इवासावा अपघटन

From Vigyanwiki
Revision as of 15:51, 30 July 2023 by alpha>Shikhav

गणित में, अर्धसरल लाई समूह का इवासावा अपघटन (इसकी अभिव्यक्ति से उर्फ ​​केएएन) उस विधियों को सामान्य बनाता है जिस तरह वर्ग वास्तविक आव्युह को ऑर्थोगोनल आव्युह और ऊपरी त्रिकोणीय आव्युह (क्यूआर अपघटन, ग्राम-श्मिट प्रक्रिया का परिणाम होता है | जहाँ ग्राम-श्मिट को ऑर्थोगोनलाइज़ेशन) के उत्पाद के रूप में लिखा जा सकता है। इसका नाम जापानी गणितज्ञ केनकिची इवासावा के नाम पर रखा गया है, जिन्होंने इस पद्धति को विकसित किया था।[1]

परिभाषा

  • G जुड़ा हुआ अर्धसरल वास्तविक ली समूह है।
  • G का ली बीजगणित है
  • की सम्मिश्र्ता है .
  • θ का कार्टन इन्वॉल्वमेंट है
  • संगत कार्टन अपघटन है
  • का अधिकतम एबेलियन उपबीजगणित है
  • Σ प्रतिबंधित जड़ों का समुच्चय है , जो पर कार्य कर रहे के आइजेनवैल्यू ​​​​के अनुरूप होते है .
  • Σ+ Σ की धनात्मक जड़ों का विकल्प है
  • शून्य-शक्तिशाली बीजगणित है जिसे के Σ+ के मूल स्थानों के योग के रूप में उपयोग किया जाता है
  • K, A, N, G के Lie उपसमूह हैं जो और द्वारा उत्पन्न होते है

अर्थात इवासावा का विघटन है

और G का इवासावा अपघटन है

इसका अर्थ यह है कि मैनिफोल्ड लाई समूह से विश्लेषणात्मक भिन्नता (किन्तु समूह समरूपता नहीं) है जो , के लिए उपयोग किया जाता है .

A का आयाम (या समकक्ष) बीजगणितीय टोरस या फ्लैट उप-स्थान और G के सममित स्थानों की रैंक के समान्तर है।

इस प्रकार इवासावा अपघटन में कुछ असंबद्ध अर्धसरल समूहों G के लिए भी प्रयुक्त होता है, जहां K (असंबद्ध) अधिकतम सघन उपसमूह बन जाता है, परंतु G का केंद्र परिमित होना चाहिए ।

प्रतिबंधित मूल स्थान अपघटन है

जहाँ , इंच का केंद्रीकरणकर्ता है और मूल स्थान है. जो नंबर को की बहुलता कहलाती है .

उदाहरण

यदि G=SLn(R) तो हम K को ओर्थोगोनल आव्यूह के रूप में ले सकते हैं, A को निर्धारक 1 के साथ धनात्मक विकर्ण आव्यूह के रूप में ले सकते हैं, और N को विकर्ण पर 1s के साथ ऊपरी त्रिकोणीय आव्यूहों से युक्त एकशक्तिशाली समूह के रूप में ले सकते हैं।

n=2 के स्तिथियों के लिए, G=SL(2,'R') का इवासावा अपघटन के संदर्भ में है

सहानुभूति समूह G=Sp(2n, 'R' ) के लिए, संभावित इवासावा अपघटन के संदर्भ में है


गैर-आर्किमिडीयन इवासावा अपघटन

गैर-आर्किमिडीयन क्षेत्र के लिए उपरोक्त इवासावा अपघटन का एनालॉग है : इस स्तिथियों में, समूह ऊपरी-त्रिकोणीय आव्युह के उपसमूह और (अधिकतम कॉम्पैक्ट) उपसमूह के उत्पाद के रूप में लिखा जा सकता है , जहाँ के पूर्णांकों का वलय .है[2]

यह भी देखें

संदर्भ

  1. Iwasawa, Kenkichi (1949). "कुछ प्रकार के टोपोलॉजिकल समूहों पर". Annals of Mathematics. 50 (3): 507–558. doi:10.2307/1969548. JSTOR 1969548.
  2. Bump, Daniel (1997), Automorphic forms and representations, Cambridge: Cambridge University Press, doi:10.1017/CBO9780511609572, ISBN 0-521-55098-X, Prop. 4.5.2