प्रतिक्रिया
यूकेरियोटिक डीएनए की क्रोमेटिन में पैकेजिंग सभी डीएनए-आधारित प्रक्रियाओं के लिए एक बाधा है जिसके लिए एंजाइम क्रिया की आवश्यकता होती है। अधिकांश डीएनए मरम्मत प्रक्रियाओं के लिए, क्रोमैटिन को क्रोमैटिन रीमॉडेलिंग होना चाहिए। यूकेरियोट्स में, एडेनोसाइन ट्रायफ़ोस्फेट क्रोमैटिन रीमॉडेलिंग कॉम्प्लेक्स और हिस्टोन-संशोधित एंजाइम दो कारक हैं जो डीएनए क्षति होने के बाद इस रीमॉडेलिंग प्रक्रिया को पूरा करने के लिए कार्य करते हैं।[57] आगे डीएनए की मरम्मत के चरण, जिसमें कई एंजाइम शामिल होते हैं, आमतौर पर अनुसरण करते हैं। डीएनए क्षति की कुछ पहली प्रतिक्रियाएँ, उनके समय के साथ, नीचे वर्णित हैं। प्रत्येक मार्ग का वर्णन करने वाले लेखों में डीएनए मरम्मत मार्गों का अधिक संपूर्ण विवरण प्रस्तुत किया गया है। डीएनए की मरम्मत के रास्ते में कम से कम 169 एंजाइम शामिल हैं।[58]
बेस एक्सिशन रिपेयर
डीएनए में ऑक्सीडाइज़्ड बेस हॉचस्ट डाई से उपचारित कोशिकाओं में उत्पन्न होते हैं, जिसके बाद 405 एनएम प्रकाश के साथ सूक्ष्म-विकिरण होता है।[59] इस तरह के ऑक्सीडाइज्ड बेस को आधार छांटना मरम्मत द्वारा रिपेयर किया जा सकता है।
जब 405 एनएम प्रकाश एक सेल के केंद्रक के भीतर एक संकीर्ण रेखा के साथ केंद्रित होता है, विकिरण के लगभग 2.5 सेकंड के बाद, क्रोमैटिन रीमॉडेलिंग एंजाइम CHD1L विकिरणित माइक्रो-लाइन पर आधा-अधिकतम भर्ती प्राप्त करता है।[60] क्रोमैटिन की रेखा जो विकिरणित थी, फिर आराम करती है, अगले 60 सेकंड में एक तरफ बढ़ती है।[60]
405 एनएम प्रकाश के साथ विकिरण के 6 सेकंड के भीतर, विकिरणित लाइन में ऑक्सोगुआनिन ग्लाइकोसिलेज़ की आधी-अधिकतम भर्ती होती है।[59]OGG1 एक एंजाइम है जो डीएनए से ऑक्सीडेटिव डीएनए क्षति 8-ऑक्सो-2'-डीऑक्सीग्वानोसिन | 8-ऑक्सो-डीजी को हटाता है। बेस एक्सिशन रिपेयर के दौरान 8-ऑक्सो-डीजी को हटाना 11 मिनट के आधे जीवन के साथ होता है।[15]
न्यूक्लियोटाइड छांटना मरम्मत
पराबैंगनी (यूवी) प्रकाश पाइरीमिडीन डिमर (जैसे थाइमिन डिमर्स) और 6,4 फोटोप्रोडक्ट्स सहित डीएनए क्षति के गठन को प्रेरित करता है। इस प्रकार के भारी नुकसान की मरम्मत न्यूक्लियोटाइड छांटना मरम्मत द्वारा की जाती है।
यूवी प्रकाश के साथ विकिरण के बाद, DDB2, DDB1 के साथ एक परिसर में, सर्वव्यापी लिगेज प्रोटीन CUL4A और रिंग फिंगर प्रोटीन ROC1, क्रोमैटिन के भीतर क्षति के स्थलों के साथ जुड़ जाता है। आधा-अधिकतम जुड़ाव 40 सेकंड में होता है।[61] PARP1 भी इसी अवधि में संबद्ध होता है।[62] PARP1 प्रोटीन DDB1 और DDB2 दोनों से जुड़ता है और फिर DDB2 पर ADP-राइबोसाइलेशन #Poly ADP-राइबोसाइलेशन (एक पॉली-ADP राइबोस चेन बनाता है) जो डीएनए रीमॉडेलिंग प्रोटीन CHD1L को आकर्षित करता है।[62] ALC1 डीएनए को यूवी क्षति के स्थलों पर क्रोमैटिन को आराम देता है। इसके अलावा, सर्वव्यापी E3 लिगेज कॉम्प्लेक्स DDB1-CUL4A कोर हिस्टोन H2A, H3, और H4 के साथ-साथ मरम्मत प्रोटीन XPC का सर्वव्यापीकरण करता है, जो डीएनए क्षति की साइट पर आकर्षित किया गया है।[63] XPC, सर्वव्यापकता पर, सक्रिय होता है और न्यूक्लियोटाइड एक्सिशन रिपेयर पाथवे शुरू करता है। कुछ समय बाद, यूवी क्षति के 30 मिनट बाद, क्रोमैटिन रीमॉडेलिंग#ज्ञात क्रोमेटिन रीमॉडेलिंग कॉम्प्लेक्स क्रोमैटिन रीमॉडेलिंग कॉम्प्लेक्स को डीएनए क्षति के स्थान पर भर्ती किया जाता है, और यह ERCC1 सहित आगे के न्यूक्लियोटाइड एक्सिशन रिपेयर प्रोटीन के बंधन के साथ मेल खाता है।[64]
सजातीय पुनर्संयोजन मरम्मत
विशिष्ट स्थलों पर डबल-स्ट्रैंड ब्रेक (DSBs) को प्लास्मिड एन्कोडिंग मेगन्यूक्लिज़ I-SceI | I-SceI एंडोन्यूक्लिज़ (एक होमिंग एंडोन्यूक्लिज़) के साथ कोशिकाओं को ट्रांसफ़ेक्ट करके प्रेरित किया जा सकता है। 780 एनएम प्रकाश के साथ संवेदनशील कोशिकाओं (ब्रोमोडॉक्सीयूरिडाइन के साथ लेबल | 5'-ब्रोमो-2'-डीऑक्सीयूरिडीन और होचस्ट डाई के साथ) को विकिरणित करके कई डीएसबी को प्रेरित किया जा सकता है। इन DSBs की मरम्मत सटीक सजातीय पुनर्संयोजन # मॉडल या कम सटीक गैर-समरूप अंत में मरम्मत मार्ग से जुड़कर की जा सकती है। यहाँ हम सजातीय पुनर्संयोजन मरम्मत (HRR) के शुरुआती चरणों का वर्णन करते हैं।
डीएसबी पेश करने के लिए कोशिकाओं का इलाज करने के बाद, तनाव-सक्रिय प्रोटीन किनेज, सी-जून एन-टर्मिनल किनेसेस | सी-जून एन-टर्मिनल किनेज (जेएनके), सेरीन 10 पर एसआईआरटी6 को फास्फोराइलेट करता है।[65] यह अनुवाद के बाद का संशोधन SIRT6 को डीएनए क्षति साइटों को एक सेकंड के भीतर आधी-अधिकतम भर्ती के साथ जुटाने की सुविधा प्रदान करता है।[65] डीएनए ब्रेक साइट पर पॉली (ADP-राइबोस) पोलीमरेज़ 1 (PARP1) की कुशल भर्ती के लिए और DSBs की कुशल मरम्मत के लिए साइट पर SIRT6 की आवश्यकता होती है।[65] PARP1 प्रोटीन DSBs में एक सेकंड से भी कम समय में दिखाई देना शुरू हो जाता है, क्षति होने के बाद 1.6 सेकंड के भीतर आधा अधिकतम संचय होता है।[66] इसके बाद 13 सेकंड के भीतर डीएनए की मरम्मत करने वाले एंजाइम MRE11A और 28 सेकंड के भीतर एमआरएन कॉम्प्लेक्स की आधी अधिकतम भर्ती की अनुमति मिलती है।[66] MRE11 और NBS1 HRR पाथवे के शुरुआती चरणों को पूरा करते हैं।
γH2AX, H2AFX का फॉस्फोराइलेटेड रूप भी DSB मरम्मत के शुरुआती चरणों में शामिल है। हिस्टोन वैरिएंट H2AX मानव क्रोमैटिन में H2A हिस्टोन का लगभग 10% बनता है।[67] γH2AX (सेरीन 139 पर H2AX फॉस्फोराइलेटेड) को कोशिकाओं के विकिरण (डीएनए डबल-स्ट्रैंड ब्रेक फॉर्मेशन के साथ) के 20 सेकंड बाद ही पता लगाया जा सकता है, और γH2AX का आधा अधिकतम संचय एक मिनट में होता है।[67] फॉस्फोराइलेटेड γH2AX के साथ क्रोमैटिन की सीमा डीएनए डबल-स्ट्रैंड ब्रेक के स्थल पर लगभग दो मिलियन बेस पेयर है।[67] γH2AX स्वयं, क्रोमेटिन विसंकुलन का कारण नहीं बनता है, लेकिन विकिरण के 30 सेकंड के भीतर, γH2AX के सहयोग से RNF8 प्रोटीन का पता लगाया जा सकता है।[68] RNF8 CHD4 के साथ इसके बाद की बातचीत के माध्यम से व्यापक क्रोमैटिन डीकोंडेशन की मध्यस्थता करता है,[69] न्यूक्लियोसोम रीमॉडेलिंग और डीएसेटाइलेज़ कॉम्प्लेक्स Mi-2/NuRD कॉम्प्लेक्स का एक घटक।
डीएनए की मरम्मत के लिए रुकें
तेजी से क्रोमैटिन रीमॉडेलिंग के बाद, सेल चक्र की प्रगति से पहले डीएनए की मरम्मत को पूरा करने की अनुमति देने के लिए सेल साइकल सेल चक्र चौकी को सक्रिय किया जा सकता है। सबसे पहले, डीएनए के क्षतिग्रस्त होने के 5 या 6 मिनट के भीतर दो काइनेज, गतिभंग टेलैंगिएक्टेसिया उत्परिवर्तित और गतिभंग टेलैंगिएक्टेसिया और रेड 3 संबंधित सक्रिय हो जाते हैं। इसके बाद कोशिका चक्र चेकप्वाइंट प्रोटीन CHEK1 का फास्फारिलीकरण होता है, जो डीएनए के क्षतिग्रस्त होने के लगभग 10 मिनट बाद अपना कार्य शुरू करता है।[70]
जीन नियमन में ग्वानिन को ऑक्सीडेटिव क्षति की भूमिका
डीएनए की क्षति 8-ऑक्सो-2'-डीऑक्सीग्वानोसिन | 8-ऑक्सो-डीजी जीनोम में बेतरतीब ढंग से नहीं होती है। रैट भ्रूण फाइब्रोब्लास्ट्स में, 8-ऑक्सो-डीजी का 2 से 5 गुना संवर्धन आनुवंशिक नियंत्रण क्षेत्रों में पाया गया, जिसमें प्रमोटर (आनुवांशिकी), पांच प्रमुख अनट्रांसलेटेड रीजन | 5'-अनट्रांसलेटेड रीजन और तीन प्राइम अनट्रांसलेटेड रीजन | 3'- शामिल हैं। जीन निकायों और इंटरजेनिक क्षेत्रों में पाए जाने वाले 8-ऑक्सो-डीजी स्तरों की तुलना में अनियंत्रित क्षेत्र।[71] रैट फुफ्फुसीय धमनी एंडोथेलियल कोशिकाओं में, जब 8-ऑक्सो-डीजी के स्थानों के लिए 22,414 प्रोटीन-कोडिंग जीन की जांच की गई, तो अधिकांश 8-ऑक्सो-डीजी (जब मौजूद थे) जीन निकायों के बजाय प्रमोटर क्षेत्रों में पाए गए।[72] सैकड़ों जीनों में जिनकी अभिव्यक्ति का स्तर हाइपोक्सिया से प्रभावित था, नए अधिग्रहीत प्रमोटर 8-ऑक्सो-डीजी वाले लोग डाउनरेगुलेशन और अपग्रेड थे, और जिन जीनों के प्रमोटरों ने 8-ऑक्सो-डीजी खो दिए थे, वे लगभग सभी डाउनरेगुलेशन और अपग्रेडेशन थे।[72]
जैसा कि वांग एट अल द्वारा समीक्षा की गई है।[73] जीन अभिव्यक्ति में ऑक्सीकृत ग्वानिन की कई नियामक भूमिकाएँ प्रतीत होती हैं। विशेष रूप से, जब ऑक्सीडेटिव तनाव एक जीन के प्रवर्तक में 8-ऑक्सो-डीजी पैदा करता है, तो ऑक्सीडेटिव तनाव ऑक्सोगुआनिन ग्लाइकोसिलेज़ को भी निष्क्रिय कर सकता है, एक एंजाइम जो 8-ऑक्सो-डीजी को लक्षित करता है और सामान्य रूप से 8-ऑक्सो-डीजी क्षति की मरम्मत शुरू करता है। निष्क्रिय OGG1, जो अब 8-ऑक्सो-डीजी को एक्साइज नहीं करता है, फिर भी 8-ऑक्सो-डीजी के साथ लक्षित और जटिल होता है, और एक तेज (~70ओ) डीएनए में मोड़। यह एक ट्रांसक्रिप्शनल दीक्षा परिसर, संबंधित जीन के अप-रेगुलेटिंग ट्रांसक्रिप्शन की असेंबली की अनुमति देता है।[73][74] जब 8-ऑक्सो-डीजी गुआनाइन रिच, जी-चौगुनी में बनता है। प्रमोटर के कोडिंग स्ट्रैंड में संभावित जी-क्वाड्रुप्लेक्स-फॉर्मिंग सीक्वेंस (पीक्यूएस), सक्रिय ओजीजी1 8-ऑक्सो-डीजी को एक्साइज करता है और एक एपी साइट बनाता है। apurinic/apyrimidinic साइट (एपी साइट)। AP साइट G-quadruplex fold (G4 structure/motif) को अपनाते हुए PQS को अनमास्क करने के लिए डुप्लेक्स को पिघलाने में सक्षम बनाती है जिसकी ट्रांसक्रिप्शन सक्रियण में एक नियामक भूमिका होती है।[73][75] जब 8-ऑक्सो-डीजी को सक्रिय ओजीजी1 के साथ जटिल किया जाता है तो यह जीन अभिव्यक्ति को संशोधित करने के लिए क्रोमैटिन रीमॉडेलिंग की भर्ती कर सकता है। CHD4|Chromodomain helicase DNA-बाध्यकारी प्रोटीन 4 (CHD4), Mi-2/NuRD कॉम्प्लेक्स|(NuRD) कॉम्प्लेक्स का एक घटक, OGG1 द्वारा ऑक्सीडेटिव डीएनए क्षति स्थलों पर भर्ती किया जाता है। CHD4 तब डीएनए और हिस्टोन मिथाइलेटिंग एंजाइम को आकर्षित करता है जो संबंधित जीनों के प्रतिलेखन को दबा देता है।[73]
स्मृति निर्माण में डीएनए क्षति की भूमिका
ग्वानिन का ऑक्सीकरण
ग्वानिन का ऑक्सीकरण, विशेष रूप से CpG साइटों के भीतर, सीखने और स्मृति में विशेष रूप से महत्वपूर्ण हो सकता है। ऊतक प्रकार के आधार पर साइटोसिन का मिथाइलेशन 60-90% CpG साइटों पर होता है।[76] स्तनधारी मस्तिष्क में ~ 62% CpGs मिथाइलेटेड होते हैं।[76] CpG साइट#CpG द्वीपों का मिथाइलेशन स्थिर रूप से मौन जीन को स्थिर रूप से मौन जीन की ओर ले जाता है।[77] इनमें से 500 से अधिक CpG साइट्स समुद्री घोड़ा के दौरान न्यूरॉन डीएनए में डी-मिथाइलेटेड होती हैं # हिप्पोकैम्पस में स्मृति और स्मृति समेकन में भूमिका[78][79] और सिंगुलेट कोर्टेक्स[79]मस्तिष्क के क्षेत्र। जैसा कि नीचे बताया गया है, CpG साइट पर मिथाइलेटेड साइटोसिन के डी-मिथाइलेशन में पहला कदम 8-ऑक्सो-डीजी बनाने के लिए ग्वानिन का ऑक्सीकरण है।
=== डीएनए डी-मिथाइलेशन === में ऑक्सीकृत ग्वानिन की भूमिका
इस खंड में आंकड़ा एक CpG साइट दिखाता है जहां साइटोसिन को 5-मिथाइलसीटोसिन (5mC) बनाने के लिए मिथाइलेट किया जाता है और ग्वानिन को 8-ऑक्सो-2'-डीऑक्सीग्वानोसिन बनाने के लिए ऑक्सीकृत किया जाता है (चित्र में यह टॉटोमेरिक फॉर्म 8- में दिखाया गया है) ओएचडीजी)। जब यह संरचना बनती है, तो बेस एक्सिशन रिपेयर एंजाइम ऑक्सोगुआनिन ग्लाइकोसिलेज़ 8-ओएचडीजी को लक्षित करता है और तत्काल एक्सिशन के बिना घाव को बांधता है। 5mCp-8-OHdG साइट पर मौजूद OGG1, tet मिथाइलसीटोसिन डाइऑक्सीजनेज़ 1 की भर्ती करता है, और TET1 8-OHdG से सटे 5mC को ऑक्सीकृत करता है। यह 5mC के डी-मिथाइलेशन की शुरुआत करता है।[80] टेट मिथाइलसीटोसिन डाइऑक्सीजनेज 1 एक प्रमुख एंजाइम है जो डी-मिथाइलेटिंग 5mCpG में शामिल है। हालांकि, TET1 केवल 5mCpG पर कार्य करने में सक्षम है, अगर गुआनिन को पहले 8-हाइड्रॉक्सी-2'-डीऑक्सीग्वानोसिन (8-OHdG या इसके tautomer 8-ऑक्सो-dG) बनाने के लिए ऑक्सीकृत किया गया था, जिसके परिणामस्वरूप 5mCp-8-OHdG डाइन्यूक्लियोटाइड ( इस खंड में चित्र देखें)।[80] यह मिथाइलेटेड साइटोसिन पर डी-मिथाइलेशन मार्ग की शुरुआत करता है, जिसके परिणामस्वरूप एक अनमेथिलेटेड साइटोसिन होता है (डीएनए ऑक्सीकरण देखें # डीएनए डी-मिथाइलेशन में ऑक्सीकृत गुआनिन की भूमिका अनमेथिलेटेड साइटोसिन बनाने में आगे के चरणों के लिए)।
डीएनए के मिथाइलेशन में परिवर्तन के कारण न्यूरॉन्स में परिवर्तित प्रोटीन अभिव्यक्ति, (संभवतः न्यूरॉन डीएनए के भीतर जीन प्रमोटरों में CpG साइटों के 8-ऑक्सो-डीजी-निर्भर डी-मिथाइलेशन द्वारा नियंत्रित) को स्मृति निर्माण के लिए केंद्रीय के रूप में स्थापित किया गया है।[81]
स्मृति निर्माण में डबल-स्ट्रैंड ब्रेक की भूमिका
न्यूरोनल गतिविधि से संबंधित DSBs का निर्माण
न्यूरोनल गतिविधि से संबंधित डीएनए के क्षेत्रों में डबल-स्ट्रैंडेड ब्रेक (डीएसबी) जीनोम के भीतर और आसपास विभिन्न तंत्रों द्वारा निर्मित होते हैं। एंजाइम TOP2B, या TOPIIβ प्रतिलेखन (जीव विज्ञान)जीव विज्ञान) को बढ़ावा देने के लिए डबल हेलिक्स के चारों ओर लिपटे हिस्टोन के डिमिथाइलेशन या ढीलेपन में सहायता करके DSB गठन में महत्वपूर्ण भूमिका निभाता है।[82] एक बार जब क्रोमैटिन संरचना खुल जाती है, तो DSB के जमा होने की संभावना अधिक होती है, हालाँकि, यह सामान्य रूप से TOPIIβ द्वारा इसकी आंतरिक धर्म क्षमता के माध्यम से मरम्मत की जाती है जो क्लीव्ड डीएनए सिरों से जुड़ती है।[82]
TOPIIβ की विफलता से प्रोटीन संश्लेषण पर भारी परिणाम हो सकते हैं, जहां यह अनुमान लगाया जाता है कि "TOPIβ गतिविधि को अवरुद्ध करने से विकास के सभी विनियमित जीनों में से लगभग एक-तिहाई की अभिव्यक्ति बदल जाती है," जैसे स्मृति समेकन में शामिल तंत्रिका तत्काल प्रारंभिक जीन (IEG) .[82][83] मस्तिष्क के हिप्पोकैम्पस क्षेत्र में बढ़ी हुई न्यूरोनल गतिविधि के जवाब में EGR1 | EGR-1, c-Fos, और Arc जीन IEG की तीव्र अभिव्यक्ति देखी गई है जहाँ स्मृति प्रसंस्करण होता है।[84] TOPIIβ की विफलता के खिलाफ एक निवारक उपाय के रूप में, DSB की मरम्मत के अणुओं को दो अलग-अलग रास्तों के माध्यम से भर्ती किया जाता है: गैर-होमोलॉगस एंड जॉइनिंग (NHEJ) पाथवे कारक, जो TOPIIβ के समान धर्म कार्य करते हैं, और होमोलॉगस पुनर्संयोजन मरम्मत | समरूप पुनर्संयोजन (HR) ) पाथवे, जो डीएनए के क्षतिग्रस्त स्ट्रैंड की मरम्मत के लिए एक टेम्पलेट के रूप में गैर-टूटी बहन स्ट्रैंड का उपयोग करता है।[82][85] न्यूरोनल गतिविधि का उत्तेजना, जैसा कि पहले आईईजी अभिव्यक्ति में उल्लेख किया गया है, एक अन्य तंत्र है जिसके माध्यम से डीएसबी उत्पन्न होते हैं। गतिविधि के स्तर में परिवर्तन का अध्ययन में बायोमार्कर के रूप में उपयोग किया गया है ताकि DSBs के बीच ओवरलैप का पता लगाया जा सके और IEGs के प्रवर्तक क्षेत्रों में हिस्टोन H3-K9 मिथाइलट्रांसफेरेज़ 5 मेथिलिकरण में वृद्धि हुई है।[82][85]अन्य अध्ययनों ने संकेत दिया है कि प्रयोज्य तत्व | ट्रांसपोजेबल एलिमेंट्स (टीई) अंतर्जात गतिविधि के माध्यम से डीएसबी का कारण बन सकते हैं जिसमें एंडोन्यूक्लिएज एंजाइम का उपयोग करना और यादृच्छिक साइटों पर लक्ष्य डीएनए को साफ करना शामिल है।[86][87]
DSBs और मेमोरी रीसंसॉलिडेशन
जबकि डीएसबी का संचय आम तौर पर दीर्घकालिक स्मृति समेकन को रोकता है, इसके विपरीत पुनर्विचार की प्रक्रिया डीएसबी-निर्भर है। स्मृति पुनर्संरचना में दीर्घकालिक स्मृति में संग्रहीत मौजूदा स्मृतियों का संशोधन शामिल है।[88] neuronal PAS डोमेन प्रोटीन 4 से जुड़े अनुसंधान, एक जीन जो प्रासंगिक सीखने और स्मृति निर्माण के दौरान हिप्पोकैम्पस में न्यूरोप्लास्टिकिटी को नियंत्रित करता है, ने कोडिंग क्षेत्र में विलोपन और ट्रांसजेनिक अनुसंधान रैटस में डर की यादों को याद करने में हानि के बीच एक लिंक का खुलासा किया है।[82]इसके अलावा, एंजाइम H3K4me3, जो H3K4 हिस्टोन के डीमिथाइलेशन को उत्प्रेरित करता है, पुनर्संरचना प्रक्रिया के दौरान NPAS4 जीन के प्रमोटर क्षेत्र में डाउनरेगुलेशन और अपरेगुलेशन था, जबकि जीन नॉकडाउन | नॉकडाउन (जीन नॉकडाउन) एक ही एंजाइम ने पुनर्विचार को बाधित किया।[82]इसी तरह का प्रभाव TOPIIβ में देखा गया, जहां नॉकडाउन ने रैटस में डर कंडीशनिंग प्रतिक्रिया को भी प्रभावित किया, यह दर्शाता है कि DSBs, एंजाइमों के साथ जो उन्हें नियंत्रित करते हैं, कई चरणों में स्मृति निर्माण को प्रभावित करते हैं।
DSBs और neurodegeneration
DSBs का निर्माण अधिक व्यापक रूप से न्यूरॉन्स के अध: पतन की ओर जाता है, स्मृति और सीखने की प्रक्रियाओं के कार्य में बाधा डालता है। कोशिका विभाजन और उच्च चयापचय की कमी के कारण, न्यूरॉन्स विशेष रूप से डीएनए क्षति के लिए प्रवण होते हैं।[85]इसके अतिरिक्त, न्यूरोनल-गतिविधि जीन के लिए डीएसबी और डीएनए मरम्मत अणुओं का असंतुलन अल्जाइमर रोग (एडी), पार्किंसंस रोग (पीडी), और पेशीशोषी पार्श्व काठिन्य (एएलएस) सहित विभिन्न मानव स्नायविक अध: पतन रोगों के विकास से जुड़ा हुआ है।[85]अल्जाइमर रोग के रोगियों में, DSB प्रारंभिक अवस्था में न्यूरॉन्स में जमा हो जाते हैं और स्मृति हानि के पीछे प्रेरक शक्ति होते हैं, जो रोग की एक प्रमुख विशेषता है।[85]अन्य बाहरी कारक जो एडी वाले लोगों में गतिविधि-निर्भर डीएसबी के स्तर में वृद्धि करते हैं, न्यूरॉन्स के लिए ऑक्सीडेटिव तनाव होते हैं, जिसके परिणामस्वरूप अधिक डीएसबी हो सकते हैं जब कई घाव एक दूसरे के करीब होते हैं। वायरस और उच्च वसा वाले आहार जैसे पर्यावरणीय कारक भी डीएनए मरम्मत अणुओं के बाधित कार्य से जुड़े हुए हैं।
एडी के साथ रोगियों के इलाज के लिए एक लक्षित थेरेपी में मानव मस्तिष्क में बीआरसीए 1 का दमन शामिल है, शुरुआत में ट्रांसजेनिक रैटस में परीक्षण किया गया था, जहां डीएसबी के स्तर में वृद्धि देखी गई थी और स्मृति हानि हुई थी, यह सुझाव देते हुए कि बीआरसीए 1 "एडी के लिए चिकित्सकीय लक्ष्य के रूप में कार्य कर सकता है" और एडी से संबंधित डिमेंशिया।" [85]इसी तरह, जीनोम के लिए सीखने और स्मृति में डीएनए की मरम्मत और एपिजेनेटिक्स में शामिल प्रोटीन एटीएम सेरीन / थ्रेओनीन किनेज सकारात्मक रूप से एडी दिमाग में न्यूरोनल नुकसान के साथ सहसंबद्ध है, यह दर्शाता है कि प्रोटीन न्यूरोडीजेनेरेशन, डीएसबी उत्पादन की आंतरिक रूप से जुड़ी प्रक्रियाओं में एक अन्य महत्वपूर्ण घटक है। , और स्मृति गठन।[85]
== एटीआर और एटीएम == की भूमिका
क्षति प्रतिक्रिया प्रणाली को ट्रिगर किए बिना अधिकांश क्षति की मरम्मत की जा सकती है, हालांकि अधिक जटिल क्षति एटीआर और एटीएम को सक्रिय करती है, क्षति प्रतिक्रिया प्रणाली में प्रमुख प्रोटीन किनेसेस।[89] डीएनए क्षति एम-सीडीके को रोकता है जो समसूत्रण में प्रगति का एक प्रमुख घटक है।
सभी यूकेरियोटिक कोशिकाओं में, एटीआर और एटीएम प्रोटीन किनेस होते हैं जो डीएनए क्षति का पता लगाते हैं। वे डीएनए क्षतिग्रस्त साइटों से जुड़ते हैं और CHEK1, CHEK2 और, पशु कोशिकाओं में, TP53 को सक्रिय करते हैं। साथ में, ये प्रोटीन डीएनए क्षति प्रतिक्रिया प्रणाली बनाते हैं। कुछ डीएनए क्षति के लिए एटीआर और एटीएम की भर्ती की आवश्यकता नहीं होती है, यह केवल कठिन और व्यापक क्षति है जिसके लिए एटीआर और एटीएम की आवश्यकता होती है। एनएचईजे, एचआर, आईसीएल मरम्मत, और एनईआर के साथ-साथ प्रतिकृति फोर्क स्थिरता के लिए एटीएम और एटीआर की आवश्यकता होती है, साथ ही अप्रतिबंधित डीएनए प्रतिकृति के दौरान और प्रतिकृति ब्लॉकों के जवाब में।[90]
एटीआर को नुकसान के विभिन्न रूपों जैसे न्यूक्लियोटाइड क्षति, रुके हुए प्रतिकृति कांटे और डबल स्ट्रैंड ब्रेक के लिए भर्ती किया जाता है। एटीएम विशेष रूप से डबल स्ट्रैंड के टूटने की क्षति प्रतिक्रिया के लिए है। एमआरएन कॉम्प्लेक्स (Mre11, Rad50, और Nbs1 से बना) डबल स्ट्रैंड ब्रेक के स्थल पर तुरंत बनता है। यह एमआरएन कॉम्प्लेक्स एटीएम को नुकसान की जगह पर भर्ती करता है। एटीआर और एटीएम विभिन्न प्रोटीनों को फास्फोराइलेट करते हैं जो क्षति मरम्मत प्रणाली में योगदान करते हैं। डीएनए पर क्षतिग्रस्त साइटों के लिए एटीआर और एटीएम के बंधन से Chk1 और Chk2 की भर्ती होती है। कोशिका चक्र की प्रगति में देरी के लिए ये प्रोटीन किनेज कोशिका चक्र नियंत्रण प्रणाली को क्षति संकेत भेजते हैं।[10]
Chk1 और Chk2 फ़ंक्शंस
Chk1 डीएनए की मरम्मत करने वाले एंजाइम के उत्पादन की ओर जाता है। Chk2 प्रतिवर्ती कोशिका चक्र गिरफ्तारी की ओर जाता है। Chk2, साथ ही ATR/ATM, p53 को सक्रिय कर सकता है, जो स्थायी कोशिका चक्र गिरफ्तारी या एपोप्टोसिस की ओर जाता है।
p53 डीएनए क्षति मरम्मत प्रणाली में भूमिका
जब बहुत अधिक क्षति होती है, तो जीव को संभावित हानिकारक कोशिकाओं से बचाने के लिए एपोप्टोसिस को ट्रिगर किया जाता है। 7 p53, जिसे ट्यूमर सप्रेसर जीन के रूप में भी जाना जाता है, डीएनए क्षति प्रतिक्रिया प्रणाली में एक प्रमुख नियामक प्रोटीन है जो सीधे प्रमोटरों को बांधता है इसका लक्ष्य जीन। p53 मुख्य रूप से G1 चेकपॉइंट (G1 से S संक्रमण को नियंत्रित करता है) पर कार्य करता है, जहां यह सेल चक्र की प्रगति को रोकता है।[5]p53 का सक्रियण कोशिका मृत्यु या स्थायी कोशिका चक्र गिरफ्तारी को गति प्रदान कर सकता है। p53 कुछ मरम्मत मार्गों को भी सक्रिय कर सकता है जैसे कि NER था।[89]
=== p53 === का विनियमन डीएनए क्षति की अनुपस्थिति में, p53 को MDM2 द्वारा नियंत्रित किया जाता है और लगातार अपमानित किया जाता है। जब डीएनए की क्षति होती है, तो MDM2 फॉस्फोराइलेटेड होता है, जो एटीएम के कारण सबसे अधिक होता है। MDM2 का फॉस्फोराइलेशन MDM2 की गतिविधि में कमी लाता है, इस प्रकार p53 के क्षरण को रोकता है। सामान्य, बिना क्षतिग्रस्त कोशिका में आमतौर पर p53 का निम्न स्तर होता है जबकि तनाव और डीएनए क्षति के तहत कोशिकाओं में p53 का उच्च स्तर होगा।[10]
=== p53 बैक्स और p21 === के लिए प्रतिलेखन कारक के रूप में कार्य करता है
p53 BAX प्रोटीन, एक प्रॉपोपोटिक प्रोटीन और साथ ही p21, एक CDK अवरोधक दोनों के लिए प्रतिलेखन कारक के रूप में कार्य करता है। सीडीके इनहिबिटर्स के परिणामस्वरूप सेल साइकिल अरेस्ट होता है। सेल को गिरफ्तार करने से क्षति की मरम्मत के लिए सेल का समय मिलता है, और यदि क्षति अपूरणीय है, तो p53 एपोप्टोसिस को ट्रिगर करने के लिए बैक्स की भर्ती करता है।[89]
कैंसर में डीडीआर और पी53 की भूमिका
p53 कैंसर कोशिकाओं के विकास में एक प्रमुख प्रमुख खिलाड़ी है। उत्परिवर्तित p53 के साथ क्षतिग्रस्त डीएनए कोशिकाओं में कैंसर बनने का अधिक जोखिम होता है। सामान्य कीमोथेरेपी उपचार जीनोटॉक्सिक होते हैं। ये उपचार कैंसर के ट्यूमर में अप्रभावी हैं, जिन्होंने p53 को उत्परिवर्तित किया है क्योंकि उनके पास क्षतिग्रस्त कोशिका को गिरफ्तार करने या मारने के लिए कार्यशील p53 नहीं है।
जीवन के लिए एक बड़ी समस्या
एक संकेत है कि डीएनए की क्षति जीवन के लिए एक बड़ी समस्या है, डीएनए की क्षति से निपटने के लिए डीएनए की मरम्मत की प्रक्रिया, सभी सेलुलर जीवों में पाई गई है जिसमें डीएनए की मरम्मत की जांच की गई है। उदाहरण के लिए, बैक्टीरिया में, कई बैक्टीरिया प्रजातियों में डीएनए क्षति की मरम्मत के उद्देश्य से एक नियामक नेटवर्क (जिसे एस्चेरिचिया कोलाई में एसओएस प्रतिक्रिया कहा जाता है) पाया गया है। ई. कोलाई आरईसीए, एसओएस प्रतिक्रिया पथ में एक प्रमुख एंजाइम, डीएनए स्ट्रैंड-एक्सचेंज प्रोटीन के एक सर्वव्यापी वर्ग का परिभाषित सदस्य है जो समरूप पुनर्संयोजन के लिए आवश्यक है, एक मार्ग जो टूटे हुए डीएनए की मरम्मत करके जीनोमिक अखंडता को बनाए रखता है।[91] एसओएस प्रतिक्रिया पथ में आरईसीए और अन्य केंद्रीय जीनों के अनुरूप जीन आज तक अनुक्रमित लगभग सभी जीवाणु जीनोम में पाए जाते हैं, जो बड़ी संख्या में फाइला को कवर करते हैं, जो एक प्राचीन उत्पत्ति और डीएनए क्षति की पुनर्संयोजन मरम्मत की व्यापक घटना दोनों का सुझाव देते हैं।[92] यूकेरियोट पुनः संयोजक जो कि RecA के समरूप हैं, यूकेरियोटिक जीवों में भी व्यापक हैं। उदाहरण के लिए, विखंडन खमीर और मनुष्यों में, RecA समरूपता कई प्रकार के डीएनए घावों की मरम्मत के लिए आवश्यक डुप्लेक्स-डुप्लेक्स डीएनए-स्ट्रैंड एक्सचेंज को बढ़ावा देती है।[93][94] एक और संकेत है कि डीएनए की क्षति जीवन के लिए एक बड़ी समस्या है, यह है कि कोशिकाएं डीएनए की मरम्मत प्रक्रियाओं में बड़े निवेश करती हैं। जैसा कि होइजमेकर्स द्वारा बताया गया है,[2]केवल एक डबल-स्ट्रैंड ब्रेक की मरम्मत के लिए 10,000 से अधिक एडेनोसिन ट्राइफॉस्फेट अणुओं की आवश्यकता हो सकती है, जैसा कि क्षति की उपस्थिति, मरम्मत foci की पीढ़ी, और RAD51 न्यूक्लियोफिलामेंट के गठन (मनुष्यों में) के संकेत में उपयोग किया जाता है (समरूप पुनर्संयोजन मरम्मत में एक मध्यवर्ती) ). (RAD51 बैक्टीरियल RecA का समरूप है।) यदि डीएनए प्रतिकृति के G1 चरण के दौरान संरचनात्मक संशोधन होता है, तो G1-S चेकपॉइंट गिरफ्तारी करता है या उत्पाद के S चरण में प्रवेश करने से पहले सेल चक्र की प्रगति को स्थगित कर देता है। <रेफरी नाम = कोहलर 2016 443–460 />
परिणाम
वयस्क स्तनधारियों की विभेदित दैहिक कोशिकाएं आमतौर पर कभी-कभी या बिल्कुल नहीं दोहराती हैं। इस तरह की कोशिकाओं, उदाहरण के लिए, मस्तिष्क न्यूरॉन्स और मांसपेशी मायोसाइट्स, में बहुत कम या कोई सेल टर्नओवर नहीं होता है। प्रतिकृति की डीएनए क्षति-प्रेरित त्रुटियों के कारण गैर-प्रतिकृति कोशिकाएं आम तौर पर उत्परिवर्तन उत्पन्न नहीं करती हैं। ये गैर-प्रतिकृति कोशिकाएं आमतौर पर कैंसर को जन्म नहीं देती हैं, लेकिन वे समय के साथ डीएनए को नुकसान पहुंचाते हैं जो उम्र बढ़ने में योगदान करते हैं (प्रतिलेखन (आनुवांशिकी)आनुवांशिकी) स्ट्रैंड में सिंगल-स्ट्रैंड ब्रेक या अन्य प्रकार की क्षति आरएनए पोलीमरेज़ II-उत्प्रेरित ट्रांसक्रिप्शन को ब्लॉक कर सकती है।[95] यह उस जीन द्वारा कोडित प्रोटीन के संश्लेषण में हस्तक्षेप करेगा जिसमें रुकावट हुई थी।
). एक गैर-प्रतिकृति सेल में, डीएनए केब्रसनजेविक एट अल।[96] सबूतों को सारांशित करते हुए दिखाते हैं कि एकल-स्ट्रैंड ब्रेक मस्तिष्क में उम्र के साथ जमा होते हैं (हालांकि मस्तिष्क के विभिन्न क्षेत्रों में संचय अलग-अलग होते हैं) और यह कि सिंगल-स्ट्रैंड ब्रेक मस्तिष्क में सबसे लगातार स्थिर-अवस्था वाले डीएनए नुकसान होते हैं। जैसा कि ऊपर चर्चा की गई है, इन संचित सिंगल-स्ट्रैंड ब्रेक से जीन के ट्रांसक्रिप्शन को ब्लॉक करने की उम्मीद की जाएगी। इसके अनुरूप, जैसा कि हेटमैन एट अल द्वारा समीक्षा की गई है।[97] 43 वर्ष से कम उम्र के लोगों के मस्तिष्क में प्रतिलेखन की तुलना में 182 जीनों की पहचान की गई और 72 वर्ष से अधिक आयु के व्यक्तियों के मस्तिष्क में प्रतिलेखन कम दिखाया गया। जब रैटस की एक मांसपेशी में 40 विशेष प्रोटीनों का मूल्यांकन किया गया, तो 18 महीने (परिपक्व रैट) से 30 महीने (वृद्ध रैट) की उम्र के दौरान अधिकांश प्रोटीनों में महत्वपूर्ण कमी देखी गई।[98] एक अन्य प्रकार की डीएनए क्षति, डबल-स्ट्रैंड ब्रेक, को एपोप्टोसिस के माध्यम से कोशिका मृत्यु (कोशिकाओं की हानि) का कारण दिखाया गया था।[99] इस प्रकार की डीएनए क्षति उम्र के साथ जमा नहीं होगी, क्योंकि एक बार एपोप्टोसिस के माध्यम से एक कोशिका खो जाने के बाद, इसकी डबल-स्ट्रैंड क्षति इसके साथ खो जाएगी। इस प्रकार, क्षतिग्रस्त डीएनए खंड डीएनए प्रतिकृति मशीनरी को कमजोर कर देते हैं क्योंकि डीएनए के इन परिवर्तित अनुक्रमों का उपयोग किसी के आनुवंशिक सामग्री की प्रतियां बनाने के लिए सही टेम्पलेट के रूप में नहीं किया जा सकता है। <रेफरी नाम = कोहलर 2016 443-460 />
Saccharomyces cerevisiae = में डीएनए क्षति के लिए आरएडी जीन और कोशिका चक्र प्रतिक्रिया जब डीएनए क्षतिग्रस्त हो जाता है, तो कोशिका क्षति को ठीक करने और कोशिका पर प्रभाव को कम करने के लिए विभिन्न तरीकों से प्रतिक्रिया करती है। इस तरह की एक प्रतिक्रिया, विशेष रूप से यूकेरियोटिक कोशिकाओं में, कोशिका विभाजन में देरी करना है- शेष कोशिका चक्र के माध्यम से प्रगति करने से पहले कोशिका G2 चरण में कुछ समय के लिए रुक जाती है। डीएनए क्षति से प्रेरित इस G2 गिरफ्तारी के उद्देश्य को स्पष्ट करने के लिए विभिन्न अध्ययन किए गए हैं। शोधकर्ताओं ने पाया है कि जिन कोशिकाओं को समय से पहले देरी से बाहर निकाला जाता है उनमें कोशिकाओं की तुलना में कम कोशिका व्यवहार्यता और क्षतिग्रस्त गुणसूत्रों की उच्च दर होती है जो पूर्ण G2 गिरफ्तारी से गुजरने में सक्षम होती हैं, यह सुझाव देते हुए कि देरी का उद्देश्य सेल को समय देना है कोशिका चक्र को जारी रखने से पहले क्षतिग्रस्त गुणसूत्रों की मरम्मत करें।[100] यह माइटोसिस के समुचित कार्य को सुनिश्चित करता है।
जानवरों की विभिन्न प्रजातियां डीएनए क्षति के जवाब में सेलुलर देरी के समान तंत्र का प्रदर्शन करती हैं, जो कि एक्स-विकिरण के संपर्क में आने के कारण हो सकता है। नवोदित खमीर Saccharomyces cerevisiae का विशेष रूप से अध्ययन किया गया है क्योंकि कोशिका चक्र के माध्यम से प्रगति को आसानी से परमाणु आकारिकी के माध्यम से पालन किया जा सकता है। Saccharomyces cerevisiae का अध्ययन करके, शोधकर्ता विकिरण-संवेदनशील (RAD) जीन के बारे में अधिक जानने में सक्षम हुए हैं, और इसका प्रभाव यह है कि RAD म्यूटेशनों का विशिष्ट सेलुलर डीएनए क्षतिग्रस्त-प्रेरित विलंब प्रतिक्रिया पर हो सकता है। विशेष रूप से, RAD9 जीन डीएनए क्षति का पता लगाने और क्षति की मरम्मत होने तक G2 में सेल को गिरफ्तार करने में महत्वपूर्ण भूमिका निभाता है।
व्यापक प्रयोगों के माध्यम से, शोधकर्ता डीएनए क्षति के जवाब में कोशिका विभाजन में देरी करने में आरएडी जीन की भूमिका को उजागर करने में सक्षम हुए हैं। जब जंगली-प्रकार, बढ़ती कोशिकाओं को एक निश्चित समय सीमा में एक्स-विकिरण के विभिन्न स्तरों के संपर्क में लाया जाता है, और फिर एक microcolony परख के साथ विश्लेषण किया जाता है, तो कोशिका चक्र प्रतिक्रिया में अंतर देखा जा सकता है जिसके आधार पर जीन कोशिकाओं में उत्परिवर्तित होते हैं। उदाहरण के लिए, जबकि गैर-विकिरणित कोशिकाएं कोशिका चक्र के माध्यम से सामान्य रूप से प्रगति करेंगी, कोशिकाएं जो एक्स-विकिरण के संपर्क में हैं, या तो स्थायी रूप से रुक जाती हैं (अव्यवहार्य हो जाती हैं) या माइटोसिस में विभाजित होने से पहले G2 चरण में देरी करती हैं, आगे इस विचार की पुष्टि करती हैं कि G2 देरी डीएनए की मरम्मत के लिए महत्वपूर्ण है। हालांकि, रेड स्ट्रेन, जो डीएनए की मरम्मत में कमी हैं, एक अलग तरह की प्रतिक्रिया प्रदर्शित करते हैं। उदाहरण के लिए, rad52 कोशिकाएं, जो डबल-स्ट्रैंडेड डीएनए ब्रेक की मरम्मत नहीं कर सकती हैं, एक्स-विकिरण के बहुत कम स्तर के संपर्क में आने पर G2 में स्थायी रूप से रुक जाती हैं, और सेल चक्र के बाद के चरणों के माध्यम से शायद ही कभी आगे बढ़ती हैं। ऐसा इसलिए है क्योंकि कोशिकाएं डीएनए की क्षति की मरम्मत नहीं कर सकती हैं और इस प्रकार माइटोसिस में प्रवेश नहीं करती हैं। एक्स-विकिरण के संपर्क में आने पर कई अन्य रेड म्यूटेंट समान प्रतिक्रियाएं प्रदर्शित करते हैं।
हालाँकि, rad9 तनाव पूरी तरह से अलग प्रभाव प्रदर्शित करता है। एक्स-विकिरण के संपर्क में आने पर ये कोशिकाएं G2 चरण में देरी करने में विफल रहती हैं, और मरने से पहले कोशिका चक्र के माध्यम से आगे बढ़ती हैं। इससे पता चलता है कि RAD9 जीन, अन्य RAD जीनों के विपरीत, G2 गिरफ्तारी शुरू करने में महत्वपूर्ण भूमिका निभाता है। इन निष्कर्षों की और जांच करने के लिए, दोहरे उत्परिवर्ती उपभेदों के सेल चक्रों का विश्लेषण किया गया है। एक उत्परिवर्ती rad52 rad9 तनाव - जो डीएनए की मरम्मत और G2 गिरफ्तारी दोनों में दोषपूर्ण है - एक्स-विकिरण के संपर्क में आने पर कोशिका चक्र गिरफ्तारी से गुजरने में विफल रहता है। इससे पता चलता है कि अगर डीएनए क्षति की मरम्मत नहीं की जा सकती है, अगर आरएडी 9 मौजूद नहीं है, तो सेल चक्र में देरी नहीं होगी। इस प्रकार, अप्रतिबंधित डीएनए क्षति वह संकेत है जो RAD9 को विभाजन को रोकने और G2 में कोशिका चक्र को रोकने के लिए कहता है। इसके अलावा, खुराक पर निर्भर प्रतिक्रिया होती है; एक्स-विकिरण के स्तर के रूप में - और बाद में डीएनए क्षति - वृद्धि, अधिक कोशिकाएं, उनके उत्परिवर्तन की परवाह किए बिना, G2 में गिरफ्तार हो जाती हैं।
इस प्रभाव की कल्पना करने का एक और, और शायद अधिक उपयोगी तरीका फोटोमाइक्रोस्कोपी स्लाइड्स को देखना है। प्रारंभ में, विकास के घातीय चरण में RAD+ और rad9 अगुणित कोशिकाओं की स्लाइड सरल, एकल कोशिकाएँ दिखाती हैं, जो एक दूसरे से अप्रभेद्य हैं। हालाँकि, 10 घंटे तक एक्स-विकिरण के संपर्क में रहने के बाद स्लाइड्स बहुत अलग दिखती हैं। आरएडी+ स्लाइड्स अब आरएडी+ कोशिकाओं को मुख्य रूप से दो-बडेड माइक्रोकॉलोनी के रूप में दिखाती हैं, यह सुझाव देते हुए कि कोशिका विभाजन को रोक दिया गया है। इसके विपरीत, rad9 स्लाइड rad9 कोशिकाओं को मुख्य रूप से 3 से 8 उभरी हुई कॉलोनियों के रूप में दिखाती हैं, और वे RAD+ कोशिकाओं से छोटी दिखाई देती हैं। यह और सबूत है कि उत्परिवर्ती आरएडी कोशिकाएं विभाजित करना जारी रखती हैं और जी 2 गिरफ्तारी में कमी है।
हालांकि, इस बात के प्रमाण हैं कि हालांकि डीएनए क्षति के जवाब में G2 गिरफ्तारी को प्रेरित करने के लिए RAD9 जीन आवश्यक है, जिससे सेल को क्षति की मरम्मत के लिए समय मिलता है, यह वास्तव में डीएनए की मरम्मत में प्रत्यक्ष भूमिका नहीं निभाता है। जब G2 बुद्धि में rad9 कोशिकाओं को कृत्रिम रूप से गिरफ्तार किया जाता हैएच एमबीसी, एक सूक्ष्मनलिका जहर जो सेलुलर विभाजन को रोकता है, और फिर एक्स-विकिरण के साथ इलाज किया जाता है, कोशिकाएं अपने डीएनए की मरम्मत करने में सक्षम होती हैं और अंततः कोशिका चक्र के माध्यम से प्रगति करती हैं, व्यवहार्य कोशिकाओं में विभाजित होती हैं। इस प्रकार, RAD9 जीन वास्तव में क्षतिग्रस्त डीएनए की मरम्मत में कोई भूमिका नहीं निभाता है - यह केवल क्षतिग्रस्त डीएनए को महसूस करता है और कोशिका विभाजन में देरी करके प्रतिक्रिया करता है। देरी, तब, भौतिक क्षतिग्रस्त डीएनए के बजाय नियंत्रण तंत्र द्वारा मध्यस्थता की जाती है।[101] दूसरी ओर, यह संभव है कि बैकअप तंत्र हैं जो मौजूद नहीं होने पर RAD9 की भूमिका को भरते हैं। वास्तव में, कुछ अध्ययनों से पता चला है कि आरएडी9 वास्तव में डीएनए की मरम्मत में महत्वपूर्ण भूमिका निभाता है। एक अध्ययन में, विकास के घातीय चरण में रेड9 उत्परिवर्ती और सामान्य कोशिकाओं को यूवी-विकिरण के संपर्क में लाया गया और सेल चक्र के विशिष्ट चरणों में सिंक्रनाइज़ किया गया। डीएनए की मरम्मत की अनुमति देने के लिए ऊष्मायन के बाद, संवेदनशील प्राइमर एक्सटेंशन तकनीकों का उपयोग करके पाइरीमिडीन डिमराइजेशन (जो डीएनए क्षति का संकेत है) की सीमा का आकलन किया गया था। यह पाया गया कि सामान्य कोशिकाओं की तुलना में रेड9 म्यूटेंट कोशिकाओं में डीएनए फोटोलेशंस को हटाना बहुत कम कुशल था, यह सबूत प्रदान करता है कि आरएडी9 डीएनए की मरम्मत में शामिल है। इस प्रकार, डीएनए क्षति की मरम्मत में RAD9 की भूमिका अस्पष्ट बनी हुई है।[102] भले ही, यह स्पष्ट है कि डीएनए क्षति और कोशिका विभाजन को रोकने के लिए RAD9 आवश्यक है। RAD9 को 3' से 5' एक्सोन्यूक्लिज़ गतिविधि रखने का सुझाव दिया गया है, शायद यही कारण है कि यह डीएनए क्षति का पता लगाने में भूमिका निभाता है। जब डीएनए क्षतिग्रस्त हो जाता है, तो यह परिकल्पना की जाती है कि RAD9, RAD1 और HUS1 के साथ एक जटिल बनाता है, और इस परिसर को डीएनए क्षति की साइटों पर भर्ती किया जाता है। यह इस तरह से है कि RAD9 अपना प्रभाव डालने में सक्षम है।
यद्यपि RAD9 के कार्य का मुख्य रूप से नवोदित खमीर Saccharomyces cerevisiae में अध्ययन किया गया है, कई कोशिका चक्र नियंत्रण तंत्र प्रजातियों के बीच समान हैं। इस प्रकार, हम यह निष्कर्ष निकाल सकते हैं कि RAD9 मनुष्यों में भी डीएनए क्षति प्रतिक्रिया में महत्वपूर्ण भूमिका निभाता है।
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7915-22. doi: 10.1073/pnas.90.17.7915. PMID 8367443; PMCID: PMC47258.
- ↑ 2.0 2.1 Hoeijmakers JH (October 2009). "डीएनए की क्षति, बुढ़ापा और कैंसर". The New England Journal of Medicine. 361 (15): 1475–85. doi:10.1056/NEJMra0804615. PMID 19812404.
- ↑ Freitas AA, de Magalhães JP (2011). "उम्र बढ़ने के डीएनए क्षति सिद्धांत की समीक्षा और मूल्यांकन". Mutation Research. 728 (1–2): 12–22. doi:10.1016/j.mrrev.2011.05.001. PMID 21600302.
- ↑ O'Hagan HM, Mohammad HP, Baylin SB (August 2008). "डबल स्ट्रैंड ब्रेक एक बहिर्जात प्रमोटर CpG द्वीप में जीन साइलेंसिंग और डीएनए मेथिलिकरण की SIRT1-निर्भर शुरुआत शुरू कर सकता है". PLOS Genetics. 4 (8): e1000155. doi:10.1371/journal.pgen.1000155. PMC 2491723. PMID 18704159.
- ↑ 5.0 5.1 5.2 "खान अकादमी". खान अकादमी (in English). Retrieved 2017-12-15.
- ↑ 6.0 6.1 De Bont R, van Larebeke N (May 2004). "Endogenous DNA damage in humans: a review of quantitative data". Mutagenesis. 19 (3): 169–85. doi:10.1093/mutage/geh025. PMID 15123782.
- ↑ Yu Y, Cui Y, Niedernhofer LJ, Wang Y (December 2016). "ऑक्सीडेटिव तनाव-प्रेरित डीएनए क्षति की घटना, जैविक परिणाम और मानव स्वास्थ्य प्रासंगिकता". Chemical Research in Toxicology. 29 (12): 2008–2039. doi:10.1021/acs.chemrestox.6b00265. PMC 5614522. PMID 27989142.
- ↑ Dizdaroglu M, Coskun E, Jaruga P (May 2015). "मास स्पेक्ट्रोमेट्रिक तकनीकों द्वारा ऑक्सीडेटिव प्रेरित डीएनए क्षति और इसकी मरम्मत का मापन". Free Radical Research. 49 (5): 525–48. doi:10.3109/10715762.2015.1014814. PMID 25812590. S2CID 31852987.
- ↑ Lan L, Nakajima S, Oohata Y, Takao M, Okano S, Masutani M, et al. (September 2004). "स्तनधारी कोशिकाओं में ऑक्सीडेटिव डीएनए क्षति के लिए मरम्मत प्रक्रियाओं का यथास्थान विश्लेषण". Proceedings of the National Academy of Sciences of the United States of America. 101 (38): 13738–43. Bibcode:2004PNAS..10113738L. doi:10.1073/pnas.0406048101. PMC 518826. PMID 15365186.
- ↑ 10.0 10.1 10.2 Morgan, David (2006). Cell Cycle: Principles of Control. London: New Science Press.
- ↑ 11.0 11.1 11.2 Helbock HJ, Beckman KB, Shigenaga MK, Walter PB, Woodall AA, Yeo HC, Ames BN (January 1998). "DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine". Proceedings of the National Academy of Sciences of the United States of America. 95 (1): 288–93. Bibcode:1998PNAS...95..288H. doi:10.1073/pnas.95.1.288. PMC 18204. PMID 9419368.
- ↑ 12.0 12.1 Foksinski M, Rozalski R, Guz J, Ruszkowska B, Sztukowska P, Piwowarski M, et al. (November 2004). "डीएनए मरम्मत उत्पादों का मूत्र उत्सर्जन चयापचय दर के साथ-साथ विभिन्न स्तनधारी प्रजातियों के अधिकतम जीवन काल के साथ संबंध रखता है". Free Radical Biology & Medicine. 37 (9): 1449–54. doi:10.1016/j.freeradbiomed.2004.07.014. PMID 15454284.
- ↑ 13.0 13.1 Tudek B, Winczura A, Janik J, Siomek A, Foksinski M, Oliński R (May 2010). "ऑक्सीडेटिव रूप से क्षतिग्रस्त डीएनए का समावेश और कैंसर के विकास और उम्र बढ़ने में मरम्मत". American Journal of Translational Research. 2 (3): 254–84. PMC 2892402. PMID 20589166.
- ↑ Fraga CG, Shigenaga MK, Park JW, Degan P, Ames BN (June 1990). "Oxidative damage to DNA during aging: 8-hydroxy-2'-deoxyguanosine in rat organ DNA and urine". Proceedings of the National Academy of Sciences of the United States of America. 87 (12): 4533–7. Bibcode:1990PNAS...87.4533F. doi:10.1073/pnas.87.12.4533. PMC 54150. PMID 2352934.
- ↑ 15.0 15.1 15.2 Hamilton ML, Guo Z, Fuller CD, Van Remmen H, Ward WF, Austad SN, et al. (May 2001). "A reliable assessment of 8-oxo-2-deoxyguanosine levels in nuclear and mitochondrial DNA using the sodium iodide method to isolate DNA". Nucleic Acids Research. 29 (10): 2117–26. doi:10.1093/nar/29.10.2117. PMC 55450. PMID 11353081.
- ↑ Lindahl T, Nyberg B (September 1972). "देशी डीऑक्सीराइबोन्यूक्लिक एसिड के अपघटन की दर". Biochemistry. 11 (19): 3610–8. doi:10.1021/bi00769a018. PMID 4626532.
- ↑ Lindahl T (April 1993). "डीएनए की प्राथमिक संरचना की अस्थिरता और क्षय". Nature. 362 (6422): 709–15. Bibcode:1993Natur.362..709L. doi:10.1038/362709a0. PMID 8469282. S2CID 4283694.
- ↑ Nakamura J, Walker VE, Upton PB, Chiang SY, Kow YW, Swenberg JA (January 1998). "Highly sensitive apurinic/apyrimidinic site assay can detect spontaneous and chemically induced depurination under physiological conditions". Cancer Research. 58 (2): 222–5. PMID 9443396.
- ↑ 19.0 19.1 Lindahl T. (1977) DNA repair enzymes acting on spontaneous lesions in DNA. In: Nichols WW and Murphy DG (eds.) DNA Repair Processes. Symposia Specialists, Miami p225-240. ISBN 088372099X ISBN 978-0883720998
- ↑ 20.0 20.1 20.2 20.3 20.4 Tice, R.R., and Setlow, R.B. (1985) DNA repair and replication in aging organisms and cells. In: Finch EE and Schneider EL (eds.) Handbook of the Biology of Aging. Van Nostrand Reinhold, New York. Pages 173–224. ISBN 0442225296 ISBN 978-0442225292
- ↑ Haber JE (July 1999). "DNA recombination: the replication connection". Trends in Biochemical Sciences. 24 (7): 271–5. doi:10.1016/s0968-0004(99)01413-9. PMID 10390616.
- ↑ Vilenchik MM, Knudson AG (October 2003). "Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer". Proceedings of the National Academy of Sciences of the United States of America. 100 (22): 12871–6. Bibcode:2003PNAS..10012871V. doi:10.1073/pnas.2135498100. PMC 240711. PMID 14566050.
- ↑ Chan SW, Dedon PC (December 2010). "अंतर्जात डीएनए क्षति उत्पादों के जैविक और चयापचय भाग्य". Journal of Nucleic Acids. 2010: 929047. doi:10.4061/2010/929047. PMC 3010698. PMID 21209721.
- ↑ Kadlubar FF, Anderson KE, Häussermann S, Lang NP, Barone GW, Thompson PA, et al. (September 1998). "मानव अग्न्याशय में ऑक्सीडेटिव तनाव से जुड़े डीएनए व्यसन स्तरों की तुलना". Mutation Research. 405 (2): 125–33. doi:10.1016/s0027-5107(98)00129-8. PMID 9748537.
- ↑ VanderVeen LA, Hashim MF, Shyr Y, Marnett LJ (November 2003). "अंतर्जात कार्सिनोजेन मालोंडियलडिहाइड के प्रमुख डीएनए जोड़ द्वारा फ्रेमशिफ्ट और बेस पेयर प्रतिस्थापन म्यूटेशन का प्रेरण". Proceedings of the National Academy of Sciences of the United States of America. 100 (24): 14247–52. Bibcode:2003PNAS..10014247V. doi:10.1073/pnas.2332176100. PMC 283577. PMID 14603032.
- ↑ Tan X, Grollman AP, Shibutani S (December 1999). "Comparison of the mutagenic properties of 8-oxo-7,8-dihydro-2'-deoxyadenosine and 8-oxo-7,8-dihydro-2'-deoxyguanosine DNA lesions in mammalian cells". Carcinogenesis. 20 (12): 2287–92. doi:10.1093/carcin/20.12.2287. PMID 10590221.
- ↑ Swenberg JA, Lu K, Moeller BC, Gao L, Upton PB, Nakamura J, Starr TB (March 2011). "Endogenous versus exogenous DNA adducts: their role in carcinogenesis, epidemiology, and risk assessment". Toxicological Sciences. 120 Suppl 1 (Suppl 1): S130-45. doi:10.1093/toxsci/kfq371. PMC 3043087. PMID 21163908.
- ↑ Nakamura J, Swenberg JA (June 1999). "Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues". Cancer Research. 59 (11): 2522–6. PMID 10363965.
- ↑ 29.0 29.1 29.2 Xia J, Chiu LY, Nehring RB, Bravo Núñez MA, Mei Q, Perez M, et al. (January 2019). "बैक्टीरिया-से-मानव प्रोटीन नेटवर्क अंतर्जात डीएनए क्षति की उत्पत्ति का खुलासा करते हैं". Cell. 176 (1–2): 127–143.e24. doi:10.1016/j.cell.2018.12.008. PMC 6344048. PMID 30633903.
- ↑ Krokan HE, Bjørås M (April 2013). "Base excision repair". Cold Spring Harbor Perspectives in Biology. 5 (4): a012583. doi:10.1101/cshperspect.a012583. PMC 3683898. PMID 23545420.
- ↑ del Rivero J, Kohn EC (April 2017). "PARP Inhibitors: The Cornerstone of DNA Repair-Targeted Therapies". Oncology. 31 (4): 265–73. PMID 28412778.
- ↑ Schärer OD (October 2013). "Nucleotide excision repair in eukaryotes". Cold Spring Harbor Perspectives in Biology. 5 (10): a012609. doi:10.1101/cshperspect.a012609. PMC 3783044. PMID 24086042.
- ↑ de Boer J, Hoeijmakers JH (March 2000). "Nucleotide excision repair and human syndromes". Carcinogenesis. 21 (3): 453–60. doi:10.1093/carcin/21.3.453. PMID 10688865.
- ↑ Satoh MS, Jones CJ, Wood RD, Lindahl T (July 1993). "DNA excision-repair defect of xeroderma pigmentosum prevents removal of a class of oxygen free radical-induced base lesions". Proceedings of the National Academy of Sciences of the United States of America. 90 (13): 6335–9. Bibcode:1993PNAS...90.6335S. doi:10.1073/pnas.90.13.6335. PMC 46923. PMID 8327515.
- ↑ 35.0 35.1 35.2 Ceccaldi R, Rondinelli B, D'Andrea AD (January 2016). "Repair Pathway Choices and Consequences at the Double-Strand Break". Trends in Cell Biology. 26 (1): 52–64. doi:10.1016/j.tcb.2015.07.009. PMC 4862604. PMID 26437586.
- ↑ Kunkel TA, Erie DA (2005). "DNA mismatch repair". Annual Review of Biochemistry. 74: 681–710. doi:10.1146/annurev.biochem.74.082803.133243. PMID 15952900.
- ↑ Yi C, He C (January 2013). "DNA repair by reversal of DNA damage". Cold Spring Harbor Perspectives in Biology. 5 (1): a012575. doi:10.1101/cshperspect.a012575. PMC 3579392. PMID 23284047.
- ↑ Lehmann AR (February 2005). "Replication of damaged DNA by translesion synthesis in human cells". FEBS Letters. 579 (4): 873–6. doi:10.1016/j.febslet.2004.11.029. PMID 15680966. S2CID 38747288.
- ↑ Nowsheen S, Yang ES (October 2012). "डीएनए क्षति प्रतिक्रिया और कोशिका मृत्यु मार्गों के बीच प्रतिच्छेदन". Experimental Oncology. 34 (3): 243–54. PMC 3754840. PMID 23070009.
- ↑ 40.0 40.1 Bernstein C, Bernstein H, Payne CM, Garewal H (June 2002). "DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis". Mutation Research. 511 (2): 145–78. doi:10.1016/s1383-5742(02)00009-1. PMID 12052432.
- ↑ Deng T, Lyon CJ, Bergin S, Caligiuri MA, Hsueh WA (May 2016). "मोटापा, सूजन, और कैंसर". Annual Review of Pathology. 11: 421–49. doi:10.1146/annurev-pathol-012615-044359. PMID 27193454.
- ↑ 42.0 42.1 Iyengar NM, Gucalp A, Dannenberg AJ, Hudis CA (December 2016). "Obesity and Cancer Mechanisms: Tumor Microenvironment and Inflammation". Journal of Clinical Oncology. 34 (35): 4270–4276. doi:10.1200/JCO.2016.67.4283. PMC 5562428. PMID 27903155.
- ↑ Ramos-Nino ME (2013). "मोटापे से जुड़े कैंसर में पुरानी सूजन की भूमिका". ISRN Oncology. 2013: 697521. doi:10.1155/2013/697521. PMC 3683483. PMID 23819063.
- ↑ "मोटापा और कैंसर". 2017.
- ↑ Coussens LM, Werb Z (2002). "सूजन और कैंसर". Nature. 420 (6917): 860–7. Bibcode:2002Natur.420..860C. doi:10.1038/nature01322. PMC 2803035. PMID 12490959.
- ↑ Chiba T, Marusawa H, Ushijima T (September 2012). "Inflammation-associated cancer development in digestive organs: mechanisms and roles for genetic and epigenetic modulation". Gastroenterology. 143 (3): 550–563. doi:10.1053/j.gastro.2012.07.009. hdl:2433/160134. PMID 22796521. S2CID 206226588.
- ↑ Shacter E, Weitzman SA (February 2002). "पुरानी सूजन और कैंसर". Oncology. 16 (2): 217–26, 229, discussion 230–2. PMID 11866137.
- ↑ Valgimigli M, Valgimigli L, Trerè D, Gaiani S, Pedulli GF, Gramantieri L, Bolondi L (September 2002). "कट्टरपंथी-जांच तकनीक द्वारा मानव जिगर में ऑक्सीडेटिव तनाव ईपीआर माप। एटियोलॉजी, हिस्टोलॉजी और सेल प्रसार के साथ सहसंबंध". Free Radical Research. 36 (9): 939–48. doi:10.1080/107156021000006653. PMID 12448819. S2CID 12061790.
- ↑ Hardbower DM, de Sablet T, Chaturvedi R, Wilson KT (2013). "Chronic inflammation and oxidative stress: the smoking gun for Helicobacter pylori-induced gastric cancer?". Gut Microbes. 4 (6): 475–81. doi:10.4161/gmic.25583. PMC 3928159. PMID 23811829.
- ↑ Ernst P (March 1999). "Review article: the role of inflammation in the pathogenesis of gastric cancer". Alimentary Pharmacology & Therapeutics. 13 Suppl 1: 13–8. doi:10.1046/j.1365-2036.1999.00003.x. PMID 10209682. S2CID 38496014.
- ↑ Marciani L, Cox EF, Hoad CL, Totman JJ, Costigan C, Singh G, et al. (November 2013). "पित्ताशय खाली करने पर विभिन्न खाद्य सामग्री के प्रभाव". European Journal of Clinical Nutrition. 67 (11): 1182–7. doi:10.1038/ejcn.2013.168. PMC 3898429. PMID 24045793.
- ↑ Payne CM, Bernstein C, Dvorak K, Bernstein H (2008). "हाइड्रोफोबिक पित्त अम्ल, जीनोमिक अस्थिरता, डार्विनियन चयन और कोलन कार्सिनोजेनेसिस". Clinical and Experimental Gastroenterology. 1: 19–47. doi:10.2147/ceg.s4343. PMC 3108627. PMID 21677822.
- ↑ Bernstein C, Bernstein H, Garewal H, Dinning P, Jabi R, Sampliner RE, et al. (May 1999). "पेट के कैंसर के जोखिम और संबंधित गुणवत्ता नियंत्रण अध्ययनों के लिए एक पित्त अम्ल-प्रेरित एपोप्टोसिस परख". Cancer Research. 59 (10): 2353–7. PMID 10344743.
- ↑ Bernstein C, Holubec H, Bhattacharyya AK, Nguyen H, Payne CM, Zaitlin B, Bernstein H (August 2011). "डीऑक्सीकोलेट की कैंसरजन्यता, एक द्वितीयक पित्त अम्ल". Archives of Toxicology. 85 (8): 863–71. doi:10.1007/s00204-011-0648-7. PMC 3149672. PMID 21267546.
- ↑ Zhang L, Yu J (December 2013). "बृहदान्त्र कैंसर जीव विज्ञान, चिकित्सा और रोकथाम में एपोप्टोसिस की भूमिका". Current Colorectal Cancer Reports. 9 (4): 331–340. doi:10.1007/s11888-013-0188-z. PMC 3836193. PMID 24273467.
- ↑ Williams GT, Critchlow MR, Hedge VL, O'Hare KB (December 1998). "Molecular failure of apoptosis: inappropriate cell survival and mutagenesis?". Toxicology Letters. 102–103: 485–9. doi:10.1016/s0378-4274(98)00343-9. PMID 10022300.
- ↑ Liu B, Yip RK, Zhou Z (November 2012). "क्रोमैटिन रीमॉडेलिंग, डीएनए क्षति की मरम्मत और उम्र बढ़ने". Current Genomics. 13 (7): 533–47. doi:10.2174/138920212803251373. PMC 3468886. PMID 23633913.
- ↑ "मानव डीएनए मरम्मत जीन". www.mdanderson.org.
- ↑ 59.0 59.1 Abdou I, Poirier GG, Hendzel MJ, Weinfeld M (January 2015). "डीएनए स्ट्रैंड ब्रेक रिपेयर के सेलुलर ऑर्केस्ट्रेशन में डीएनए लिगेज III डीएनए स्ट्रैंड ब्रेक सेंसर के रूप में कार्य करता है". Nucleic Acids Research. 43 (2): 875–92. doi:10.1093/nar/gku1307. PMC 4333375. PMID 25539916.
- ↑ 60.0 60.1 Sellou H, Lebeaupin T, Chapuis C, Smith R, Hegele A, Singh HR, et al. (December 2016). "पॉली (ADP-राइबोस) -निर्भर क्रोमैटिन रिमोडेलर Alc1 डीएनए क्षति पर स्थानीय क्रोमैटिन विश्राम को प्रेरित करता है". Molecular Biology of the Cell. 27 (24): 3791–3799. doi:10.1091/mbc.E16-05-0269. PMC 5170603. PMID 27733626.
- ↑ Luijsterburg MS, Goedhart J, Moser J, Kool H, Geverts B, Houtsmuller AB, et al. (August 2007). "Dynamic in vivo interaction of DDB2 E3 ubiquitin ligase with UV-damaged DNA is independent of damage-recognition protein XPC". Journal of Cell Science. 120 (Pt 15): 2706–16. doi:10.1242/jcs.008367. PMID 17635991.
- ↑ 62.0 62.1 Pines A, Vrouwe MG, Marteijn JA, Typas D, Luijsterburg MS, Cansoy M, et al. (October 2012). "PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1". The Journal of Cell Biology. 199 (2): 235–49. doi:10.1083/jcb.201112132. PMC 3471223. PMID 23045548.
- ↑ Yeh JI, Levine AS, Du S, Chinte U, Ghodke H, Wang H, et al. (October 2012). "क्षतिग्रस्त डीएनए प्रेरित यूवी-क्षतिग्रस्त डीएनए-बाइंडिंग प्रोटीन (यूवी-डीडीबी) डिमराइजेशन और क्रोमैटिनाइज्ड डीएनए मरम्मत में इसकी भूमिका". Proceedings of the National Academy of Sciences of the United States of America. 109 (41): E2737-46. doi:10.1073/pnas.1110067109. PMC 3478663. PMID 22822215.
- ↑ Jiang Y, Wang X, Bao S, Guo R, Johnson DG, Shen X, Li L (October 2010). "INO80 chromatin remodeling complex promotes the removal of UV lesions by the nucleotide excision repair pathway". Proceedings of the National Academy of Sciences of the United States of America. 107 (40): 17274–9. Bibcode:2010PNAS..10717274J. doi:10.1073/pnas.1008388107. PMC 2951448. PMID 20855601.
- ↑ 65.0 65.1 65.2 Van Meter M, Simon M, Tombline G, May A, Morello TD, Hubbard BP, et al. (September 2016). "JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks". Cell Reports. 16 (10): 2641–2650. doi:10.1016/j.celrep.2016.08.006. PMC 5089070. PMID 27568560.
- ↑ 66.0 66.1 Haince JF, McDonald D, Rodrigue A, Déry U, Masson JY, Hendzel MJ, Poirier GG (January 2008). "कई डीएनए क्षति स्थलों पर MRE11 और NBS1 प्रोटीन की भर्ती के PARP1-निर्भर कैनेटीक्स". The Journal of Biological Chemistry. 283 (2): 1197–208. doi:10.1074/jbc.M706734200. PMID 18025084.
- ↑ 67.0 67.1 67.2 Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (March 1998). "DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139". The Journal of Biological Chemistry. 273 (10): 5858–68. doi:10.1074/jbc.273.10.5858. PMID 9488723.
- ↑ Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, Lukas J (November 2007). "RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins". Cell. 131 (5): 887–900. doi:10.1016/j.cell.2007.09.040. PMID 18001824. S2CID 14232192.
- ↑ Luijsterburg MS, Acs K, Ackermann L, Wiegant WW, Bekker-Jensen S, Larsen DH, et al. (May 2012). "A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure". The EMBO Journal. 31 (11): 2511–27. doi:10.1038/emboj.2012.104. PMC 3365417. PMID 22531782.
- ↑ Jazayeri A, Falck J, Lukas C, Bartek J, Smith GC, Lukas J, Jackson SP (January 2006). "डीएनए डबल-स्ट्रैंड ब्रेक के जवाब में एटीएम- और एटीआर का सेल चक्र-निर्भर विनियमन". Nature Cell Biology. 8 (1): 37–45. doi:10.1038/ncb1337. PMID 16327781. S2CID 9797133.
- ↑ Ding Y, Fleming AM, Burrows CJ (February 2017). "Sequencing the Mouse Genome for the Oxidatively Modified Base 8-Oxo-7,8-dihydroguanine by OG-Seq". Journal of the American Chemical Society. 139 (7): 2569–2572. doi:10.1021/jacs.6b12604. PMC 5440228. PMID 28150947.
- ↑ 72.0 72.1 Pastukh V, Roberts JT, Clark DW, Bardwell GC, Patel M, Al-Mehdi AB, et al. (December 2015). "VEGF प्रमोटर में स्थानीयकृत एक ऑक्सीडेटिव डीएनए "क्षति" और मरम्मत तंत्र हाइपोक्सिया-प्रेरित VEGF mRNA अभिव्यक्ति के लिए महत्वपूर्ण है". American Journal of Physiology. Lung Cellular and Molecular Physiology. 309 (11): L1367-75. doi:10.1152/ajplung.00236.2015. PMC 4669343. PMID 26432868.
- ↑ 73.0 73.1 73.2 73.3 Wang R, Hao W, Pan L, Boldogh I, Ba X (October 2018). "जीन एक्सप्रेशन में बेस एक्सिशन रिपेयर एंजाइम OGG1 की भूमिका". Cellular and Molecular Life Sciences. 75 (20): 3741–3750. doi:10.1007/s00018-018-2887-8. PMC 6154017. PMID 30043138.
- ↑ Seifermann M, Epe B (June 2017). "Oxidatively generated base modifications in DNA: Not only carcinogenic risk factor but also regulatory mark?". Free Radical Biology & Medicine. 107: 258–265. doi:10.1016/j.freeradbiomed.2016.11.018. PMID 27871818.
- ↑ Fleming AM, Burrows CJ (August 2017). "8-Oxo-7,8-dihydroguanine, friend and foe: Epigenetic-like regulator versus initiator of mutagenesis". DNA Repair. 56: 75–83. doi:10.1016/j.dnarep.2017.06.009. PMC 5548303. PMID 28629775.
- ↑ 76.0 76.1 Fasolino M, Zhou Z (May 2017). "The Crucial Role of DNA Methylation and MeCP2 in Neuronal Function". Genes. 8 (5): 141. doi:10.3390/genes8050141. PMC 5448015. PMID 28505093.
- ↑ Bird A (January 2002). "डीएनए मिथाइलेशन पैटर्न और एपिजेनेटिक मेमोरी". Genes & Development. 16 (1): 6–21. doi:10.1101/gad.947102. PMID 11782440.
- ↑ Duke CG, Kennedy AJ, Gavin CF, Day JJ, Sweatt JD (July 2017). "हिप्पोकैम्पस में अनुभव-निर्भर एपिजेनोमिक पुनर्गठन". Learning & Memory. 24 (7): 278–288. doi:10.1101/lm.045112.117. PMC 5473107. PMID 28620075.
- ↑ 79.0 79.1 Halder R, Hennion M, Vidal RO, Shomroni O, Rahman RU, Rajput A, et al. (January 2016). "प्लास्टिसिटी जीन में डीएनए मेथिलिकरण स्मृति के गठन और रखरखाव के साथ होता है". Nature Neuroscience. 19 (1): 102–10. doi:10.1038/nn.4194. PMC 4700510. PMID 26656643.
- ↑ 80.0 80.1 80.2 Zhou X, Zhuang Z, Wang W, He L, Wu H, Cao Y, et al. (September 2016). "ऑक्सीडेटिव तनाव प्रेरित डीएनए डीमिथाइलेशन में OGG1 आवश्यक है". Cellular Signalling. 28 (9): 1163–71. doi:10.1016/j.cellsig.2016.05.021. PMID 27251462.
- ↑ Day JJ, Sweatt JD (November 2010). "डीएनए मेथिलिकरण और स्मृति गठन". Nature Neuroscience. 13 (11): 1319–23. doi:10.1038/nn.2666. PMC 3130618. PMID 20975755.
- ↑ 82.0 82.1 82.2 82.3 82.4 82.5 82.6 Navabpour, Shaghayegh; Rogers, Jessie; McFadden, Taylor; Jarome, Timothy J. (2020-11-26). "डीएनए डबल-स्ट्रैंड ब्रेक डर मेमोरी रीसंसॉलिडेशन का एक महत्वपूर्ण नियामक है". International Journal of Molecular Sciences (in English). 21 (23): 8995. doi:10.3390/ijms21238995. ISSN 1422-0067. PMC 7730899. PMID 33256213.
- ↑ Li, Xiang; Marshall, Paul R.; Leighton, Laura J.; Zajaczkowski, Esmi L.; Wang, Ziqi; Madugalle, Sachithrani U.; Yin, Jiayu; Bredy, Timothy W.; Wei, Wei (2019-02-06). "The DNA Repair-Associated Protein Gadd45γ Regulates the Temporal Coding of Immediate Early Gene Expression within the Prelimbic Prefrontal Cortex and Is Required for the Consolidation of Associative Fear Memory". The Journal of Neuroscience (in English). 39 (6): 970–983. doi:10.1523/JNEUROSCI.2024-18.2018. ISSN 0270-6474. PMC 6363930. PMID 30545945.
- ↑ Minatohara, Keiichiro; Akiyoshi, Mika; Okuno, Hiroyuki (2016-01-05). "सिनैप्टिक प्लास्टिसिटी और मेमोरी ट्रेस के तहत न्यूरोनल एन्सेम्बल में तत्काल-प्रारंभिक जीन की भूमिका". Frontiers in Molecular Neuroscience. 8: 78. doi:10.3389/fnmol.2015.00078. ISSN 1662-5099. PMC 4700275. PMID 26778955.
- ↑ 85.0 85.1 85.2 85.3 85.4 85.5 85.6 Thadathil, Nidheesh; Hori, Roderick; Xiao, Jianfeng; Khan, Mohammad Moshahid (December 2019). "DNA double-strand breaks: a potential therapeutic target for neurodegenerative diseases". Chromosome Research (in English). 27 (4): 345–364. doi:10.1007/s10577-019-09617-x. ISSN 0967-3849. PMC 7934912. PMID 31707536.
- ↑ Gasior, Stephen L.; Wakeman, Timothy P.; Xu, Bo; Deininger, Prescott L. (April 2006). "मानव लाइन-1 रेट्रोट्रांसपोसन डीएनए डबल-स्ट्रैंड ब्रेक बनाता है". Journal of Molecular Biology (in English). 357 (5): 1383–1393. doi:10.1016/j.jmb.2006.01.089. PMC 4136747. PMID 16490214.
- ↑ Shanbhag, Niraj M.; Evans, Mark D.; Mao, Wenjie; Nana, Alissa L.; Seeley, William W.; Adame, Anthony; Rissman, Robert A.; Masliah, Eliezer; Mucke, Lennart (December 2019). "अल्जाइमर रोग में डीएनए डबल स्ट्रैंड का प्रारंभिक न्यूरोनल संचय टूट जाता है". Acta Neuropathologica Communications (in English). 7 (1): 77. doi:10.1186/s40478-019-0723-5. ISSN 2051-5960. PMC 6524256. PMID 31101070.
- ↑ Tronson, Natalie C.; Taylor, Jane R. (April 2007). "स्मृति पुनर्विचार के आणविक तंत्र". Nature Reviews Neuroscience (in English). 8 (4): 262–275. doi:10.1038/nrn2090. ISSN 1471-003X. PMID 17342174. S2CID 1835412.
- ↑ 89.0 89.1 89.2 Giglia-Mari G, Zotter A, Vermeulen W (January 2011). "डीएनए क्षति प्रतिक्रिया". Cold Spring Harbor Perspectives in Biology. 3 (1): a000745. doi:10.1101/cshperspect.a000745. PMC 3003462. PMID 20980439.
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs named:1
- ↑ Bell JC, Plank JL, Dombrowski CC, Kowalczykowski SC (November 2012). "एसएसबी-लेपित एसएसडीएनए के एकल अणुओं पर आरईसीए न्यूक्लिएशन और विकास की प्रत्यक्ष इमेजिंग". Nature. 491 (7423): 274–8. Bibcode:2012Natur.491..274B. doi:10.1038/nature11598. PMC 4112059. PMID 23103864.
- ↑ Erill I, Campoy S, Barbé J (2007). "Aeons of distress: an evolutionary perspective on the bacterial SOS response". FEMS Microbiol. Rev. 31 (6): 637–656. doi:10.1111/j.1574-6976.2007.00082.x. PMID 17883408.
- ↑ Murayama Y, Kurokawa Y, Mayanagi K, Iwasaki H (February 2008). "यूकेरियोटिक रीकॉम्बिनेज द्वारा मध्यस्थता वाले हॉलिडे जंक्शनों का गठन और शाखा प्रवासन". Nature. 451 (7181): 1018–21. Bibcode:2008Natur.451.1018M. doi:10.1038/nature06609. PMID 18256600. S2CID 205212254.
- ↑ Holthausen JT, Wyman C, Kanaar R (2010). "सजातीय पुनर्संयोजन में डीएनए स्ट्रैंड एक्सचेंज का विनियमन". DNA Repair (Amst). 9 (12): 1264–1272. doi:10.1016/j.dnarep.2010.09.014. PMID 20971042.
- ↑ Kathe SD, Shen GP, Wallace SS (April 2004). "डीएनए में एकल-फंसे हुए ब्रेक, लेकिन ऑक्सीडेटिव डीएनए बेस नहीं, हेला सेल परमाणु अर्क में आरएनए पोलीमरेज़ II द्वारा ब्लॉक ट्रांसक्रिप्शनल बढ़ाव को नुकसान पहुंचाता है". The Journal of Biological Chemistry. 279 (18): 18511–20. doi:10.1074/jbc.M313598200. PMID 14978042.
- ↑ Brasnjevic I, Hof PR, Steinbusch HW, Schmitz C (2008). "Accumulation of nuclear DNA damage or neuron loss: molecular basis for a new approach to understanding selective neuronal vulnerability in neurodegenerative diseases". DNA Repair (Amst.). 7 (7): 1087–1097. doi:10.1016/j.dnarep.2008.03.010. PMC 2919205. PMID 18458001.
- ↑ Hetman M, Vashishta A, Rempala G (2010). "Neurotoxic mechanisms of DNA damage: focus on transcriptional inhibition". J. Neurochem. 114 (6): 1537–1549. doi:10.1111/j.1471-4159.2010.06859.x. PMC 2945429. PMID 20557419.
- ↑ Piec I, Listrat A, Alliot J, Chambon C, Taylor RG, Bechet D (July 2005). "चूहे की कंकाल की मांसपेशी में उम्र बढ़ने का विभेदक प्रोटिओम विश्लेषण". FASEB Journal. 19 (9): 1143–5. doi:10.1096/fj.04-3084fje. PMID 15831715. S2CID 33187815.
- ↑ Carnevale J, Palander O, Seifried LA, Dick FA (March 2012). "DNA damage signals through differentially modified E2F1 molecules to induce apoptosis". Molecular and Cellular Biology. 32 (5): 900–12. doi:10.1128/MCB.06286-11. PMC 3295199. PMID 22184068.
- ↑ Hittelman WN, Rao PN (1975). "Mutat. Res. 23 1974; 251; A.P. Rao and P.N. Rao, J. Natl. Cancer Inst. 57 1976; 1139; W.N. Hittelman and P.N. Rao, Cancer Res. 34 1974; 3433;". 35: 3027.
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Weinert TA, Hartwell LH (July 1988). "The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae". Science. 241 (4863): 317–22. Bibcode:1988Sci...241..317W. doi:10.1126/science.3291120. PMID 3291120. S2CID 36645009.
- ↑ Al-Moghrabi NM, Al-Sharif IS, Aboussekhra A (May 2001). "The Saccharomyces cerevisiae RAD9 cell cycle checkpoint gene is required for optimal repair of UV-induced pyrimidine dimers in both G(1) and G(2)/M phases of the cell cycle". Nucleic Acids Research. 29 (10): 2020–5. doi:10.1093/nar/29.10.2020. PMC 55462. PMID 11353070.