चार्ज वाहक घनत्व
आवेश वाहक घनत्व, जिसे वाहक सांद्रता के रूप में भी जाना जाता है, प्रति आयतन में आवेश वाहकों की संख्या को दर्शाता है। SI इकाइयों में, इसे m में मापा जाता है−3. किसी भी घनत्व की तरह, सिद्धांत रूप में यह स्थिति पर निर्भर हो सकता है। हालाँकि, आमतौर पर वाहक सांद्रता को एक एकल संख्या के रूप में दिया जाता है, और संपूर्ण सामग्री पर औसत वाहक घनत्व का प्रतिनिधित्व करता है।
चार्ज वाहक घनत्व में विद्युत चालकता, तापीय चालकता जैसी संबंधित घटनाएं और सहसंयोजक बंधन जैसे रासायनिक बंधन से संबंधित समीकरण शामिल होते हैं।
गणना
वाहक घनत्व आमतौर पर सामग्री में आवेश वाहकों की ऊर्जा सीमा पर राज्यों के घनत्व को एकीकृत करके सैद्धांतिक रूप से प्राप्त किया जाता है (उदाहरण के लिए इलेक्ट्रॉनों के लिए चालन बैंड पर एकीकृत करना, छिद्रों के लिए वैलेंस बैंड पर एकीकृत करना)।
यदि आवेश वाहकों की कुल संख्या ज्ञात है, तो वाहक घनत्व को केवल आयतन से विभाजित करके पाया जा सकता है। इसे गणितीय रूप से दिखाने के लिए, आवेश वाहक घनत्व एक कण घनत्व (कण गणना) है, इसलिए इसे एक आयतन पर एकीकृत करें आवेश वाहकों की संख्या देता है उस मात्रा में
यदि घनत्व स्थिति पर निर्भर नहीं करता है और इसके बजाय एक स्थिरांक के बराबर है यह समीकरण सरल हो जाता है
अर्धचालक
वाहक घनत्व अर्धचालकों के लिए महत्वपूर्ण है, जहां यह डोपिंग (अर्धचालक) की प्रक्रिया के लिए एक महत्वपूर्ण मात्रा है। बैंड सिद्धांत का उपयोग करते हुए, इलेक्ट्रॉन घनत्व, चालन बैंड में प्रति इकाई आयतन इलेक्ट्रॉनों की संख्या है। छेद के लिए, वैलेंस बैंड में प्रति इकाई आयतन छिद्रों की संख्या है। इलेक्ट्रॉनों के लिए इस संख्या की गणना करने के लिए, हम इस विचार से शुरू करते हैं कि चालन-बैंड इलेक्ट्रॉनों का कुल घनत्व, , बैंड के नीचे से, बैंड में विभिन्न ऊर्जाओं में चालन इलेक्ट्रॉन घनत्व को जोड़ रहा है बैंड के शीर्ष पर .
Material | Carrier density (1/cm3) at 300K |
---|---|
Germanium[1] | 2.33×1013 |
Silicon[2] | 9.65×109 |
Gallium Arsenide[3] | 2.1×106 |
3C-SiC[4] | 10 |
6H-SiC[4] | 2.3×10−6 |
4H-SiC[4] | 8.2×10−9 |
Gallium nitride[4] | 1.9×10−10 |
Diamond[4] | 1.6×10−27 |
यदि इन सामग्रियों को डोप किया जाता है तो ये वाहक सांद्रता बदल जाएगी। उदाहरण के लिए, फॉस्फोरस की थोड़ी मात्रा के साथ शुद्ध सिलिकॉन को मिलाने से इलेक्ट्रॉनों के वाहक घनत्व में वृद्धि होगी, एन। फिर, चूँकि n > p, डोप्ड सिलिकॉन एक n-प्रकार का बाह्य अर्धचालक होगा। शुद्ध सिलिकॉन को बोरान की थोड़ी मात्रा के साथ मिलाने से छिद्रों का वाहक घनत्व बढ़ जाएगा, इसलिए फिर पी > एन, और यह एक पी-प्रकार का बाह्य अर्धचालक होगा।
धातु
वाहक घनत्व धातुओं पर भी लागू होता है, जहां इसका अनुमान सरल ड्रूड मॉडल से लगाया जा सकता है। इस मामले में, वाहक घनत्व (इस संदर्भ में, इसे मुक्त इलेक्ट्रॉन घनत्व भी कहा जाता है) का अनुमान लगाया जा सकता है:[5]
Material | Number of valence electrons | Carrier density (1/cm3) at 300K |
---|---|---|
Copper | 1 | 8.47×1022 |
Silver | 1 | 5.86×1022 |
Gold | 1 | 5.90×1022 |
Beryllium | 2 | 2.47×1023 |
Magnesium | 2 | 8.61×1022 |
Calcium | 2 | 4.61×1022 |
Strontium | 2 | 3.55×1022 |
Barium | 2 | 3.15×1022 |
Niobium | 1 | 5.56×1022 |
Iron | 2 | 1.70×1023 |
Manganese | 2 | 1.65×1023 |
Zinc | 2 | 1.32×1023 |
Cadmium | 2 | 9.27×1022 |
Aluminum | 3 | 1.81×1023 |
Gallium | 3 | 1.54×1023 |
Indium | 3 | 1.15×1023 |
Thallium | 3 | 1.05×1023 |
Tin | 4 | 1.48×1023 |
Lead | 4 | 1.32×1023 |
Bismuth | 5 | 1.41×1023 |
Antimony | 5 | 1.65×1023 |
उदाहरण के लिए, हॉल प्रभाव द्वारा अनुमानित धातुओं के बीच n के मान अक्सर परिमाण के समान क्रम पर होते हैं, लेकिन यह सरल मॉडल बहुत उच्च सटीकता के साथ वाहक घनत्व की भविष्यवाणी नहीं कर सकता है।
माप
आवेश वाहकों का घनत्व कई मामलों में हॉल प्रभाव का उपयोग करके निर्धारित किया जा सकता है,[6] जिसका वोल्टेज वाहक घनत्व पर विपरीत रूप से निर्भर करता है।
संदर्भ
- ↑ O. Madelung, U. Rössler, M. Schulz (2002). "Germanium (Ge), intrinsic carrier concentration". Group IV Elements, IV-IV and III-V Compounds. Part b - Electronic, Transport, Optical and Other Properties. Landolt-Börnstein - Group III Condensed Matter. pp. 1–3. doi:10.1007/10832182_503. ISBN 978-3-540-42876-3.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ↑ Pietro P. Altermatt, Andreas Schenk, Frank Geelhaar,Gernot Heiser (2003). "Reassessment of the intrinsic carrier density in crystalline silicon in view of band-gap narrowing". Journal of Applied Physics. 93 (3): 1598. Bibcode:2003JAP....93.1598A. doi:10.1063/1.1529297.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑ Rössler, U. (2002). "Gallium arsenide (GaAs), intrinsic carrier concentration, electrical and thermal conductivity". Group IV Elements, IV-IV and III-V Compounds. Part b - Electronic, Transport, Optical and Other Properties. Landolt-Börnstein - Group III Condensed Matter. pp. 1–8. doi:10.1007/10832182_196. ISBN 978-3-540-42876-3.
- ↑ 4.0 4.1 4.2 4.3 4.4 Gachovska, Tanya K.; Hudgins, Jerry L. (2018). "SiC and GaN Power Semiconductor Devices". Power Electronics Handbook. Elsevier. p. 98. doi:10.1016/b978-0-12-811407-0.00005-2. ISBN 9780128114070.
- ↑ 5.0 5.1 Ashcroft, Mermin. भौतिक विज्ञान की ठोस अवस्था. p. 4-5.
- ↑ Edwin Hall (1879). "विद्युत धाराओं पर चुंबक की एक नई क्रिया पर". American Journal of Mathematics. 2 (3): 287–92. doi:10.2307/2369245. JSTOR 2369245. S2CID 107500183. Archived from the original on 27 July 2011. Retrieved 28 February 2008.