परिमित संभावित स्रोत

From Vigyanwiki
Revision as of 15:54, 26 July 2023 by alpha>Indicwiki (Created page with "परिमित संभावित कुँआ (परिमित वर्ग कुँआ के रूप में भी जाना जाता है) क...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

परिमित संभावित कुँआ (परिमित वर्ग कुँआ के रूप में भी जाना जाता है) क्वांटम यांत्रिकी की एक अवधारणा है। यह अनंत क्षमता वाले कुएं का विस्तार है, जिसमें एक कण एक बॉक्स तक ही सीमित है, लेकिन जिसकी संभावित ऊर्जा दीवारें सीमित हैं। अनंत क्षमता वाले कुएं के विपरीत, कण के बॉक्स के बाहर पाए जाने से जुड़ी एक संभावना है। क्वांटम यांत्रिक व्याख्या शास्त्रीय व्याख्या के विपरीत है, जहां यदि कण की कुल ऊर्जा दीवारों की संभावित ऊर्जा बाधा से कम है तो इसे बॉक्स के बाहर नहीं पाया जा सकता है। क्वांटम व्याख्या में, कण के बॉक्स के बाहर होने की गैर-शून्य संभावना होती है, भले ही कण की ऊर्जा दीवारों की संभावित ऊर्जा बाधा (सीएफ क्वांटम टनलिंग) से कम हो।

एक-आयामी बॉक्स में कण

एक्स-अक्ष पर 1-आयामी मामले के लिए, समय-स्वतंत्र श्रोडिंगर समीकरण को इस प्रकार लिखा जा सकता है:

 

 

 

 

(1)

कहाँ

  • घटा हुआ प्लैंक स्थिरांक है,
  • प्लैंक स्थिरांक है,
  • कण का द्रव्यमान है,
  • वह (जटिल मूल्यवान) तरंग तरंग क्रिया है जिसे हम खोजना चाहते हैं,
  • प्रत्येक बिंदु x पर संभावित ऊर्जा का वर्णन करने वाला एक फ़ंक्शन है, और
  • ऊर्जा है, एक वास्तविक संख्या, जिसे कभी-कभी आइजेनएनर्जी भी कहा जाता है।

लंबाई L के 1-आयामी बॉक्स में कण के मामले में, क्षमता है बॉक्स के बाहर, और बीच में x के लिए शून्य और . वेवफ़ंक्शन को x की विभिन्न श्रेणियों पर अलग-अलग वेवफ़ंक्शन से बना माना जाता है, यह इस पर निर्भर करता है कि x बॉक्स के अंदर है या बाहर। इसलिए, वेवफ़ंक्शन को इस प्रकार परिभाषित किया गया है:


बॉक्स के अंदर

बॉक्स के अंदर के क्षेत्र के लिए, V(x) = 0 और समीकरण 1 कम हो जाता है

दे

समीकरण बन जाता है

यह एक सामान्य समाधान के साथ एक अच्छी तरह से अध्ययन किया गया अंतर समीकरण और eigenvectors समस्या है
इस तरह,
यहां, A और B कोई भी सम्मिश्र संख्या हो सकते हैं, और k कोई भी वास्तविक संख्या हो सकती है।

बॉक्स के बाहर

बॉक्स के बाहर के क्षेत्र के लिए, चूँकि क्षमता स्थिर है, और समीकरण 1 बन जाता है:

समाधान के दो संभावित परिवार हैं, यह इस पर निर्भर करता है कि E इससे कम है या नहीं (कण विभव में बंधा हुआ है) अथवा E से अधिक है (कण स्वतंत्र है).

एक मुक्त कण के लिए, , और देना

का उत्पादन
इनसाइड-वेल केस के समान समाधान फॉर्म के साथ:

यह विश्लेषण बाध्य स्थिति पर ध्यान केंद्रित करेगा, जहां . दे
का उत्पादन
जहां सामान्य समाधान घातीय है:
इसी प्रकार, बॉक्स के बाहर दूसरे क्षेत्र के लिए:

अब मौजूदा समस्या का विशिष्ट समाधान खोजने के लिए, हमें उपयुक्त सीमा शर्तों को निर्दिष्ट करना होगा और ए, बी, एफ, जी, एच और आई के लिए मान ढूंढना होगा जो उन शर्तों को पूरा करते हैं।

बाउंड अवस्था के लिए वेवफंक्शन ढूँढना

श्रोडिंगर समीकरण के समाधान निरंतर और निरंतर भिन्न होने चाहिए।[1] ये आवश्यकताएं पहले से प्राप्त अंतर समीकरणों पर सीमा की स्थिति हैं, यानी, कुएं के अंदर और बाहर के समाधानों के बीच मिलान की स्थिति।

इस मामले में, परिमित संभावित कुआं सममित है, इसलिए आवश्यक गणनाओं को कम करने के लिए समरूपता का उपयोग किया जा सकता है।

पिछले अनुभागों का सारांश:

जहां हमने पाया , , और होना:
हम इसे ऐसे देखते हैं जाता है , द पद अनंत तक जाता है. इसी तरह, जैसे जाता है , द पद अनंत तक जाता है. तरंग फलन को वर्गाकार समाकलनीय बनाने के लिए, हमें सेट करना होगा , और हमारे पास है:
और
अगला, हम जानते हैं कि समग्र फ़ंक्शन निरंतर और भिन्न होना चाहिए। दूसरे शब्दों में, फ़ंक्शंस और उनके डेरिवेटिव के मान विभाजन बिंदुओं पर मेल खाने चाहिए:

इन समीकरणों के दो प्रकार के समाधान हैं, सममित, जिसके लिए और , और एंटीसिमेट्रिक, जिसके लिए और . सममित मामले के लिए हमें मिलता है

तो अनुपात लेने से मिलता है

परिमाणित ऊर्जा स्तरों के लिए समीकरण की जड़ें

इसी प्रकार एंटीसिमेट्रिक केस के लिए हमें मिलता है

उस दोनों को याद करें और ऊर्जा पर निर्भर है. हमने पाया है कि ऊर्जा के मनमाने मूल्य के लिए निरंतरता की शर्तों को संतुष्ट नहीं किया जा सकता है; क्योंकि यह अनंत संभावित कुएं के मामले का परिणाम है। इस प्रकार, केवल कुछ ऊर्जा मान, जो इन दो समीकरणों में से एक या किसी एक का समाधान हैं, की अनुमति है। इसलिए हम पाते हैं कि सिस्टम का ऊर्जा स्तर नीचे है अलग हैं; संबंधित eigenfunctions बाध्य अवस्थाएँ हैं। (इसके विपरीत, उपरोक्त ऊर्जा स्तरों के लिए निरंतर हैं.[2])

ऊर्जा समीकरणों को विश्लेषणात्मक रूप से हल नहीं किया जा सकता है। फिर भी, हम देखेंगे कि सममित मामले में, हमेशा कम से कम एक बंधी हुई स्थिति मौजूद होती है, भले ही कुआँ बहुत उथला हो।[3] ऊर्जा समीकरणों के आलेखीय या संख्यात्मक समाधानों को थोड़ा पुनः लिखने से सहायता मिलती है। यदि हम आयामहीन चर का परिचय देते हैं और , और की परिभाषाओं से ध्यान दें और वह , कहाँ , मास्टर समीकरण पढ़ें

दाहिनी ओर के कथानक में, के लिए , समाधान मौजूद हैं जहां नीला अर्धवृत्त बैंगनी या भूरे रंग के वक्रों को काटता है ( और ). प्रत्येक बैंगनी या ग्रे वक्र एक संभावित समाधान का प्रतिनिधित्व करता है, सीमा के अंदर . समाधानों की कुल संख्या, , (अर्थात, नीले वृत्त द्वारा प्रतिच्छेदित बैंगनी/ग्रे वक्रों की संख्या) इसलिए नीले वृत्त की त्रिज्या को विभाजित करके निर्धारित की जाती है, , प्रत्येक समाधान की सीमा के अनुसार और फर्श या छत के कार्यों का उपयोग करना:[4]

इस मामले में, वास्तव में तीन समाधान हैं .

परिमित वर्ग के समाधान अच्छी तरह से

और , संगत ऊर्जाओं के साथ

यदि हम चाहें तो हम पीछे जाकर स्थिरांकों का मान ज्ञात कर सकते हैं अब समीकरणों में (हमें सामान्यीकरण की स्थिति भी लागू करने की आवश्यकता है)। दाईं ओर हम इस मामले में ऊर्जा स्तर और तरंग कार्यों को दिखाते हैं (जहां)। ):

हम ध्यान दें कि यह कितना भी छोटा क्यों न हो (चाहे कुआँ कितना भी उथला या संकरा क्यों न हो), वहाँ हमेशा कम से कम एक बंधी हुई अवस्था होती है।

दो विशेष मामले ध्यान देने योग्य हैं। जैसे-जैसे क्षमता की ऊंचाई बड़ी होती जाती है, , अर्धवृत्त की त्रिज्या बड़ी हो जाती है और जड़ें मूल्यों के करीब और करीब आ जाती हैं , और हम अनंत वर्ग के मामले को अच्छी तरह से पुनर्प्राप्त करते हैं।

दूसरा मामला एक बहुत ही संकीर्ण, गहरे कुएं का है - विशेष रूप से मामला और साथ हल किया गया। जैसा यह शून्य की ओर प्रवृत्त होगा, और इसलिए केवल एक बंधी हुई अवस्था होगी। तब अनुमानित समाधान है , और ऊर्जा प्रवृत्त होती है . लेकिन यह केवल डेल्टा फ़ंक्शन क्षमता की बाध्य अवस्था की ऊर्जा है , जैसा होना चाहिए।

गुणन के माध्यम से क्षमता और ऊर्जा को सामान्य करके ऊर्जा स्तरों के लिए एक सरल ग्राफिकल समाधान प्राप्त किया जा सकता है . सामान्यीकृत मात्राएँ हैं

अनुमत जोड़ों के बीच सीधे संबंध देना जैसा[5]
क्रमशः सम और विषम समता तरंग कार्यों के लिए। पिछले समीकरणों में केवल कार्यों के सकारात्मक व्युत्पन्न भागों पर विचार किया जाना है। चार्ट सीधे अनुमत जोड़ों को दे रहा है चित्र में बताया गया है।

FigureV0E QuantumWell.png

असंबद्ध अवस्थाएँ

यदि हम किसी ऊर्जा के लिए समय-स्वतंत्र श्रोडिंगर समीकरण को हल करते हैं , समाधान कुएं के अंदर और बाहर दोनों जगह दोलनशील होंगे। इस प्रकार, समाधान कभी भी वर्ग पूर्णांक नहीं होता है; अर्थात्, यह हमेशा एक गैर-सामान्यीकरण योग्य स्थिति होती है। हालाँकि, इसका मतलब यह नहीं है कि क्वांटम कण के लिए इससे अधिक ऊर्जा होना असंभव है , इसका मतलब केवल यह है कि सिस्टम के ऊपर निरंतर स्पेक्ट्रम है . गैर-सामान्यीकरण योग्य ईजेनस्टेट वर्गाकार एकीकृत होने के काफी करीब हैं कि वे अभी भी एक असीमित ऑपरेटर के रूप में हैमिल्टनियन के स्पेक्ट्रम में योगदान करते हैं।[6]


असममित कुआँ

क्षमता द्वारा अच्छी तरह से दी गई एक-आयामी असममित क्षमता पर विचार करें[7]

साथ . तरंग फ़ंक्शन के लिए संगत समाधान होना पाया जाता है

और
ऊर्जा का स्तर एक बार निर्धारित किया जाता है निम्नलिखित पारलौकिक समीकरण के मूल के रूप में हल किया गया है

कहाँ उपरोक्त समीकरण के मूल के अस्तित्व की हमेशा गारंटी नहीं होती है, उदाहरण के लिए, कोई हमेशा इसका मान पा सकता है इतना छोटा, कि दिए गए मानों के लिए और , कोई पृथक ऊर्जा स्तर मौजूद नहीं है। सममित कुएं के परिणाम उपरोक्त समीकरण से सेटिंग द्वारा प्राप्त किये जाते हैं .

गोलाकार गुहा

उपरोक्त परिणामों का उपयोग यह दिखाने के लिए किया जा सकता है कि, एक-आयामी मामले में, गोलाकार गुहा में दो बाध्य अवस्थाएँ होती हैं, क्योंकि गोलाकार निर्देशांक किसी भी दिशा में त्रिज्या के बराबर बनाते हैं।

गोलाकार रूप से सममित क्षमता की जमीनी स्थिति (n = 1) में हमेशा शून्य कक्षीय कोणीय गति (ℓ = n−1) होगी, और कम तरंग फ़ंक्शन होगा

समीकरण को संतुष्ट करता है

कहाँ तरंग फ़ंक्शन का रेडियल भाग है। ध्यान दें कि (n = 1) के लिए कोणीय भाग स्थिर है (ℓ = 0)।

सीमा स्थितियों को छोड़कर, यह एक-आयामी समीकरण के समान है। पहले जैसा,

के लिए ऊर्जा स्तर

एक बार निर्धारित किया जाता है

निम्नलिखित पारलौकिक समीकरण के मूल के रूप में हल किया गया है

कहाँ

उपरोक्त समीकरण के मूल के अस्तित्व की हमेशा गारंटी होती है।

परिणाम हमेशा गोलाकार समरूपता के साथ होते हैं।

यह उस स्थिति को पूरा करता है जहां तरंग को गोले के अंदर कोई क्षमता नहीं मिलती है:


यह भी देखें

  • संभावित कुआँ
  • डेल्टा कार्य क्षमता
  • अनंत क्षमता वाला कुँआ
  • अर्धवृत्त क्षमता अच्छी तरह से
  • क्वांटम टनलिंग
  • आयताकार संभावित अवरोध

संदर्भ

  1. Hall 2013 Proposition 5.1
  2. Hall 2013 Section 5.5
  3. Hall 2013 Proposition 5.3
  4. Williams, Floyd (2003). क्वांटम यांत्रिकी में विषय. Springer Science+Business Media. p. 57. ISBN 978-1-4612-6571-9.
  5. Chiani, M. (2016). "वर्ग क्वांटम कुएं के ऊर्जा स्तर के लिए एक चार्ट". arXiv:1610.04468 [physics.gen-ph].
  6. Hall 2013 Section 5.5 and Exercise 4 in Chapter 3
  7. Landau, L. D., & Lifshitz, E. M. (2013). Quantum mechanics: non-relativistic theory (Vol. 3). Elsevier.


अग्रिम पठन