पूर्णांक अनुक्रमों का ऑनलाइन विश्वकोश
स्थापित | 1964 |
---|---|
पूर्ववर्ती | पूर्णांक अनुक्रमों की पुस्तिका, पूर्णांक अनुक्रमों का विश्वकोश |
के द्वारा बनाई गई | नील स्लोएन |
अध्यक्ष | नील स्लोएन |
अध्यक्ष | रस कॉक्स |
यूआरएल | ओईआईएस |
व्यावसायिक | No[1] |
पंजीकरण | वैकल्पिक[2] |
शुरू | 1996 |
Content license | क्रिएटिव कॉमन्स सीसी बाय-एसए 4.0[3] |
पूर्णांक अनुक्रमों का ऑन-लाइन विश्वकोश (ओईआईएस) पूर्णांक अनुक्रमों का ऑनलाइन डेटाबेस है। इसे एटी एंड टी लैब्स में शोध के समय नील स्लोएन द्वारा बनाया और बनाए रखा गया था। उन्होंने सन्न 2009 में ओईआईएस की बौद्धिक संपदा और होस्टिंग को ओईआईएस फाउंडेशन को हस्तांतरित कर दिया था।[4] इस प्रकार स्लोअन ओईआईएस फाउंडेशन के अध्यक्ष हैं।
ओईआईएस प्रस्तुतेवर और शौकिया गणितज्ञों दोनों के लिए रुचि के पूर्णांक अनुक्रमों पर जानकारी दर्ज करता है, और व्यापक रूप से उद्धृत किया जाता है। As of April 2023[ref], इसमें 360,000 से अधिक अनुक्रम सम्मिलित होता हैं,[5] अतः यह इसे अपने प्रकार का सबसे बड़ा डेटाबेस बनाता है।
प्रत्येक प्रविष्टि में अनुक्रम के प्रमुख शब्द, कीवर्ड (कंप्यूटर प्रोग्रामिंग), गणितीय प्रेरणा, साहित्य लिंक और बहुत कुछ सम्मिलित होता है, जिसमें किसी फलन का ग्राफ़ उत्पन्न करने या अनुक्रम का कंप्यूटर संगीत प्रतिनिधित्व चलाने का विकल्प सम्मिलित होता है। इस प्रकार डेटाबेस कीवर्ड द्वारा, अनुवर्ती द्वारा, या 16 क्षेत्र में से किसी द्वारा खोजा जाता है।
इतिहास
नील स्लोएन ने साहचर्य में अपने कार्य का समर्थन करने के लिए सन्न 1964 में स्नातक छात्र के रूप में पूर्णांक अनुक्रम एकत्र करना प्रारंभ किया था।[6][7] इस प्रकार डेटाबेस को पहले छिद्रित कार्डों पर संग्रहीत किया गया था। अतः उन्होंने डेटाबेस से चयनों को पुस्तक के रूप में दो बार प्रकाशित किया था।
- पूर्णांक अनुक्रमों की एक पुस्तिका (1973, ISBN 0-12-648550-X), जिसमें शब्दावली क्रम में 2,372 अनुक्रम और 1 से 2372 तक निर्दिष्ट संख्याएँ सम्मिलित होती हैं।
- साइमन प्लॉफ़े के साथ पूर्णांक अनुक्रमों का विश्वकोश (1995, ISBN 0-12-558630-2), जिसमें 5,488 अनुक्रम हैं और एम0000 से एम5487 तक एम-नंबर निर्दिष्ट होता हैं। इस प्रकार एनसाइक्लोपीडिया में पूर्णांक अनुक्रमों की हैंडबुक में एन0001 से एन2372 तक (1 से 2372 के अतिरिक्त) एन-संख्याओं के रूप में संबंधित अनुक्रमों (जो उनके कुछ प्रारंभिक शब्दों में भिन्न हो सकते हैं) के संदर्भ को सम्मिलित किया गया है। इस प्रकार एनसाइक्लोपीडिया में ए-संख्याएं सम्मिलित हैं जो ओईआईएस में उपयोग की जाती हैं, जबकि हैंडबुक में ऐसा नहीं होता था।
इन पुस्तकों को खूब सराहा गया और, विशेष रूप से दूसरे प्रकाशन के पश्चात्, गणितज्ञों ने स्लोएन को नए अनुक्रमों का निरंतर प्रवाह प्रदान किया था। इस प्रकार पुस्तक के रूप में संग्रह असहनीय हो गया था, और जब डेटाबेस 16,000 प्रविष्टियों तक पहुँच गया तब स्लोएन ने ऑनलाइन जाने का निर्णय लिया था - जो पहले ईमेल सेवा के रूप में (अगस्त सन्न 1994), और उसके तुरंत पश्चात् वेबसाइट के रूप में (1996) डेटाबेस कार्य के स्पिन-ऑफ के रूप में, स्लोएन ने सन्न 1998 में पूर्णांक अनुक्रमों का जर्नल की स्थापना की थी।[8]
डेटाबेस प्रति वर्ष लगभग 10,000 प्रविष्टियों की दर से बढ़ रहा है। इस प्रकार स्लोएन ने लगभग 40 वर्षों तक 'अपने' अनुक्रमों को व्यक्तिगत रूप से प्रबंधित किया है, किन्तु सन्न 2002 से प्रारंभ होकर, सहयोगी संपादकों और स्वयंसेवकों के बोर्ड ने डेटाबेस को बनाए रखने में सहायता की है।[9]
सन्न 2004 में, स्लोएन ने डेटाबेस में 100,000वें अनुक्रम, A100000 को जोड़ने का जश्न मनाया था, जो इशांगो हड्डी पर निशानों को गिनता है। इस प्रकार सन्न 2006 में, उपयोगकर्ता इंटरफ़ेस में सुधार किया गया और अधिक उन्नत खोज क्षमताएँ जोड़ी गईं थी। सन्न 2010 में ओईआईएस संपादकों और योगदानकर्ताओं के सहयोग को सरल बनाने के लिए ओईआईएस.ओआरजी पर ओईआईएस विकी बनाया गया था।[10] सामान्यतः 200,000वाँ क्रम, A200000, नवंबर सन्न 2011 में डेटाबेस में जोड़ा गया था। चूँकि प्रारंभ में इसे ए200715 के रूप में अंकित किया गया था, और सेकफैन मेलिंग सूची पर सप्ताह की चर्चा के पश्चात् इसे ए200000 में स्थानांतरित कर दिया गया था,[11][12] अतः ए200000 के लिए विशेष अनुक्रम चुनने के लिए ओईआईएस के प्रधान संपादक चार्ल्स ग्रेटहाउस के प्रस्ताव के पश्चात्[13] A300000 को फरवरी सन्न 2018 में परिभाषित किया गया था, और जुलाई सन्न 2020 के अंत तक डेटाबेस में 336,000 से अधिक अनुक्रम सम्मिलित थे।
गैर पूर्णांक
पूर्णांक अनुक्रमों के अतिरिक्त, ओईआईएस भिन्नों के अनुक्रमों, पारलौकिक संख्याओं के अंकों, समष्टि संख्याओं आदि को भी पूर्णांक अनुक्रमों में परिवर्तित करके सूचीबद्ध करता है। इस प्रकार भिन्नों के अनुक्रमों को दो अनुक्रमों द्वारा दर्शाया जाता है (कीवर्ड 'फ्रैक' के साथ नामित): अंशों का अनुक्रम और हरों का अनुक्रम होता है। उदाहरण के लिए, पांचवें क्रम का फ़ेरी अनुक्रम, , को अंश अनुक्रम 1, 1, 1, 2, 1, 3, 2, 3, 4 के रूप में सूचीबद्ध किया गया है (ए006842) और प्रत्येक क्रम 5, 4, 3, 5, 2, 5, 3, 4, 5 (ए006843) महत्वपूर्ण अपरिमेय संख्याएँ जैसे π = 3.1415926535897... को दशमलव विस्तार जैसे प्रतिनिधि पूर्णांक अनुक्रमों के अंतर्गत सूचीबद्ध किया गया है (यहाँ 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3 , 3, 8, 3, 2, 7, 9, 5, 0, 2, 8, 8, ... (ए000796)), द्विआधारी संख्या विस्तार (यहां 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, ... (ए004601)), या निरंतर भिन्न विस्तार (यहाँ 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, ... (ए001203)).
सम्मेलन
ओईआईएस सन्न 2011 तक सादे एएससीआईआई पाठ तक ही सीमित था, और यह अभी भी पारंपरिक गणितीय अंकन (जैसे फलन (गणित) के लिए एफ(एन), रनिंग चर (गणित, आदि) के लिए एन) के रैखिक रूप का उपयोग करता है। इस प्रकार ग्रीक वर्णमाला को सामान्यतः उनके पूर्ण नामों से दर्शाया जाता है, जैसे, μ के लिए म्यू, φ के लिए फी होता है। चूँकि प्रत्येक अनुक्रम की पहचान अक्षर ए और उसके पश्चात् छह अंकों से होती है, जिसे लगभग सदैव अग्रणी शून्य के साथ संदर्भित किया जाता है, उदाहरण के लिए, ए315 के अतिरिक्त ए000315 होता है। सामान्यतः अनुक्रमों के भिन्न-भिन्न शब्दों को अल्पविराम द्वारा भिन्न किया जाता है।चूँकि अंक समूहों को अल्पविराम, अवधि या रिक्त स्थान से भिन्न नहीं किया जाता है। अतः टिप्पणियों, सूत्रों आदि में, ए(एन)
अनुक्रम के एन वें पद का प्रतिनिधित्व करता है।
शून्य का विशेष अर्थ
शून्य का उपयोग अधिकांशतः गैर-उपस्तिथ अनुक्रम तत्वों को दर्शाने के लिए किया जाता है। उदाहरण के लिए, ए104157 एन2 क्रमागत अभाज्य संख्याओं में से सबसे छोटी अभाज्य संख्या की गणना करता है, जिससे कि कम से कम जादुई स्थिरांक का एन × एन जादुई वर्ग बनाने के लिए लगातार अभाज्य संख्याएँ, या यदि ऐसा कोई जादुई वर्ग उपस्तिथ नहीं होता है तब 0। ए(1) (1 × 1 जादुई वर्ग) का मान 2 होता है। इस प्रकार ए(3) 1480028129 है। किन्तु ऐसा कोई 2 × 2 जादुई वर्ग नहीं होता है, इसलिए ए(2) 0 है। इस विशेष उपयोग का कुछ गिनती कार्यों में ठोस गणितीय आधार होता है। उदाहरण के लिए, इतने सारे वैलेंस फलन एनφ(एम) (ए014197) φ(एक्स) = एम के समाधानों की गणना करता है। चूँकि 4 के लिए 4 समाधान हैं, किन्तु 14 के लिए कोई समाधान नहीं है, इसलिए ए014197 का ए(14) 0 है—कोई समाधान नहीं होता है।
अन्य मानों का भी उपयोग किया जाता है, सामान्यतः -1 (ए000230 या ए094076 देखें)।
शब्दावली क्रम
ओईआईएस अनुक्रमों के शब्दकोषीय क्रम को बनाए रखता है, इसलिए प्रत्येक अनुक्रम में पूर्ववर्ती और उत्तराधिकारी (इसका संदर्भ) होता है।[14] इस प्रकार ओईआईएस लेक्सिकोग्राफ़िक ऑर्डरिंग के लिए अनुक्रमों को सामान्य बनाता है, (सामान्यतः) सभी प्रारंभिक शून्य और को अनदेखा करता है, और प्रत्येक तत्व के संकेत (गणित) को भी अनदेखा करता है। अतः वजन वितरण कोड के अनुक्रम अधिकांशतः समय-समय पर आवर्ती शून्य को छोड़ देते हैं।
उदाहरण के लिए, विचार करें: अभाज्य संख्याएँ, पैलिंड्रोमिक अभाज्य संख्याएँ, फाइबोनैचि संख्या, आलसी कैटरर अनुक्रम, और श्रृंखला विस्तार में गुणांक . . . . ओईआईएस शब्दकोषीय क्रम में, वह हैं।
- अनुक्रम #1: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,... ए000040
- अनुक्रम #2: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, ... ए002385
- अनुक्रम #3: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, ... ए000045
- अनुक्रम #4: 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, ... ए000124
- अनुक्रम #5: 1, −3, −8, −3, −24, 24, −48, −3, −8, 72, −120, 24, −168, 144, ... ए046970
जबकि असामान्य शब्दावली क्रम इन अनुक्रमों को इस प्रकार क्रमित करता है: #3, #5, #4, #1, #2।
स्व-संदर्भित अनुक्रम
ओईआईएस के इतिहास में बहुत पहले, ओईआईएस में अनुक्रमों की संख्या के संदर्भ में परिभाषित अनुक्रम प्रस्तावित किए गए थे। इस प्रकार मैंने लंबे समय तक इन अनुक्रमों को जोड़ने का विरोध किया है, अतः आंशिक रूप से डेटाबेस की गरिमा बनाए रखने की इच्छा से, और आंशिक रूप से जिससे कि ए22 केवल 11 शब्दों के लिए जाना जाता था!, स्लोएन ने याद दिलाया है।[15]
ओईआईएस में स्वीकार किए गए सबसे प्रारंभिक स्व-संदर्भित अनुक्रमों में से स्लोएन था ए031135 (पश्चात् में ए091967) ए(एन) = अनुक्रम ए का एन वाँ पदएन या -1 यदि एएन n से कम पद हैं। इस क्रम ने और अधिक शर्तें खोजने में प्रगति को प्रेरित किया ए000022 था।
ए100544 अनुक्रम एएन में दिए गए पहले पद को सूचीबद्ध करता है, किन्तु ऑफसेट पर परिवर्तित राय के कारण इसे समय-समय पर अद्यतन करने की आवश्यकता होती है। इसके स्थान पर अनुक्रम एn के पद ए(1) को सूचीबद्ध किया जाता है। यह अच्छा विकल्प प्रतीत हो सकता है यदि यह तथ्य न होता कि कुछ अनुक्रमों में 2 और उससे अधिक के ऑफसेट होते हैं।
विचार की यह पंक्ति इस प्रश्न की ओर ले जाती है कि क्या अनुक्रम एएन है संख्या एन समाहित है? और अनुक्रम ए053873, संख्याएँ एन ऐसी कि ओईआईएस अनुक्रम एएन इसमें एन, और सम्मिलित होता है ए053169, एन इस अनुक्रम में है यदि और केवल यदि एन अनुक्रम एएन में नहीं है। इस प्रकार, भाज्य संख्या 2808 ए053873 में है जिससे कि ए002808 भाज्य संख्याओं का क्रम है, जबकि गैर-अभाज्य 40 ए053169 में है जिससे कि यह इसमें नहीं है ए000040, अभाज्य संख्याएँ होती है। प्रत्येक एन वास्तव में इन दो अनुक्रमों में से का सदस्य है, और सिद्धांत रूप में यह निर्धारित किया जा सकता है कि प्रत्येक एन किस अनुक्रम से संबंधित है, अतः दो अपवादों के साथ (स्वयं दो अनुक्रमों से संबंधित) होता है।
- यह निर्धारित नहीं किया जा सकता कि 53873 ए053873 का सदस्य है या नहीं। यदि यह क्रम में है तब परिभाषा के अनुसार यह होता है। यदि यह क्रम में नहीं है तब (फिर से, परिभाषा के अनुसार) यह नहीं होता है। फिर भी, कोई भी निर्णय सुसंगत होता है, और यह प्रश्न भी हल हो जाता है कि क्या 53873 ए053169 में है।
- यह सिद्ध किया जा सकता है कि 53169 विरोधाभास का सिद्धांत ए053169 का सदस्य है। यदि यह क्रम में है तब परिभाषा के अनुसार यह नहीं होता है। यदि यह क्रम में नहीं है तब (फिर से, परिभाषा के अनुसार) यह होता है। यह रसेल के विरोधाभास का रूप है। इसलिए यह उत्तर देना भी संभव नहीं होता है कि 53169 A053873 में है या नहीं।
विशिष्ट प्रविष्टि का संक्षिप्त उदाहरण
यह प्रविष्टि, ए046970, इसलिए चुना गया है जिससे कि इसमें प्रत्येक वह क्षेत्र सम्मिलित होता है जो ओईआईएस प्रविष्टि में हो सकती है।[16]
ए046970 जॉर्डन फलन जे_2 (ए007434) का डिरिचलेट व्युत्क्रम।
1, -3, -8, -3, -24, 24, -48, -3, -8, 72, -120, 24, -168, 144, 192, -3, -288, 24, -360, 72, 384, 360, -528, 24, -24, 504, -8, 144, -840, -5 76, -960, -3, 960, 864, 1152, 24, -1368, 1080, 1344, 72, -1680, -1152, -1848, 360, 192, 1584, -2208, 24, -48, 72, 2304, 504, -2808, 24, 2880, 144, 2880, 2520, -3480, -576
ऑफसेट 1,2
टिप्पणियां
चिह्नों के अतिरिक्त Sum_{d|n} core(d)^2*mu(n/d) जहां core(x) x का वर्गमुक्त भाग है। - बेनोइट क्लोइटर, 31 मई 2002
संदर्भ एम. अब्रामोविट्ज़ और आई. ए. स्टेगन, गणितीय कार्यों की पुस्तिका, डोवर प्रकाशन, 1965, पीपी. 805-811।
टी. एम. अपोस्टोल, विश्लेषणात्मक संख्या सिद्धांत का परिचय, स्प्रिंगर-वेरलाग, 1986, पी। 48.
लिंक रेइनहार्ड ज़ुमकेलर, एन = 1..10000 के लिए एन, ए(एन) की तालिका
एम. अब्रामोवित्ज़ और आई. ए. स्टेगन, संपा., हैंडबुक ऑफ़ मैथमेटिकल फ़ंक्शंस, नेशनल ब्यूरो ऑफ़ स्टैंडर्ड्स, एप्लाइड मैथ। शृंखला 55, दसवीं छपाई, 1972 [वैकल्पिक स्कैन की गई प्रति]। पी. जी. ब्राउन, व्युत्क्रम अंकगणितीय कार्यों पर कुछ टिप्पणियाँ, गणित। गज. 89 (516) (2005) 403-408। पॉल डब्ल्यू ऑक्सबी, एफआईआर फ़िल्टर डिज़ाइन में सिंक फलन के विकल्प के रूप में चेबीशेव पॉलीनोमिअल्स पर आधारित फलन, arXiv:2011.10546 [eess.SP], 2020। विकिपीडिया, रीमैन ज़ेटा फलन।
ए(पी^ई) = 1 - पी^2 के साथ गुणक सूत्र।
a(n) = Sum_{डी|एन} mu(d)*d^2. abs(a(n)) = उत्पाद_{p अभाज्य भाग n} (p^2 - 1)। - जॉन पेरी, 24 अगस्त 2010 वोल्फडीटर लैंग से, 16 जून 2011: (प्रारंभ) डिरिचलेट जी.एफ.: ज़ेटा(एस)/जेटा(एस-2)। a(n) = J_{-2}(n)*n^2, जॉर्डन फलन जे_के(एन) के साथ, जे_के(1):=1 के साथ। एपोस्टोल संदर्भ देखें, पृ. 48. व्यायाम 17. (समाप्त) ए(प्राइम(एन)) = -ए084920(एन)। - आर. जे. मथार, 28 अगस्त 2011 जी.एफ.: Sum_{k>=1} mu(k)*k^2*एक्स^के/(1 - एक्स^के). - इल्या गुटकोव्स्की, 15 जनवरी 2017
उदाहरण ए(3) = -8 जिससे कि 3 के विभाजक {1, 3} हैं और mu(1)*1^2 + mu(3)*3^2 = -8।
a(4) = -3 जिससे कि 4 के विभाजक {1, 2, 4} हैं और mu(1)*1^2 + mu(2)*2^2 + mu(4)*4^2 = -3. उदाहरण के लिए, a(15) = (3^2 - 1) * (5^2 - 1) = 8*24 = 192. - जॉन पेरी, 24 अगस्त 2010 जी.एफ. = x - 3*x^2 - 8*x^3 - 3*x^4 - 24*x^5 + 24*x^6 - 48*x^7 - 3*x^8 - 8*x^9 + ...
मेपल जिनवक := proc(एन, के) स्थानीय ए, एफ, पी ; ए := 1 ; आई फलन(एन)[2] में f के लिए do p := op(1, f) ; a := a*(1-p^k); अंत करें: ए ; अंतिम प्रक्रिया:
A046970 := proc(n) Jinvk(n, 2) ; अंतिम प्रक्रिया: # आर.जे. मथार, 04 जुलाई 2011
गणित muDD[d_] := MoebiusMu[d]*d^2; तालिका[प्लस @@ एमयूडीडी[विभाजक[एन, {एन, 60}] (लोपेज़)
समतल करें[तालिका[{x = FactorInteger[n]; पी = 1; [i = 1, i <= लंबाई[x], i++, p = p*(1 - xi1^2)] के लिए; पी}, {एन, 1, 50, 1} (* जॉन पेरी, 24 अगस्त 2010 *) a[ n_]]:= यदि[ n < 1, 0, योग[ d^2 MoebiusMu[ d], {d, विभाजक @ n} (* माइकल सोमोस, 11 जनवरी 2014 *) a[ n_]_:= यदि[ n < 2, बूले[ n == 1], टाइम्स @@ (1 - #1^2 और /@ FactorInteger @ n)] (* माइकल सोमोस, 11 जनवरी 2014 *)
PROG (PARI) A046970(n)=sumdiv(n, d, d^2*moebius(d)) \\ बेनोइट क्लॉइटर
(हास्केल) a046970 = उत्पाद। नक्शा ((1 -) . (^ 2)) . a027748_row -- रेइनहार्ड जुमकेलर, 19 जनवरी 2012 (PARI) {a(n) = if( n<1, 0, direuler( p=2, n, (1 - X*p^2) / (1 - X))[n])} /* माइकल सोमोस, 11 जनवरी 2014 */
क्रॉसरेफ़्स Cf. A007434, A027641, A027642, A063453, A023900।
सी एफ ए027748. संदर्भ में अनुक्रम: A144457 A220138 A146975 * A322360 A058936 A280369 आसन्न अनुक्रम: A046967 A046968 A046969 * A046971 A046972 A046973
कीवर्ड साइन, सरल, मल्टी लेखक डगलस स्टोल, डॉगस्टॉल(एटी)ईमेल.एमएसएन.कॉम
एक्सटेंशन व्लाडेटा जोवोविक द्वारा संशोधित और विस्तारित, 25 जुलाई, सन्न 2001
अतिरिक्तविल्फ्रेडो लोपेज़ की टिप्पणियाँ (chakotay147138274(AT)yahoo.com), 01 जुलाई 2005
प्रवेश क्षेत्र
- आईडी नंबर
- ओईआईएस में प्रत्येक अनुक्रम में क्रम संख्या, छह अंकों का धनात्मक पूर्णांक होता है, जिसके पहले ए लगा होता है (और नवंबर, सन्न 2004 से पहले बाईं ओर शून्य-पैडेड होता है)। अक्षर ए का कारण निरपेक्ष है। इस प्रकार नंबर या तब संपादकों द्वारा या ए नंबर डिस्पेंसर द्वारा निर्दिष्ट किए जाते हैं, जो तब उपयोगी होता है जब योगदानकर्ता साथ अनेक संबंधित अनुक्रम भेजना चाहते हैं और क्रॉस-रेफरेंस बनाने में सक्षम होते हैं। यदि उपयोग न किया जाए तब डिस्पेंसर का ए नंबर जारी होने के महीने पश्चात् समाप्त हो जाता है। किन्तु जैसा कि इच्छानुसार से चयनित अनुक्रमों की निम्नलिखित तालिका से पता चलता है, अतः मोटा पत्राचार कायम होता है।
A059097 | संख्याएँ एन ऐसी कि द्विपद गुणांक सी(2एन,एन) विषम अभाज्य के वर्ग से विभाज्य नहीं है। | Jan 1, 2001 |
---|---|---|
A060001 | फाइबोनैचि(एन)!. | Mar 14, 2001 |
A066288 | एन कोशिकाओं और क्रम के समरूपता समूह के साथ 3-आयामी पॉलीओमिनो (या पॉलीक्यूब) की संख्या बिल्कुल 24 है। | Jan 1, 2002 |
A075000 | सबसे छोटी संख्या ऐसी कि एन · ए(एन) एन क्रमागत पूर्णांकों का संयोजन है... | Aug 31, 2002 |
A078470 | ζ(3/2) के लिए निरंतर भिन्न | Jan 1, 2003 |
A080000 | संतोषजनक क्रमपरिवर्तन की संख्या −k ≤ p(i) − i ≤ r and p(i) − i | Feb 10, 2003 |
A090000 | एन-वें अभाज्य के द्विआधारी विस्तार में 1एस के सबसे लंबे सन्निहित ब्लॉक की लंबाई। | Nov 20, 2003 |
A091345 | स्वयं के साथ ए069321(एन) का घातीय कनवल्शन, जहां हम ए069321(0)=0 समूह करते हैं। | Jan 1, 2004 |
A100000 | कांगो की 22000 साल पुरानी इशांगो हड्डी के निशान। | Nov 7, 2004 |
A102231 | त्रिभुज ए102230 का स्तंभ 1, और ए032349 के दाएं शिफ्ट के साथ ए032349 के कनवल्शन के समान्तर है। | Jan 1, 2005 |
A110030 | निवेन संख्या के योग के लिए आवश्यक एन से प्रारंभ होने वाले क्रमागत पूर्णांकों की संख्या। | Jul 8, 2005 |
A112886 | त्रिभुज-मुक्त धनात्मक पूर्णांक। | Jan 12, 2006 |
A120007 | बहुलता के साथ एन के अभाज्य गुणनखंडों के योग का मोबियस रूपांतरण। | Jun 2, 2006 |
- यहां तक कि ओईआईएस की पूर्ववर्ती पुस्तक के अनुक्रमों के लिए भी, आईडी संख्याएं समान नहीं हैं। सन्न 1973 की पूर्णांक अनुक्रमों की हैंडबुक में लगभग 2400 अनुक्रम थे, जिन्हें लेक्सिकोग्राफ़िक क्रम (अक्षर एन प्लस चार अंक, जहां आवश्यक होता है, शून्य-पैडेड) द्वारा क्रमांकित किया गया था, और सन्न 1995 के पूर्णांक अनुक्रमों के विश्वकोश में 5487 अनुक्रम थे, जिन्हें लेक्सिकोग्राफ़िक क्रम (अक्षर एन प्लस चार अंक) द्वारा क्रमांकित किया गया था। इस प्रकार अक्षर एम प्लस 4 अंक, जहां आवश्यक हो वहां शून्य-पैडेड)। यह पुराने एम और एन नंबर, जैसा क्रियान्वित होता है, अतः आधुनिक ए नंबर के पश्चात् कोष्ठक में आईडी नंबर क्षेत्र में समाहित होता हैं।
- अनुक्रम डेटा
- अनुक्रम क्षेत्र संख्याओं को लगभग 260 वर्णों तक सूचीबद्ध करता है।[17] इस प्रकार अनुक्रमों की अधिक शर्तें तथाकथित बी-फ़ाइलों में प्रदान की जा सकती हैं।[18] चूँकि अनुक्रम क्षेत्र उन अनुक्रमों के मध्य कोई अंतर नहीं करता है जो सीमित हैं किन्तु प्रदर्शित करने के लिए अभी भी बहुत लंबे हैं और जो अनुक्रम अनंत हैं। सामान्यतः यह निर्णय लेने में सहायता के लिए, आपको फ़िनी, पूर्ण, या अधिक के लिए कीवर्ड क्षेत्र को देखना होता है। यह निर्धारित करने के लिए कि दिए गए मान किस एन से मेल खाते हैं, अतः ऑफसेट क्षेत्र देखें, जो दिए गए पहले पद के लिए एन देता है।
- नाम
- नाम क्षेत्र में सामान्यतः अनुक्रम के लिए सबसे सामान्य नाम और कभी-कभी सूत्र भी होता है। उदाहरण के लिए, 1, 8, 27, 64, 125, 216, 343, 512, (ए000578) को घन (बीजगणित) नाम दिया गया है: ए(एन) = एन^3.
- टिप्पणियाँ
- टिप्पणी क्षेत्र उस अनुक्रम के बारे में जानकारी के लिए है जो किसी भी अन्य क्षेत्र में बिल्कुल फिट नहीं बैठता है। इस प्रकार टिप्पणियाँ क्षेत्र अधिकांशतः विभिन्न अनुक्रमों और अनुक्रम के लिए कम स्पष्ट अनुप्रयोगों के मध्य रोचक संबंधों को इंगित करती हैं। उदाहरण के लिए, लेखराज बीडासी ने ए000578 पर टिप्पणी में लिखा है कि घन संख्याएं त्रिभुज के अंदर क्रिस-क्रॉसिंग सेवियन से उत्पन्न त्रिकोण की कुल संख्या की भी गणना करती हैं जिससे कि इसके दो पक्ष प्रत्येक एन-विभाजित हों, जबकि नील स्लोएन केंद्रित हेक्सागोनल संख्याओं के मध्य अप्रत्याशित संबंध को इंगित करता है (ए003215) और दूसरा बेसेल बहुपद (ए001498) ए003215 पर टिप्पणी में होता है।
- संदर्भ
- मुद्रित दस्तावेजों (किताबें, कागजात, ...) के संदर्भ।
- लिंक
- ऑनलाइन संसाधनों के लिए लिंक, अर्थात् यूनिफ़ॉर्म रिसोर्स लोकेटर यह हो सकते हैं:
- पत्रिकाओं में क्रियान्वित लेखों के संदर्भ
- सूचकांक से लिंक
- टेक्स्ट फ़ाइलों के लिंक जो मुख्य डेटाबेस लाइनों की तुलना में सूचकांकों की विस्तृत श्रृंखला पर अनुक्रम शब्द (दो कॉलम प्रारूप में) रखते हैं
- स्थानीय डेटाबेस निर्देशिकाओं में छवियों के लिंक जो अधिकांशतः ग्राफ़ सिद्धांत से संबंधित संयुक्त पृष्ठभूमि प्रदान करते हैं
- कंप्यूटर कोड से संबंधित अन्य, व्यक्तियों या अनुसंधान समूहों द्वारा प्रदान किए गए विशिष्ट अनुसंधान क्षेत्रों में अधिक व्यापक सारणी
- सूत्र
- अनुक्रम के लिए सूत्र, पुनरावृत्ति संबंध, जनरेटिंग फलन आदि।
- उदाहरण
- अनुक्रम सदस्य मानों के कुछ उदाहरण।
- मेपल
- मेपल कंप्यूटर बीजगणित प्रणाली कोड।
- मेथेमेटिका
- वोल्फ्राम भाषा कोड।
- कार्यक्रम
- मूल रूप से मेपल कंप्यूटर बीजगणित प्रणाली और मैथमैटिका ओईआईएस में अनुक्रमों की गणना के लिए पसंदीदा कार्यक्रम थे, और उन दोनों के पास अपने स्वयं के क्षेत्र लेबल हैं। As of 2016[update], 100,000 मैथमैटिका कार्यक्रमों के साथ मैथमेटिका सबसे लोकप्रिय विकल्प था, इसके पश्चात् 50,000 एआरआईपी/जीपी कार्यक्रम, 35,000 मेपल कार्यक्रम और अन्य भाषाओं में 45,000 कार्यक्रम थे।
- जहां तक रिकॉर्ड के किसी अन्य भाग की बात है, यदि कोई नाम नहीं दिया गया है, तब योगदान (यहां: कार्यक्रम) अनुक्रम के मूल प्रस्तुतकर्ता द्वारा लिखा गया था।
- क्रॉसरेफ़्स
- मूल प्रस्तुतकर्ता द्वारा उत्पन्न अनुक्रम क्रॉस-रेफरेंस को सामान्यतः सीएफ द्वारा दर्शाया जाता है।
- नए अनुक्रमों को छोड़कर, देखें क्षेत्र में अनुक्रम के शब्दकोषीय क्रम (इसके संदर्भ) के बारे में जानकारी भी सम्मिलित होती है और हमारे उदाहरण में समीप ए संख्याओं (ए046967, ए046968, ए046969, ए046971, ए046972, ए046973) वाले अनुक्रमों के लिंक प्रदान करता है। निम्न तालिका हमारे उदाहरण अनुक्रम, ए046970 का संदर्भ दिखाती है।
A016623 | 3, 8, 3, 9, 4, 5, 2, 3, 1, 2, ... | ln(93/2) का दशमलव विस्तार। |
---|---|---|
A046543 | 1, 1, 1, 3, 8, 3, 10, 1, 110, 3, 406, 3 | पहले अंश और फिर केंद्र का हर
1/3-पास्कल त्रिभुज के तत्व (पंक्ति द्वारा)। |
A035292 | 1, 3, 8, 3, 12, 24, 16, 3, 41, 36, 24, ... | सूचकांक एन2 के Z4 के समान उप-अक्षांशों की संख्या। |
A046970 | 1, −3, −8, −3, −24, 24, −48, −3, −8, 72, ... | रीमैन ज़ेटा फ़ंक्शन से उत्पन्न... |
A058936 | 0, 1, 3, 8, 3, 30, 20, 144, 90, 40, 840, 504, 420, 5760, 3360, 2688, 1260 |
स्टर्लिंग के S(n, 2) के अपघटन पर आधारित
संबद्ध संख्यात्मक विभाजन। |
A002017 | 1, 1, 1, 0, −3, −8, −3, 56, 217, 64, −2951, −12672, ... | ऍक्स्प(sin x) का विस्तार। |
A086179 | 3, 8, 4, 1, 4, 9, 9, 0, 0, 7, 5, 4, 3, 5, 0, 7, 8 | आर-मानों के लिए ऊपरी सीमा का दशमलव विस्तार
लॉजिस्टिक मानचित्र में स्थिर अवधि-3 कक्षाओं का समर्थन करना। |
- कीवर्ड
- ओईआईएस के समीप अधिकतर चार-अक्षर वाले कीवर्ड का अपना मानक समुच्चय होता है जो प्रत्येक अनुक्रम की विशेषता बताता है।[19]
- आवंटित ए-नंबर जिसे उपयोगकर्ता के लिए भिन्न रखा गया है किन्तु जिसके लिए प्रविष्टि अभी तक अनुमोदित नहीं की गई है (और संभवतः अभी तक लिखी नहीं गई है)।
- आधार गणना के परिणाम विशिष्ट स्थिति संकेतन पर निर्भर करते हैं। उदाहरण के लिए, 2, 3, 5, 7, 11, 101, 131, 151, 181... ए002385 आधार की परवाह किए बिना अभाज्य संख्याएँ होती हैं, किन्तु वह विशेष रूप से आधार 10 में पैलिंड्रोमिक अभाज्य हैं। उनमें से अधिकांश बाइनरी में पैलिंड्रोमिक अभाज्य नहीं हैं। कुछ अनुक्रम इस कीवर्ड को इस आधार पर रेट करते हैं कि उन्हें कैसे परिभाषित किया गया है। उदाहरण के लिए, मेर्सन प्रीमियम 3, 7, 31, 127, 8191, 131071, ... {{ए000668}यदि 2^n − 1 के रूप के अभाज्य के रूप में परिभाषित किया गया है तब } आधार का मूल्यांकन नहीं करता है। चूँकि, बाइनरी में पुनर्पुनिट अभाज्य के रूप में परिभाषित, अनुक्रम कीवर्ड आधार को रेट करेगा।
- संक्षिप्त अनुक्रम किसी भी विश्लेषण के लिए बहुत छोटा है, उदाहरण के लिए, ए079243, ऑर्डर एन के समुच्चय (गणित) पर सहयोगी गैर- विनिमेय गैर-एंटी- जोड़नेवाला विरोधी क्रमविनिमेय बंद बाइनरी ऑपरेशन के समरूपता वर्ग की संख्या।
- 'परिवर्तित' पिछले दो सप्ताह में क्रम परिवर्तित कर दिया गया है।
- 'कॉफ़र' अनुक्रम निरंतर भिन्न का प्रतिनिधित्व करता है, उदाहरण के लिए ई का निरंतर भिन्न विस्तार (ए003417) या π (ए001203).
- विपक्ष अनुक्रम गणितीय स्थिरांक का दशमलव विस्तार है, जैसे ई (ए001113) या π (ए000796).
- कोर अनुक्रम जो गणित की शाखा के लिए मूलभूत महत्व का है, जैसे अभाज्य संख्याएँ (ए000040), फाइबोनैचि अनुक्रम (ए00004), वगैरह।
- मृत इस कीवर्ड का उपयोग कागजात या किताबों में दिखाई देने वाले गलत अनुक्रमों या उपस्तिथा अनुक्रमों के डुप्लिकेट के लिए किया जाता है। उदाहरण के लिए, ए088552 वैसा ही है जैसा कि ए000668.
- महत्वहीन अनुक्रमों के लिए अधिक व्यक्तिपरक कीवर्ड में से गूंगा, जो सीधे गणित से संबंधित हो भी सकता है और नहीं भी, जैसे लोकप्रिय संस्कृति संदर्भ, इंटरनेट पहेलियों से इच्छानुसार अनुक्रम, और संख्यात्मक कीपैड प्रविष्टियों से संबंधित अनुक्रम। ए001355, पाई और ई के मिश्रित अंक महत्व की कमी का उदाहरण है, और ए085808, प्राइस इज़ राइट व्हील (यू.एस. गेम शो द प्राइस इज़ राइट (यू.एस. गेम शो) में प्रयुक्त शोकेस तसलीम व्हील पर संख्याओं का क्रम) गैर-गणित-संबंधित अनुक्रम का उदाहरण है, जो मुख्य रूप से सामान्य ज्ञान के उद्देश्यों के लिए रखा गया है।[20]
- सरल अनुक्रम की शर्तों की गणना सरलता से की जा सकती है। संभवतः इस कीवर्ड के लिए सबसे उपयुक्त अनुक्रम 1, 2, 3, 4, 5, 6, 7, ... है ए000027, जहां प्रत्येक पद पिछले पद से 1 अधिक है। कीवर्ड सरल कभी-कभी फॉर्म एफ (एम) के अनुक्रम प्राइम्स को दिया जाता है जहां एफ (एम) सरलता से गणना की जाने वाली फलन है। (यद्यपि बड़े एम के लिए एफ(एम) की गणना करना सरल है, फिर भी यह निर्धारित करना बहुत मुश्किल हो सकता है कि एफ(एम) अभाज्य है या नहीं)।
- 'इजन' इजनवैल्यूज का क्रम।
- 'फिनी' अनुक्रम सीमित है, चूँकि इसमें अभी भी प्रदर्शित किए जा सकने वाले शब्दों से अधिक शब्द हो सकते हैं। उदाहरण के लिए, का अनुक्रम क्षेत्र ए105417 सभी पदों का लगभग एक-चौथाई ही दिखाता है, किन्तु टिप्पणी में कहा गया है कि अंतिम पद 3888 है।
- फ़्रेक परिमेय संख्याओं को दर्शाने वाले भिन्नों के अंशों या हरों का क्रम। इस कीवर्ड के साथ किसी भी अनुक्रम को इसके अंश या हर के मिलान अनुक्रम से क्रॉस-रेफ़र किया जाना चाहिए, चूंकि मिस्र के भिन्नों के अनुक्रमों के लिए इसे हटा दिया जा सकता है, जैसे कि ए069257, जहां अंशों का क्रम होगा ए000012. इस कीवर्ड का उपयोग निरंतर भिन्नों के अनुक्रम के लिए नहीं किया जाना चाहिए; इसके अतिरिक्त उस उद्देश्य के लिए कॉफ़र का उपयोग किया जाना चाहिए।
- पूर्ण अनुक्रम क्षेत्र संपूर्ण अनुक्रम प्रदर्शित करता है। यदि किसी अनुक्रम में कीवर्ड पूर्ण है, तब इसमें कीवर्ड फ़िनी भी होना चाहिए। पूर्ण रूप से दिए गए परिमित अनुक्रम का उदाहरण सुपरसिंगुलर प्राइम (चांदनी सिद्धांत) का है ए002267, जिनमें से ठीक पंद्रह हैं।
- कठिन अनुक्रम की शर्तों की गणना सरलता से नहीं की जा सकती, यहां तक कि कच्ची संख्या क्रंचिंग शक्ति के साथ भी। इस कीवर्ड का उपयोग अधिकांशतः अनसुलझी समस्याओं से संबंधित अनुक्रमों के लिए किया जाता है, जैसे कि कितने एन-गोले समान आकार के दूसरे एन-गोले को छू सकते हैं? ए001116 पहले दस ज्ञात समाधानों को सूचीबद्ध करता है।
- ग्राफ़ ऑडियो के साथ अनुक्रम सुनें जो विशेष रूप से रोचक और/या सुंदर माना जाता है, कुछ उदाहरण ओईआईएस साइट पर एकत्र किए गए हैं।
- कम कम रोचक क्रम।
- ग्राफ़ विज़ुअल के साथ अनुक्रम देखें जिसे विशेष रूप से रोचक और/या सुंदर माना जाता है। अनेक हजारों में से दो उदाहरण हैं A331124 A347347।
- अनुक्रम के और अधिक पद वांछित हैं। पाठक एक्सटेंशन सबमिट कर सकते हैं।
- मल्टी अनुक्रम गुणक फलन से मेल खाता है। पद a(1) 1 होना चाहिए, और पद ए(एमएन) की गणना ए(एम) को ए से गुणा करके की जा सकती है (एन) यदि एम और एन सहअभाज्य हैं। उदाहरण के लिए, में ए046970, ए(12) = ए(3)ए(4) = −8 × −3.
- 'नया' उन अनुक्रमों के लिए जो पिछले कुछ हफ़्तों में जोड़े गए थे, या जिनका हाल ही में बड़ा विस्तार हुआ था। नए अनुक्रम सबमिट करने के लिए इस कीवर्ड को वेब फॉर्म में चेकबॉक्स नहीं दिया गया है; स्लोएन का प्रोग्राम जहां क्रियान्वित हो वहां इसे डिफ़ॉल्ट रूप से जोड़ता है।
- असाधारण अच्छे अनुक्रमों के लिए संभवतः 'अच्छा' सभी में से सबसे अधिक व्यक्तिपरक कीवर्ड है।
- 'नॉन' अनुक्रम में गैर-ऋणात्मक पूर्णांक सम्मिलित हैं (इसमें शून्य भी सम्मिलित हो सकते हैं)। उन अनुक्रमों के मध्य कोई अंतर नहीं किया जाता है जिनमें गैर-ऋणात्मक संख्याएँ केवल चुने गए ऑफसेट के कारण होती हैं (उदाहरण के लिए, एन3, घन, जो एन = 0 से आगे की ओर सभी गैर-ऋणात्मक हैं) और वह जो परिभाषा के अनुसार पूरी तरह से गैर-ऋणात्मक हैं (उदाहरण के लिए, एन2, वर्ग).
- अस्पष्ट अनुक्रम को अस्पष्ट माना जाता है और उत्तम परिभाषा की आवश्यकता है।
- पुनर्नवीनीकरण जब संपादक इस बात पर सहमत होते हैं कि नया प्रस्तावित अनुक्रम ओईआईएस में जोड़ने लायक नहीं है, तब संपादक केवल कीवर्ड लाइन को कीवर्ड के साथ छोड़कर प्रविष्टि को खाली कर देता है: पुनर्नवीनीकरण। फिर ए-नंबर किसी अन्य नए अनुक्रम के लिए आवंटन के लिए उपलब्ध हो जाता है।
- संकेत अनुक्रम के कुछ (या सभी) मान ऋणात्मक हैं। प्रविष्टि में संकेतों के साथ हस्ताक्षरित क्षेत्र और अनुक्रम क्षेत्र दोनों सम्मिलित हैं जिसमें निरपेक्ष मान फलन के माध्यम से पारित सभी मान सम्मिलित हैं।
- टैबएफ संख्याओं की अनियमित (या अजीब आकार की) श्रृंखला जिसे पंक्ति दर पंक्ति पढ़कर क्रम बनाया जाता है। उदाहरण के लिए, ए071031, नियम 62 द्वारा उत्पन्न सेलुलर ऑटोमेटन की क्रमिक स्थिति देने वाली पंक्तियों द्वारा पढ़ा गया त्रिभुज।
- सारणी संख्याओं की ज्यामितीय व्यवस्था, जैसे त्रिभुज या वर्ग, पंक्ति दर पंक्ति पढ़कर प्राप्त किया गया अनुक्रम। पंक्तियों द्वारा पढ़ा गया पास्कल का त्रिभुज इसका सर्वोत्कृष्ट उदाहरण है, ए007318.
- संयुक्त अनुक्रम संपादित नहीं किया गया है किन्तु यह ओईआईएस में सम्मिलित करने लायक हो सकता है। अनुक्रम में कम्प्यूटेशनल या मुद्रण संबंधी त्रुटियाँ हो सकती हैं। योगदानकर्ताओं को इन अनुक्रमों को संपादित करने के लिए प्रोत्साहित किया जाता है।
- अज्ञात अनुक्रम के बारे में बहुत कम जानकारी है, यहां तक कि इसे बनाने वाले सूत्र के बारे में भी नहीं। उदाहरण के लिए, ए072036, जिसे इंटरनेट ओरेकल पर विचार करने के लिए प्रस्तुत किया गया था।
- चलना चालों को गिना जाता है (या स्वयं से बचने वाली चाल|स्वयं से बचने वाली राहें)।
- शब्द किसी विशिष्ट भाषा के शब्दों पर निर्भर करता है। उदाहरण के लिए, शून्य, एक, दो, तीन, चार, पांच, आदि। उदाहरण के लिए, 4, 3, 3, 5, 4, 4, 3, 5, 5, 4, 3, 6, 6, 8, 8, 7, 7, 9, 8, 8... ए005589, रिक्त स्थान और हाइफ़न को छोड़कर, एन के अंग्रेजी नाम में अक्षरों की संख्या।
- कुछ कीवर्ड परस्पर अनन्य हैं, अर्थात्: कोर और डंब, सरल और कठिन, पूर्ण और अधिक, कम और अच्छा, और नॉन और साइन।
- ओफ़्सेट
- ऑफसेट दिए गए पहले पद का सूचकांक है। कुछ अनुक्रमों के लिए, ऑफसेट स्पष्ट है। उदाहरण के लिए, यदि हम वर्ग संख्याओं के अनुक्रम को 0, 1, 4, 9, 16, 25 ... के रूप में सूचीबद्ध करते हैं, तब ऑफसेट 0 है। जबकि यदि हम इसे 1, 4, 9, 16, 25 ... के रूप में सूचीबद्ध करते हैं, तब ऑफसेट 1 है। डिफ़ॉल्ट ऑफसेट 0 है, और ओईआईएस में अधिकांश अनुक्रमों में या तब 0 या 1 का ऑफसेट है। अनुक्रम ए073502, सबसे छोटी पंक्ति के योग के साथ अभाज्य प्रविष्टियों (1 को अभाज्य के रूप में मानते हुए) के साथ एन × एन जादुई वर्ग के लिए जादुई स्थिरांक, ऑफसेट 3 के साथ अनुक्रम का उदाहरण है, और ए072171, दृश्य परिमाण एन के तारों की संख्या। ऑफसेट -1 वाले अनुक्रम का उदाहरण है। कभी-कभी इस बात पर असहमति हो सकती है कि अनुक्रम के प्रारंभिक शब्द क्या हैं, और तदनुसार ऑफसेट क्या होना चाहिए। आलसी कैटरर के अनुक्रम के स्थिति में, आप पैनकेक को एन कट्स के साथ अधिकतम टुकड़ों में काट सकते हैं, ओईआईएस अनुक्रम को 1, 2, 4, 7, 11, 16, 22, 29, 37, .. के रूप में देता है। . ए000124, ऑफसेट 0 के साथ, जबकि मैथवर्ल्ड अनुक्रम को 2, 4, 7, 11, 16, 22, 29, 37, ... (निहित ऑफसेट 1) के रूप में देता है। यह तर्क दिया जा सकता है कि पैनकेक में कोई कटौती नहीं करना विधिी रूप से अनेक कटौती है, अर्थात् n = 0, किन्तु यह भी तर्क दिया जा सकता है कि बिना काटा हुआ पैनकेक समस्या के लिए अप्रासंगिक है। चूँकि ऑफ़सेट आवश्यक क्षेत्र है, कुछ योगदानकर्ता यह जांचने की जहमत नहीं उठाते कि 0 का डिफ़ॉल्ट ऑफ़सेट उनके द्वारा भेजे जा रहे अनुक्रम के लिए उपयुक्त है या नहीं। आंतरिक प्रारूप वास्तव में ऑफ़सेट के लिए दो नंबर दिखाता है। पहला ऊपर वर्णित संख्या है, जबकि दूसरा पहली प्रविष्टि (1 से गिनती) के सूचकांक का प्रतिनिधित्व करता है जिसका पूर्ण मान 1 से अधिक है। इस दूसरे मान का उपयोग अनुक्रम की खोज की प्रक्रिया को तेज करने के लिए किया जाता है। इस प्रकार ए000001, जो 1, 1, 1, 2 से प्रारंभ होता है, पहली प्रविष्टि ए(1) का प्रतिनिधित्व करती है, जिसमें ऑफसेट क्षेत्र का आंतरिक मान '1, 4' है।
- लेखक
- अनुक्रम का लेखक वह व्यक्ति है जिसने अनुक्रम प्रस्तुत किया है, यदि अनुक्रम प्राचीन काल से ज्ञात हो। प्रस्तुतकर्ता(ओं) का नाम पहला नाम (पूर्ण रूप से लिखा गया), मध्य प्रारंभिक (यदि क्रियान्वित हो) और अंतिम नाम दिया गया है; यह संदर्भ क्षेत्रों में नाम लिखे जाने के तरीके के विपरीत है। सबमिट करने वाले का ई-मेल पता भी सन्न 2011 से पहले का दिया गया है, जिसमें कुछ अपवादों जैसे कि सहयोगी संपादकों के लिए या यदि कोई ई-मेल पता उपस्तिथ नहीं है, के साथ @ वर्ण को (एटी) से बदल दिया गया है। अभी ओईआईएस की नीति यह हो गई है कि वह ई-मेल पते को क्रम में प्रदर्शित न करे। ए055000 के पश्चात् अधिकांश अनुक्रमों के लिए, लेखक क्षेत्र में अनुक्रम में प्रस्तुतकर्ता द्वारा भेजी गई तारीख भी सम्मिलित होती है।
- विस्तार
- उन लोगों के नाम जिन्होंने अनुक्रम को बढ़ाया (इसमें और शब्द जोड़े) या अनुक्रम के शब्दों को सही किया, इसके पश्चात् विस्तार की तारीख दी गई थी।
स्लोएन का अंतर
सन्न 2009 में, प्रत्येक पूर्णांक संख्या के महत्व को मापने के लिए फिलिप गुग्लिलमेट्टी द्वारा ओईआईएस डेटाबेस का उपयोग किया गया था।[21] दाहिनी ओर के कथानक में दिखाया गया परिणाम दो भिन्न-भिन्न बिंदु पश्चात्लों के मध्य स्पष्ट अंतर दिखाता है,[22] रोचक संख्या विरोधाभास (नीले बिंदु) और रोचक संख्याएँ जो ओईआईएस के अनुक्रमों में तुलनात्मक रूप से अधिक बार घटित होती हैं। इसमें अनिवार्य रूप से अभाज्य संख्याएँ (लाल), फॉर्म एएन की संख्याएँ सम्मिलित हैं (हरा) और अत्यधिक मिश्रित संख्याएँ (पीला)। इस घटना का अध्ययन निकोलस गौव्रिट, जीन पॉल डेलहाये और हेक्टर जेनिल द्वारा किया गया था, जिन्होंने अभाज्य संख्याओं, समता (गणित) संख्याओं, ज्यामितीय और फाइबोनैचि-प्रकार के अनुक्रमों आदि के लिए कृत्रिम प्राथमिकता के आधार पर एल्गोरिथम समष्टिता और सामाजिक कारकों द्वारा अंतर के संदर्भ में दो पश्चात्लों की गति को समझाया गया था।[23] अतः स्लोअन के अंतर को सन्न 2013 में नंबरफ़ाइल वीडियो में दिखाया गया था।[24]
यह भी देखें
टिप्पणियाँ
- ↑ "Goals of The OEIS Foundation Inc". The OEIS Foundation Inc. Archived from the original on 2013-12-06. Retrieved 2017-11-06.
- ↑ Registration is required for editing entries or submitting new entries to the database
- ↑ "The OEIS End-User License Agreement - OeisWiki". oeis.org. Retrieved 2023-02-26.
- ↑ "ओईआईएस में आईपी का ओईआईएस फाउंडेशन इंक को स्थानांतरण।". Archived from the original on 2013-12-06. Retrieved 2010-06-01.
- ↑ "The On-Line Encyclopedia of Integer Sequences (OEIS)".
- ↑ Borwein, Jonathan M. (2017). "Adventures with the OEIS". In Andrews, George E.; Garvan, Frank (eds.). विश्लेषणात्मक संख्या सिद्धांत, मॉड्यूलर फॉर्म और क्यू-हाइपरजियोमेट्रिक श्रृंखला. Springer Proceedings in Mathematics & Statistics. Vol. 221. Cham: Springer International Publishing. pp. 123–138. doi:10.1007/978-3-319-68376-8_9. ISBN 978-3-319-68375-1. ISSN 2194-1009.
- ↑ Gleick, James (January 27, 1987). "एक 'यादृच्छिक दुनिया' में, वह पैटर्न एकत्र करता है". The New York Times. p. C1.
- ↑ Journal of Integer Sequences (ISSN 1530-7638)
- ↑ "संपादक - मंडल". On-Line Encyclopedia of Integer Sequences.
- ↑ Neil Sloane (2010-11-17). "OEIS का नया संस्करण". Archived from the original on 2016-02-07. Retrieved 2011-01-21.
- ↑ Neil J. A. Sloane (2011-11-14). "[seqfan] A200000". SeqFan mailing list. Retrieved 2011-11-22.
- ↑ Neil J. A. Sloane (2011-11-22). "[seqfan] A200000 chosen". SeqFan mailing list. Retrieved 2011-11-22.
- ↑ "सुझाई गई परियोजनाएँ". OEIS wiki. Retrieved 2011-11-22.
- ↑ "Welcome: Arrangement of the Sequences in Database". OEIS Wiki. Retrieved 2016-05-05.
- ↑ Sloane, N. J. A. "मेरा पसंदीदा पूर्णांक अनुक्रम" (PDF). p. 10. Archived from the original (PDF) on 2018-05-17.
- ↑ N.J.A. Sloane. "उत्तर में प्रयुक्त शब्दों की व्याख्या". OEIS.
- ↑ "OEIS Style sheet".
- ↑ "B-Files".
- ↑ "Explanation of Terms Used in Reply From". On-Line Encyclopedia of Integer Sequences.
- ↑ The person who submitted A085808 did so as an example of a sequence that should not have been included in the OEIS. Sloane added it anyway, surmising that the sequence "might appear one day on a quiz."
- ↑ Guglielmetti, Philippe (24 August 2008). "Chasse aux nombres acratopèges". Pourquoi Comment Combien (in français).
- ↑ Guglielmetti, Philippe (18 April 2009). "La minéralisation des nombres". Pourquoi Comment Combien (in français). Retrieved 25 December 2016.
- ↑ Gauvrit, Nicolas; Delahaye, Jean-Paul; Zenil, Hector (2011). "स्लोएन्स गैप. गणितीय और सामाजिक कारक OEIS में संख्याओं के वितरण की व्याख्या करते हैं". Journal of Humanistic Mathematics. 3: 3–19. arXiv:1101.4470. Bibcode:2011arXiv1101.4470G. doi:10.5642/jhummath.201301.03. S2CID 22115501.
- ↑ "स्लोएन्स गैप" (video). Numberphile. 2013-10-15. Archived from the original on 2021-11-17.
With Dr. James Grime, University of Nottingham
संदर्भ
- Borwein, J.; Corless, R. (1996). "The Encyclopedia of Integer Sequences (N. J. A. Sloane and Simon Plouffe)". SIAM Review. 38 (2): 333–337. doi:10.1137/1038058.
- Catchpole, H. (2004). "Exploring the number jungle online". ABC Science. Australian Broadcasting Corporation.
- Delarte, A. (November 11, 2004). "Mathematician reaches 100k milestone for online integer archive". The South End: 5.
- Hayes, B. (1996). "A Question of Numbers" (PDF). American Scientist. 84 (1): 10–14. Bibcode:1996AmSci..84...10H. Archived from the original (PDF) on 2015-10-05. Retrieved 2010-06-01.
- Peterson, I. (2003). "Sequence Puzzles" (PDF). Science News. 163 (20). Archived from the original (PDF) on 2017-05-10. Retrieved 2016-12-24.
- Rehmeyer, J. (2010). "The Pattern Collector — Science News". Science News. www.sciencenews.org. Archived from the original on 2013-10-14. Retrieved 2010-08-08.
अग्रिम पठन
- Roberts, S. (May 21, 2023), "What Number Comes Next? The Encyclopedia of Integer Sequences Knows.", The New York Times, retrieved 21 May 2023
- Sloane, N. J. A. (1999). "My favorite integer sequences" (PDF). In Ding, C.; Helleseth, T.; Niederreiter, H. (eds.). Sequences and their Applications (Proceedings of SETA '98). London: Springer-Verlag. pp. 103–130. arXiv:math/0207175. Bibcode:2002math......7175S.
- Sloane, N. J. A. (2003). "The On-Line Encyclopedia of Integer Sequences" (PDF). Notices of the American Mathematical Society. 50 (8): 912–915.
- Sloane, N. J. A.; Plouffe, S. (1995). The Encyclopedia of Integer Sequences. San Diego: Academic Press. ISBN 0-12-558630-2.
- Zabolotskii, A. (2022). "The On-Line Encyclopedia of Integer Sequences in 2021". Mat. Pros. Series 3. 8: 199–212.
- Billey, Sara C.; Tenner, Bridget E. (2013). "Fingerprint databases for theorems" (PDF). Notices of the American Mathematical Society. 60 (8): 1034–1039. arXiv:1304.3866. Bibcode:2013arXiv1304.3866B. doi:10.1090/noti1029. S2CID 14435520.
बाहरी संबंध
- Official website
- Wiki at ओईआईएस