स्थिति और संवेग स्थान
भौतिकी और ज्यामिति में, दो निकट से संबंधित सदिश स्थान होते हैं, सामान्यत: त्रि-आयामी किन्तु सामान्यत: किसी भी परिमित आयाम के स्थिति स्थान (वास्तविक स्थान या समन्वय स्थान भी) यूक्लिडियन अंतरिक्ष में सभी स्थिति सदिश आर का समूह है, और इसमें लंबाई के आयाम हैं; एक स्थिति सदिश अंतरिक्ष में एक बिंदु को परिभाषित करता है। (यदि किसी बिंदु कण का स्थिति सदिश समय के साथ बदलता है, तो यह एक पथ, कण के प्रक्षेपवक्र का पता लगाएगा।) मोमेंटम स्पेस एक भौतिक प्रणाली के सभी संवेग सदिश का समूह है; किसी कण का संवेग सदिश [द्रव्यमान][लंबाई][समय]−1 की इकाइयों के साथ, उसकी गति से मेल खाता है।
गणितीय रूप से, स्थिति और गति के बीच का द्वंद्व पोंट्रीगिन द्वंद्व का एक उदाहरण है। विशेष रूप से, यदि कोई फलन स्थिति स्थान, f(r) में दिया गया है, तो इसका फूरियर रूपांतरण गति स्थान, φ(p) में फलन प्राप्त करता है। इसके विपरीत, संवेग स्थान फलन का व्युत्क्रम फूरियर रूपांतरण एक स्थिति स्थान फलन है।
ये मात्राएँ और विचार सभी मौलिक और क्वांटम भौतिकी से परे हैं, और भौतिक प्रणाली को या तो घटक कणों की स्थिति, या उनके संवेग का उपयोग करके वर्णित किया जा सकता है, दोनों सूत्रीकरण समान रूप से विचाराधीन प्रणाली के बारे में समान जानकारी प्रदान करते हैं। तरंगों के संदर्भ में परिभाषित करने के लिए और मात्रा उपयोगी है। तरंग सदिश 'k' (या बस 'k'-सदिश) में पारस्परिक लंबाई के आयाम होते हैं, जो इसे कोणीय आवृत्ति ω का एनालॉग बनाता है जिसमें पारस्परिक समय के आयाम होते हैं। सभी तरंग सदिश का समुच्चय 'k-समिष्ट' है। सामान्यत: 'r' 'के' की तुलना में अधिक सहज और सरल है, चूँकि इसका विपरीत भी सत्य हो सकता है, जैसे कि ठोस-अवस्था भौतिकी में है।
क्वांटम यांत्रिकी स्थिति और गति के बीच द्वंद्व के दो मौलिक उदाहरण प्रदान करता है, हाइजेनबर्ग अनिश्चितता सिद्धांत ΔxΔp ≥ ħ/2 जिसमें कहा गया है कि स्थिति और गति को एक साथ इच्छित स्पष्टता से नहीं जाना जा सकता है, और डी ब्रोगली संबंध p = ħk जो गति और तरंगसदिश को बताता है एक मुक्त कण के कण एक दूसरे के समानुपाती होते हैं।[1] इस संदर्भ में, जब यह असंदिग्ध होता है, तो "संवेग" और "तरंगसदिश " शब्दों का परस्पर उपयोग किया जाता है। चूँकि, क्रिस्टल में डी ब्रोगली संबंध सत्य नहीं है।
मौलिक यांत्रिकी में स्थिति और संवेग स्थान
लैग्रेंजियन यांत्रिकी
लैग्रेंजियन यांत्रिकी में अधिकांशतः लैग्रैन्जियन L(q, dq/dt, t) कॉन्फ़िगरेशन समिष्ट (भौतिकी)भौतिकी) में होता है, जहां 'q = (q1, q2,..., qn) सामान्यीकृत निर्देशांक का n- टपल है। गति के यूलर-लैग्रेंज समीकरण हैं
हैमिल्टनियन यांत्रिकी
हैमिल्टनियन यांत्रिकी में, लैग्रेंजियन यांत्रिकी के विपरीत जो या तो सभी निर्देशांक या संवेग का उपयोग करता है, गति के हैमिल्टनियन समीकरण निर्देशांक और संवेग को समान स्तर पर रखते हैं। हैमिल्टनियन H('q', 'p', t) वाले प्रणाली के लिए, समीकरण हैं
क्वांटम यांत्रिकी में स्थिति और संवेग स्थान
क्वांटम यांत्रिकी में, एक कण को क्वांटम अवस्था द्वारा वर्णित किया जाता है। इस क्वांटम अवस्था को आधार अवस्थाओं के सुपरपोजिशन (अर्थात भारित योग के रूप में एक रैखिक संयोजन) के रूप में दर्शाया जा सकता है। सिद्धांत रूप में कोई भी आधार अवस्था के समूह को चुनने के लिए स्वतंत्र है, जब तक कि वे अंतरिक्ष में फैले हों। यदि कोई आधार कार्यों के समूह के रूप में स्थिति संचालक के आइजेनफ़ंक्शन को चुनता है, तो वह स्थिति स्थान में तरंग फलन ψ(r) के रूप में एक स्थिति की बात करता है (लंबाई के संदर्भ में अंतरिक्ष की हमारी सामान्य धारणा)। स्थिति r के संदर्भ में परिचित श्रोडिंगर समीकरण स्थिति प्रतिनिधित्व में क्वांटम यांत्रिकी का एक उदाहरण है।[3]
आधार कार्यों के एक समूह के रूप में एक भिन्न संचालक के आइजेनफ़ंक्शन को चुनकर, कोई एक ही अवस्था के अनेक भिन्न -भिन्न अभ्यावेदन पर पहुंच सकता है। यदि कोई आधार कार्यों के समूह के रूप में संवेग संचालक के आइजेनफ़ंक्शन को चुनता है, तो परिणामी तरंग कार्य को संवेग स्थान में तरंग कार्य कहा जाता है।[3]
क्वांटम यांत्रिकी की विशेषता यह है कि वेरिएबल ण समिष्ट विभिन्न प्रकारों में आ सकते हैं: असतत-वेरिएबल , रोटर, और निरंतर-वेरिएबल नीचे दी गई तालिका तीन प्रकार के वेरिएबल ण स्थानों में सम्मिलित कुछ संबंधों का सारांश प्रस्तुत करती है।[4]
अंतरिक्ष और पारस्परिक समिष्ट के बीच संबंध
तरंग फलन का संवेग प्रतिनिधित्व फूरियर रूपांतरण और आवृत्ति डोमेन की अवधारणा से बहुत निकटता से संबंधित है। चूंकि क्वांटम यांत्रिक कण की आवृत्ति गति के समानुपाती होती है (डी ब्रोगली का समीकरण ऊपर दिया गया है), कण को उसके गति घटकों के योग के रूप में वर्णित करना इसे आवृत्ति घटकों (अथार्त फूरियर रूपांतरण) के योग के रूप में वर्णित करने के समान है।[5] यह तब स्पष्ट हो जाता है जब हम खुद से पूछते हैं कि हम प्रतिनिधित्व से दूसरे प्रतिनिधित्व में कैसे बदल सकते हैं।
स्थिति समिष्ट में कार्य और संचालक
मान लीजिए कि हमारे पास स्थिति स्थान ψ(r) में एक त्रि-आयामी तरंग कार्य है, तो हम इस कार्य को ऑर्थोगोनल आधार कार्य ψj(r) के भारित योग के रूप में लिख सकते हैं:
क्वांटम यांत्रिकी में, संवेग संचालक द्वारा दिया जाता है
संवेग समिष्ट में कार्य और संचालक
इसके विपरीत, संवेग स्थान में एक त्रि-आयामी तरंग कार्य को ऑर्थोगोनल आधार कार्य के भारित योग के रूप में व्यक्त किया जा सकता है।
स्थिति और संवेग संचालक के बीच एकात्मक तुल्यता
r और p ऑपरेटर एकात्मक रूप से समतुल्य हैं, एकात्मक संचालक को फूरियर रूपांतरण द्वारा स्पष्ट रूप से दिया जाता है, अर्थात् चरण स्थान में एक चौथाई-चक्र घूर्णन ऑसिलेटर हैमिल्टनियन द्वारा उत्पन्न होता है। इस प्रकार, उनके पास समान स्पेक्ट्रम है। भौतिक भाषा में, गति अंतरिक्ष तरंग कार्यों पर अभिनय करने r वाला p, स्थिति अंतरिक्ष तरंग कार्यों (फूरियर रूपांतरण की छवि के अनुसार ) पर अभिनय करने के समान है।
पारस्परिक समिष्ट और क्रिस्टल
किसी क्रिस्टल में एक इलेक्ट्रॉन (या अन्य कण) के लिए, इसका k मान लगभग सदैव उसके क्रिस्टल संवेग से संबंधित होता है, न कि उसके सामान्य संवेग से। इसलिए, k और p केवल आनुपातिक नहीं हैं किंतु विभिन्न भूमिकाएँ निभाते हैं। उदाहरण के लिए के·पी अस्पष्ट सिद्धांत देखें। क्रिस्टल संवेग एक तरंग आवरण की तरह है जो बताता है कि तरंग एक इकाई कोशिका से दूसरी इकाई में कैसे बदलती है, किंतु यह इस बारे में कोई जानकारी नहीं देता है कि प्रत्येक इकाई कोशिका के अंदर तरंग कैसे बदलती है।
जब k वास्तविक गति के अतिरिक्त क्रिस्टल गति से संबंधित होता है, तो k-समिष्ट की अवधारणा अभी भी सार्थक और अत्यंत उपयोगी है, किन्तु यह ऊपर विचार किए गए गैर-क्रिस्टल k-समिष्ट से अनेक स्थिति में भिन्न है। उदाहरण के लिए, एक क्रिस्टल के k-समिष्ट में, बिंदुओं का एक अनंत समूह होता है जिसे पारस्परिक जालक कहा जाता है जो k = 0 के "समतुल्य" होता है (यह अलियासिंग के समान है)। इसी तरह, "पहला ब्रिलॉइन ज़ोन" k-समिष्ट का एक सीमित आयतन है, जैसे कि प्रत्येक संभावित k इस क्षेत्र में ठीक एक बिंदु के "समतुल्य" है।
यह भी देखें
- फेज स्थान
- रेसिप्रोकेल स्थान
- कॉन्फ़िगरेशन स्थान(भौतिकी)
- फ्रैक्शनल फूरियर रूपांतरण
फ़ुटनोट
- ↑ For two functions u and v, the differential of the product is d(uv) = udv + vdu.
संदर्भ
- ↑ Eisberg, R.; Resnick, R. (1985). परमाणुओं, अणुओं, ठोसों, नाभिकों और कणों की क्वांटम भौतिकी (2nd ed.). John Wiley & Sons. ISBN 978-0-471-87373-0.
- ↑ Hand, Louis N; Finch, Janet D (1998). विश्लेषणात्मक यांत्रिकी. p. 190. ISBN 978-0-521-57572-0.
- ↑ 3.0 3.1 Peleg, Y.; Pnini, R.; Zaarur, E.; Hecht, E. (2010). क्वांटम यांत्रिकी (शाउम की रूपरेखा श्रृंखला) (2nd ed.). McGraw Hill. ISBN 978-0-07-162358-2.
- ↑ Albert, Victor V; Pascazio, Saverio; Devoret, Michel H (2017). "General phase spaces: from discrete variables to rotor and continuum limits". Journal of Physics A: Mathematical and Theoretical. 50 (50): 504002. arXiv:1709.04460. doi:10.1088/1751-8121/aa9314. S2CID 119290497.
- ↑ Abers, E. (2004). क्वांटम यांत्रिकी. Addison Wesley, Prentice Hall Inc. ISBN 978-0-13-146100-0.
- ↑ 6.0 6.1 R. Penrose (2007). The Road to Reality. Vintage books. ISBN 978-0-679-77631-4.