डिकार्बोक्सिलेशन

From Vigyanwiki
Revision as of 16:42, 24 September 2023 by alpha>Gyanendraprakash
विकार्बोक्सिलकरण

विकार्बोक्सिलकरण एक रासायनिक प्रतिक्रिया है जो कार्बोक्सिल समूह को हटा देती है और कार्बन डाईऑक्साइड (CO2) छोड़ती है। सामान्यत:, विकार्बोक्सिलकरण कार्बोक्सिलिक अम्ल की प्रतिक्रिया को संदर्भित करता है, जो कार्बन श्रृंखला से कार्बन परमाणु को हटाता है। विपरीत प्रक्रिया, जो प्रकाश संश्लेषण में पहला रासायनिक चरण है, को कार्बोक्सिलेशन, CO2 का योग कहा जाता है एक यौगिक के लिए. जो एंजाइम विकार्बोक्सिलकरण को उत्प्रेरित करते हैं उन्हें डीकार्बाक्सिलेज या, अधिक औपचारिक शब्द, कार्बोक्सी-लाइसेस (एंजाइम आयोग संख्या 4.1.1) कहा जाता है।

कार्बनिक रसायन विज्ञान में

विकार्बोक्सिलकरण शब्द का अर्थ सामान्यत: कार्बोक्सिल समूह का प्रतिस्थापन होता है (−C(O)OH) हाइड्रोजन परमाणु के साथ:

विकार्बोक्सिलकरण सबसे पुरानी ज्ञात कार्बनिक प्रतिक्रियाओं में से एक है। यह तापांशन और भंजक आसवन के साथ होने वाली प्रक्रियाओं में से एक है। धातु लवण, विशेषकर तांबे के यौगिक,[1] धातु कार्बोक्सिलेट परिसरों की मध्यस्थता के माध्यम से प्रतिक्रिया को सुविधाजनक बनाना है। एरिल कार्बोक्सिलेट्स का विकार्बोक्सिलकरण संबंधित एरिल आयन के समतुल्य उत्पन्न कर सकता है, जो बदले में क्रॉस युग्मन प्रतिक्रियाओं से गुजर सकता है।[2]

एल्केनोइक अम्ल का विकार्बोक्सिलकरण अधिकांशत: धीमा होता है। इस प्रकार, विशिष्ट फैटी अम्ल आसानी से डीकार्बोक्सिलेट नहीं होते हैं। कुल मिलाकर, विकार्बोक्सिलकरण की सुविधा कार्बोनियन मध्यवर्ती की स्थिरता पर निर्भर करती है R
.[3][4] महत्वपूर्ण अपवाद बीटा-कीटो अम्ल, β, γ-असंतृप्त अम्ल, और α-फिनाइल, α-नाइट्रो, और α-साइनोअम्ल का विकार्बोक्सिलकरण हैं। ऐसी प्रतिक्रियाएं ज़्विटरियोनिक टॉटोमर के निर्माण के कारण तेज हो जाती हैं जिसमें कार्बोनिल प्रोटोनेटेड होता है और कार्बोक्सिल समूह डीप्रोटोनेटेड होता है।[5]

नामित विकार्बोक्सिलकरण प्रतिक्रियाएँ

विकार्बोक्सिलकरण कई नामित प्रतिक्रियाओं का आधार हैं। इनमें बार्टन विकार्बोक्सिलकरण, कोल्बे वैद्युतअपघटन, कोच्चि प्रतिक्रिया और हन्सडीकर प्रतिक्रिया सम्मलित हैं। सभी उग्र प्रतिक्रियाएँ हैं। क्रैपचो विकार्बोक्सिलकरण एक एस्टर का संबंधित विकार्बोक्सिलकरण है। त्सुजी-ट्रॉस्ट प्रतिक्रिया में एक एलिल कॉम्प्लेक्स की मध्यस्थता सम्मलित है।

केटोनिक विकार्बोक्सिलकरण में कार्बोक्जिलिक अम्ल को कीटोन में बदल दिया जाता है।

हाइड्रोडेकार्बोक्सिलेशन

हाइड्रोडेकार्बोक्सिलेशन में कार्बोज़ाइलिक अम्ल का संबंधित हाइड्रोकार्बन में रूपांतरण सम्मलित होता है। यह वैचारिक रूप से ऊपर परिभाषित अधिक सामान्य शब्द विकार्बोक्सिलकरण के समान है, सिवाय इसके कि इसके लिए विशेष रूप से आवश्यक है कि कार्बोक्सिल समूह, जैसा कि अपेक्षित था, हाइड्रोजन द्वारा प्रतिस्थापित किया जाए, प्रतिक्रिया विशेष रूप से मैलोनिक एस्टर संश्लेषण और नोएवेनगेल संघनन के संयोजन में सामान्य: है। प्रतिक्रिया में कार्बोक्सिल समूह का संयुग्म आधार, एक कार्बोक्सिलेट आयन, और इलेक्ट्रॉन घनत्व का एक असंतृप्त ग्राही, जैसे कि एक प्रोटोनेटेड कार्बोनिल समूह सम्मलित होता है। जहां प्रतिक्रियाओं में कार्बोक्जिलिक अम्ल को सांद्र हाइड्रोक्लोरिक अम्ल के साथ गर्म करना सम्मलित होता है, ऐसा सीधा मार्ग असंभव है क्योंकि यह प्रोटोनेटेड कार्बन डाइऑक्साइड का उत्पादन करेता है। इन स्थितियों में, प्रतिक्रिया पानी और एक प्रोटॉन के प्रारंभिक संयोजन से होने की संभावना है।[6]


जैव रसायन में

जीव विज्ञान में विकार्बोक्सिलकरण व्यापक हैं। उन्हें अधिकांशत: परिवर्तनों को उत्प्रेरित करने वाले सह-कारकों के अनुसार वर्गीकृत किया जाता है।[7] बायोटिन-युग्मित प्रक्रियाएं मैलोनिल सीओए के एसिटाइल कोआ में विकार्बोक्सिलकरण को प्रभावित करती हैं। थायेमीन (टी:) पाइरूवेट सहित अल्फा-कीटोअम्ल के विकार्बोक्सिलकरण के लिए सक्रिय घटक है:

पाइरिडोक्सल फॉस्फेट अमीनो अम्ल के विकार्बोक्सिलकरण को बढ़ावा देता है। फ्लेविन समूह पर निर्भर डिकार्बोक्सिलेज सिस्टीन के परिवर्तनों में सम्मलित हैं।आयरन-आधारित हाइड्रॉक्सिलेज़ रिडक्टिव सक्रियण द्वारा संचालित होते हैं O2 एक इलेक्ट्रॉन दाता के रूप में अल्फा-कीटोग्लूटारेट के विकार्बोक्सिलकरण का उपयोग करना है। विकार्बोक्सिलकरण को इस प्रकार दर्शाया जा सकता है:


एमिनो अम्ल का विकार्बोक्सिलकरण

अमीनों में अमीनो अम्ल के सामान्य जैवसंश्लेषण ऑक्सीडेटिव विकार्बोक्सिलकरण हैं:

साइट्रिक अम्ल चक्र से अन्य विकार्बोक्सिलकरण प्रतिक्रियाओं में सम्मलित हैं:

केस अध्ययन

टेट्राहाइड्रोकैनाबिनोलिक अम्ल। स्मोक्ड कैनबिस के मनो-सक्रिय प्रभाव के लिए गर्मी द्वारा इस यौगिक का विकार्बोक्सिलकरण आवश्यक है, और अल्फा कार्बन के प्रोटोनेटेड होने पर एनोल के कीटो समूह में रूपांतरण पर निर्भर करता है।

गर्म करने पर, Δ9-टेट्राहाइड्रोकैनाबिनोलिक अम्ल साइकोएक्टिव यौगिक Δ9-टेट्राहाइड्रोकैनाबिनोलिक देने के लिए डीकार्बोक्सिलेट्स करता है।[8] जब कैनबिस को वैक्यूम में गर्म किया जाता है, तो टेट्राहाइड्रोकैनाबिनोलिक अम्ल (टीएचसीए) का विकार्बोक्सिलकरण पहले क्रम की गतिशीलता का पालन करता प्रतीत होता है। सम्मलित टीचसीए का लॉग अंश समय के साथ लगातार घटता जाता है, और कमी की दर तापमान के अनुसार बदलती रहती है। 100 से 140 डिग्री सेल्सियस तक 10-डिग्री वृद्धि पर, टीएचसीए का आधा हिस्सा 30, 11, 6, 3 और 2 मिनट में खर्च हो जाता है; इसलिए दर स्थिरांक अरहेनियस के नियम का पालन करता है, जो 10−8और 10−5 के बीच होता है। व्युतक्रम तापमान के साथ एक रैखिक लॉग-लॉग संबंध में, चूंकि, पानी के अणु के साथ सैलीसिलिक अम्ल के विकार्बोक्सिलकरण के मॉडलिंग ने विलायक में एक अणु के लिए 150 kJ/mol के सक्रियण अवरोध का सुझाव दिया था, जो देखी गई दर के लिए बहुत अधिक है। इसलिए, यह निष्कर्ष निकाला गया कि कार्बोक्जिलिक अम्ल के उच्च अंश के साथ पौधे सामग्री में ठोस चरण में आयोजित यह प्रतिक्रिया, एक छद्म प्रथम क्रम कैनेटीक्स का पालन करती है जिसमें पास के कार्बोक्जिलिक अम्ल प्रेक्षित दर स्थिरांक को प्रभावित किए बिना अवक्षेपित होता है। 93 और 104 kJ/mol की ऊर्जा के साथ, अप्रत्यक्ष और प्रत्यक्ष कीटो-एनोल मार्गों के अनुरूप दो संक्रमण अवस्थाएँ संभव हैं। दोनों मध्यवर्ती में अल्फा कार्बन का प्रोटोनेशन सम्मलित होता है, जो सुगंधित रिंग के दोहरे बंधनों में से एक को बाधित करता है और बीटा-कीटो समूह (जो टीएचसीए और टीएचसी में एक एनोल का रूप लेता है) जो विकार्बोक्सिलकरण में भाग लेने की अनुमति देता है।[9]

लंबे समय तक संग्रहीत पेय पदार्थों में, एस्कॉर्बिक अम्ल की उपस्थिति से उत्प्रेरित विकार्बोक्सिलकरण द्वारा बेंज़ोइक अम्ल से बहुत कम मात्रा में बेंजीन बन सकता है।[10]

यह बताया गया है कि साइक्लोहेक्सोन की उत्प्रेरक मात्रा जोड़ने से अमीनो अम्ल के विकार्बोक्सिलकरण को उत्प्रेरित किया जाता है।[11] चूंकि, ऐसे उत्प्रेरकों के उपयोग से बड़ी मात्रा में अवांछित उप-उत्पाद भी प्राप्त हो सकते हैं।

संदर्भ

  1. Richard H. Wiley and Newton R. Smith. "m-Nitrostyrene". Organic Syntheses.; Collective Volume, vol. 4, p. 731
  2. Weaver, J. D.; Recio, A.; Grenning, A. J.; Tunge, J. A. (2011). "संक्रमण धातु-उत्प्रेरित डीकार्बोक्सिलेटिव एलिलेशन और बेंजाइलेशन प्रतिक्रियाएं". Chem. Rev. 111 (3): 1846–1913. doi:10.1021/cr1002744. PMC 3116714. PMID 21235271.
  3. March, Jerry (1985), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (3rd ed.), New York: Wiley, ISBN 0-471-85472-7
  4. Decarboxylation, Dr. Ian A. Hunt, Department of Chemistry, University of Calgary
  5. Jim Clark (2004). "कार्बोक्जिलिक एसिड और उनके लवणों का डीकार्बाक्सिलेशन". Chemguide. Retrieved 2007-10-22.
  6. "मैलोनिक एस्टर संश्लेषण". Organic Chemistry Portal. Retrieved 2007-10-26.
  7. Li, T.; Huo, L.; Pulley, C.; Liu, A. (2012). "जैविक प्रणाली में डीकार्बाक्सिलेशन तंत्र। बायोऑर्गेनिक रसायन विज्ञान". Bioorganic Chemistry. 43: 2–14. doi:10.1016/j.bioorg.2012.03.001. PMID 22534166.
  8. Perrotin-Brunel, Helene; Buijs, Wim; Spronsen, Jaap van; Roosmalen, Maaike J.E. van; Peters, Cor J.; Verpoorte, Rob; Witkamp, Geert-Jan (2011). "Decarboxylation of Δ9-tetrahydrocannabinol: Kinetics and molecular modeling". Journal of Molecular Structure. 987 (1–3): 67–73. Bibcode:2011JMoSt.987...67P. doi:10.1016/j.molstruc.2010.11.061.
  9. Perrotin-Brunel, Helene; Buijs, Wim; Spronsen, Jaap van; Roosmalen, Maaike J.E. van; Peters, Cor J.; Verpoorte, Rob; Witkamp, Geert-Jan (February 2011). "Decarboxylation of Δ9-tetrahydrocannabinol: Kinetics and molecular modeling". Journal of Molecular Structure. 987 (1–3): 67–73. Bibcode:2011JMoSt.987...67P. doi:10.1016/j.molstruc.2010.11.061.
  10. "शीतल पेय और अन्य पेय पदार्थों में बेंजीन पर डेटा". Archived from the original on 2008-03-26. Retrieved 2008-03-26.
  11. Hashimoto, Mitsunori; Eda, Yutaka; Osanai, Yasutomo; Iwai, Toshiaki; Aoki, Seiichi (1986). "A Novel Decarboxylation of α-Amino Acides. A Facile Method of Decarboxylation by the Use of 2-Cyclohexen-1-one as a Catalyst". Chemistry Letters. 15 (6): 893–896. doi:10.1246/cl.1986.893.