रैखिकता

From Vigyanwiki

रैखिकता एक गणितीय संबंध (फ़ंक्शन) का गुण है जिसे रेखांकन द्वारा एक सीधी रेखा के रूप में दर्शाया जा सकता है। रैखिकता का आनुपातिकता से गहरा संबंध है। भौतिक विज्ञान के उदाहरणों में सरल रेखीय गति, एक विद्युत कंडक्टर में वोल्टेज और विद्युत का रैखिक संबंध (ओम का नियम) और द्रव्यमान और वजन का संबंध शामिल हैं। इसके विपरीत, अधिक जटिल रिश्ते अरेखीय होते हैं।

एक से अधिक आयामों में कार्यों के लिए सामान्यीकृत, रैखिकता का अर्थ है जोड़ और स्केलिंग के साथ संगत होने के कार्य की संपत्ति, जिसे सुपरपोजिशन सिद्धांत के रूप में भी जाना जाता है।

लीनियर शब्द लैटिन लीनियरिस से आया है, जिसका अर्थ है "एक रेखा से संबंधित या उसके समान"।

गणित में

गणित में, एक रेखीय नक्शा या रैखिक फलन f(x) एक ऐसा फलन है जो दो गुणों को संतुष्ट करता है:[1]

इन गुणों को अध्यारोपण सिद्धांत कहते हैं। इस परिभाषा में, x आवश्यक रूप से एक वास्तविक संख्या नहीं है, लेकिन सामान्य तौर पर यह किसी भी वेक्टर स्पेस का एक तत्व हो सकता है। रेखीय फलन की एक और विशेष परिभाषा, जो रेखीय मानचित्र की परिभाषा से मेल नहीं खाती है, प्राथमिक गणित में प्रयोग की जाती है (नीचे देखें)।

योगात्मकता अकेले परिमेय α के लिए एकरूपता का अर्थ है, क्योंकि गणितीय आगमन द्वारा किसी भी प्राकृतिक संख्या n के लिए का अर्थ है, और फिर का अर्थ है। वास्तविक में परिमेय संख्याओं के घनत्व का अर्थ है कि कोई भी योगात्मक निरंतर कार्य किसी भी वास्तविक संख्या α के लिए सजातीय है, और इसलिए रैखिक है।

रेखीयता की अवधारणा को रेखीय संकारकों तक विस्तारित किया जा सकता है। लीनियर ऑपरेटरों के महत्वपूर्ण उदाहरणों में डेरिवेटिव को डिफरेंशियल ऑपरेटर के रूप में माना जाता है, और इससे निर्मित अन्य ऑपरेटर, जैसे डेल और लाप्लासियान। जब एक अवकल समीकरण को रेखीय रूप में व्यक्त किया जा सकता है, तो इसे आम तौर पर समीकरण को छोटे-छोटे टुकड़ों में तोड़कर, उनमें से प्रत्येक टुकड़े को हल करके, और समाधानों का योग करके हल किया जा सकता है।

रैखिक बीजगणित गणित की वह शाखा है जो वैक्टर, वेक्टर रिक्त स्थान (जिसे 'रैखिक रिक्त स्थान' भी कहा जाता है), रैखिक रूपांतरण ('रेखीय मानचित्र' भी कहा जाता है), और रैखिक समीकरणों की प्रणालियों के अध्ययन से संबंधित है।

रेखीय और अरैखिक समीकरणों के विवरण के लिए, रैखिक समीकरण देखें।

रैखिक बहुपद

उपरोक्त परिभाषा के एक अलग प्रयोग में, डिग्री 1 के बहुपद को रैखिक कहा जाता है, क्योंकि उस रूप के एक फ़ंक्शन का ग्राफ़ एक सीधी रेखा है।[2]

वास्तविकताओं पर, एक रैखिक समीकरण रूपों में से एक है:

जहाँ m को प्रायः ढलान या ढाल कहा जाता है; b y-अवरोधन, जो फलन के ग्राफ और y-अक्ष के बीच प्रतिच्छेदन बिंदु देता है।

ध्यान दें कि रैखिक शब्द का यह उपयोग उपरोक्त अनुभाग के समान नहीं है, क्योंकि वास्तविक संख्याओं पर रैखिक बहुपद सामान्य रूप से या तो जोड़ या समरूपता को संतुष्ट नहीं करते हैं। वास्तव में, वे ऐसा करते हैं यदि और केवल अगर b = 0। इसलिए, यदि b ≠ 0, तो फ़ंक्शन को अक्सर एक एफ़िन फ़ंक्शन कहा जाता है (अधिक व्यापकता एफ़िन रूपांतरण में देखें)।

बूलियन फ़ंक्शन

एक रैखिक बूलियन फ़ंक्शन का हैस आरेख

बूलियन बीजगणित में, एक रैखिक फलन एक फलन होता है जिसके लिए ऐसे मौजूद होते हैं

, जहाँ

ध्यान दें कि यदि है, तो उपरोक्त फलन को रैखिक बीजगणित (अर्थात् रैखिक नहीं) में परिबद्ध माना जाता है।

एक बूलियन फ़ंक्शन रेखीय होता है यदि निम्न में से कोई एक फ़ंक्शन की सत्य तालिका के लिए हो:

  1. प्रत्येक पंक्ति में जिसमें फ़ंक्शन का सत्य मान T है, तर्कों के लिए निर्दिष्ट Ts की एक विषम संख्या होती है, और प्रत्येक पंक्ति में जहाँ फ़ंक्शन F होता है, Ts की एक सम संख्या तर्कों के लिए नियत होती है। विशेष रूप से, f(F, F, ..., F) = F, और ये फ़ंक्शन बूलियन सदिश स्थान पर रैखिक मानचित्रों के संगत हैं।
  2. प्रत्येक पंक्ति में जिसमें फ़ंक्शन का मान T है, फ़ंक्शन के तर्कों के लिए Ts की एक सम संख्या निर्दिष्ट है; और प्रत्येक पंक्ति में जिसमें फलन का सत्य मान F है, तर्कों के लिए निर्दिष्ट Ts की एक विषम संख्या है। इस स्थिति में, f(F, F, ..., F) = T

इसे व्यक्त करने का एक अन्य तरीका यह है कि प्रत्येक चर हमेशा संक्रिया के सत्य मान में अंतर करता है या यह कभी भी अंतर नहीं करता है।

निषेध, तार्किक द्विप्रतिबंध, अनन्य या पुनरुक्ति और विरोधाभास रैखिक कार्य हैं।

भौतिकी

भौतिकी में, रैखिकता कई प्रणालियों को संचालित करने वाले अवकल समीकरणों का गुण है; उदाहरण के लिए, मैक्सवेल समीकरण या प्रसार समीकरण[3]

एक समांगी विभेदक समीकरण की रैखिकता का अर्थ है कि यदि दो फलन f और g समीकरण के हल हैं, तो कोई भी रैखिक संयोजन af + bg भी होता है।

यंत्रीकरण में, रैखिकता का अर्थ है कि एक इनपुट चर में दिया गया परिवर्तन माप उपकरण के आउटपुट में समान परिवर्तन देता है: यह वैज्ञानिक कार्यों में अत्यधिक वांछनीय है। सामान्य तौर पर, उपकरण एक निश्चित सीमा में रैखिक के करीब होते हैं, और उस सीमा के भीतर सबसे उपयोगी होते हैं। इसके विपरीत, मानव इंद्रियां अत्यधिक अरैखिक होती हैं: उदाहरण के लिए, मस्तिष्क पूरी तरह से आने वाले प्रकाश की उपेक्षा करता है जब तक कि यह फोटॉन की एक निश्चित पूर्ण सीमा से अधिक न हो।

इलेक्ट्रानिक्स

इलेक्ट्रानिक्स में, एक उपकरण का रैखिक ऑपरेटिंग क्षेत्र, उदाहरण के लिए एक ट्रांजिस्टर, वह होता है जहां एक आउटपुट आश्रित चर (जैसे ट्रांजिस्टर कलेक्टर वर्तमान) एक इनपुट निर्भर चर (जैसे आधार वर्तमान) के सीधे आनुपातिक होता है। यह सुनिश्चित करता है कि एक एनालॉग आउटपुट एक इनपुट का सटीक प्रतिनिधित्व है, आमतौर पर उच्च आयाम (एम्पलीफाइड) के साथ। रैखिक उपकरण का एक विशिष्ट उदाहरण एक उच्च विश्वस्तता ऑडियो एम्पलीफायर है, जिसे अपने तरंग रूप को बदले बिना एक संकेत को बढ़ाना चाहिए। अन्य सामान्य रूप से रैखिक फिल्टर और रैखिक एम्पलीफायर हैं।

अधिकांश वैज्ञानिक और तकनीकी में, गणितीय, अनुप्रयोगों से भिन्न, किसी चीज़ को रैखिक के रूप में वर्णित किया जा सकता है यदि विशेषता लगभग है लेकिन बिल्कुल सीधी रेखा नहीं है; और रैखिकता केवल एक निश्चित ऑपरेटिंग क्षेत्र के भीतर मान्य हो सकती है - उदाहरण के लिए, एक उच्च-निष्ठा प्रवर्धक एक छोटे संकेत को विकृत कर सकता है, लेकिन स्वीकार्य होने के लिए पर्याप्त रूप से कम (स्वीकार्य लेकिन अपूर्ण रैखिकता); और यदि इनपुट एक निश्चित मान से अधिक हो जाता है तो यह बहुत बुरी तरह विकृत हो सकता है।[4]


अभिन्न रैखिकता

एक इलेक्ट्रॉनिक उपकरण (या अन्य भौतिक उपकरण) के लिए जो एक मात्रा को दूसरी मात्रा में परिवर्तित करता है, बर्ट्राम एस. कोल्ट्स लिखते हैं:[5][6]

सामान्य उपयोग में अभिन्न रैखिकता के लिए तीन बुनियादी परिभाषाएँ हैं: स्वतंत्र रैखिकता, शून्य-आधारित रैखिकता और टर्मिनल, या अंत-बिंदु, रैखिकता। प्रत्येक मामले में, रैखिकता परिभाषित करती है कि एक निर्दिष्ट ऑपरेटिंग रेंज में डिवाइस का वास्तविक प्रदर्शन कितनी अच्छी तरह एक सीधी रेखा के करीब है। रैखिकता को आमतौर पर एक आदर्श सीधी रेखा से विचलन, या गैर-रैखिकता के संदर्भ में मापा जाता है और इसे आमतौर पर पूर्ण पैमाने के प्रतिशत या पूर्ण पैमाने के पीपीएम (प्रति मिलियन भागों) में व्यक्त किया जाता है। आमतौर पर, सीधी रेखा को डेटा के कम से कम वर्ग फिट करके प्राप्त किया जाता है। वास्तविक उपकरण के प्रदर्शन के सापेक्ष सीधी रेखा की स्थिति के अनुसार तीन परिभाषाएँ भिन्न होती हैं। इसके अलावा, ये तीनों परिभाषाएँ किसी भी लाभ को नज़रअंदाज़ करती हैं, या उन त्रुटियों को दूर करती हैं जो वास्तविक डिवाइस के प्रदर्शन विशेषताओं में मौजूद हो सकती हैं।

सैन्य सामरिक संरचनाएं

सैन्य सामरिक संरचनाओं में, "रैखिक संरचनाओं" को हैंडगनर्स द्वारा संरक्षित पाइक के फालानक्स-जैसे संरचनाओं से शुरू किया गया था, धीरे-धीरे कम पाइकों द्वारा संरक्षित हैंडगनर्स के उथले संरचनाओं की ओर। वेलिंगटन की 'थिन रेड लाइन' के युग में इस तरह की संरचना उत्तरोत्तर पतली होती गई। अंततः इसे झड़प के आदेश से बदल दिया गया जब ब्रीच-लोडिंग हथियार के आविष्कार ने सैनिकों को किसी भी आकार के बड़े पैमाने पर संरचनाओं द्वारा असमर्थित छोटे, मोबाइल इकाइयों में स्थानांतरित करने और आग लगाने की अनुमति दी।

कला

रेखीय स्विस कला इतिहासकार हेनरिक वोल्फलिन द्वारा "क्लासिक" या पुनर्जागरण कला को बारोक से अलग करने के लिए प्रस्तावित पांच श्रेणियों में से एक है। वोल्फलिन के अनुसार, पंद्रहवीं और प्रारंभिक सोलहवीं शताब्दी के चित्रकार (लियोनार्डो दा विंची, राफेल या अल्ब्रेक्ट ड्यूरर) सत्रहवीं शताब्दी के "चित्रकार" बैरोक चित्रकारों (पीटर पॉल रूबेन्स, रेम्ब्रांट, और वेलाज़क्वेज़) की तुलना में अधिक रैखिक हैं क्योंकि वे मुख्य रूप से आकार बनाने के लिए रूपरेखा का उपयोग करते हैं।[7] डिजिटल कला में कला में रैखिकता को भी संदर्भित किया जा सकता है। उदाहरण के लिए, हाइपरटेक्स्ट कथा अरेखीय कथा का एक उदाहरण हो सकती है, लेकिन ऐसी वेबसाइटें भी हैं जिन्हें एक रेखीय पथ का अनुसरण करते हुए एक निर्दिष्ट, संगठित तरीके से जाने के लिए डिज़ाइन किया गया है।

संगीत

संगीत में रैखिक पहलू उत्तराधिकार है, या तो अंतराल या माधुर्य, एक साथ या ऊर्ध्वाधर पहलू के विपरीत

आँकड़ों में

यह भी देखें

संदर्भ

  1. Edwards, Harold M. (1995). लीनियर अलजेब्रा. Springer. p. 78. ISBN 9780817637316.
  2. Stewart, James (2008). Calculus: Early Transcendentals, 6th ed., Brooks Cole Cengage Learning. ISBN 978-0-495-01166-8, Section 1.2
  3. Evans, Lawrence C. (2010) [1998], Partial differential equations (PDF), Graduate Studies in Mathematics, vol. 19 (2nd ed.), Providence, R.I.: American Mathematical Society, doi:10.1090/gsm/019, ISBN 978-0-8218-4974-3, MR 2597943, archived (PDF) from the original on 2022-10-09
  4. Whitaker, Jerry C. (2002). आरएफ ट्रांसमिशन सिस्टम हैंडबुक. CRC Press. ISBN 978-0-8493-0973-1.
  5. Kolts, Bertram S. (2005). "रैखिकता और एकरसता को समझना" (PDF). analogZONE. Archived from the original (PDF) on February 4, 2012. Retrieved September 24, 2014.
  6. Kolts, Bertram S. (2005). "रैखिकता और एकरसता को समझना". Foreign Electronic Measurement Technology. 24 (5): 30–31. Retrieved September 25, 2014.
  7. Wölfflin, Heinrich (1950). Hottinger, M.D. (ed.). कला इतिहास के सिद्धांत: बाद की कला में शैली के विकास की समस्या. New York: Dover. pp. 18–72. ISBN 9780486202761.


बाहरी संबंध