वर्णक्रमीय प्रमेय
गणित में, विशेष रूप से रैखिक बीजगणित और कार्यात्मक विश्लेषण, एक वर्णक्रमीय प्रमेय एक परिणाम है जब एक रैखिक ऑपरेटर या मैट्रिक्स (गणित) [[विकर्ण मैट्रिक्स]] हो सकता है (अर्थात, किसी आधार पर एक विकर्ण मैट्रिक्स के रूप में प्रतिनिधित्व किया जाता है)। यह अत्यंत उपयोगी है क्योंकि एक विकर्ण मैट्रिक्स को शामिल करने वाली संगणनाओं को अक्सर संबंधित विकर्ण मैट्रिक्स को शामिल करते हुए बहुत सरल संगणनाओं में घटाया जा सकता है। परिमित-आयामी वेक्टर रिक्त स्थान पर ऑपरेटरों के लिए विकर्णकरण की अवधारणा अपेक्षाकृत सीधी है, लेकिन अनंत-आयामी रिक्त स्थान पर ऑपरेटरों के लिए कुछ संशोधन की आवश्यकता है। सामान्य तौर पर, स्पेक्ट्रल प्रमेय रैखिक ऑपरेटरों के एक वर्ग की पहचान करता है जिसे गुणन ऑपरेटरों द्वारा प्रतिरूपित किया जा सकता है, जो उतना ही सरल है जितना कोई खोजने की उम्मीद कर सकता है। अधिक अमूर्त भाषा में, वर्णक्रमीय प्रमेय क्रमविनिमेय C*-algebras के बारे में एक कथन है। ऐतिहासिक परिप्रेक्ष्य के लिए स्पेक्ट्रल सिद्धांत भी देखें।
ऑपरेटरों के उदाहरण जिनके लिए स्पेक्ट्रल प्रमेय लागू होता है वे स्व-संबद्ध ऑपरेटर या हिल्बर्ट रिक्त स्थान पर अधिक सामान्यतः सामान्य ऑपरेटर होते हैं।
वर्णक्रमीय प्रमेय एक विहित रूप अपघटन भी प्रदान करता है, जिसे एक मैट्रिक्स का ईगेंडेकंपोजीशन कहा जाता है, अंतर्निहित सदिश स्थान जिस पर ऑपरेटर कार्य करता है।
ऑगस्टिन-लुई कॉची ने सममित मैट्रिक्स के लिए वर्णक्रमीय प्रमेय को सिद्ध किया, अर्थात, प्रत्येक वास्तविक, सममित मैट्रिक्स विकर्णीय है। इसके अलावा, कॉची निर्धारकों के बारे में व्यवस्थित होने वाले पहले व्यक्ति थे।[1][2] जॉन वॉन न्यूमैन द्वारा सामान्यीकृत वर्णक्रमीय प्रमेय आज शायद ऑपरेटर सिद्धांत का सबसे महत्वपूर्ण परिणाम है।
यह लेख मुख्य रूप से सबसे सरल प्रकार के वर्णक्रमीय प्रमेय पर केंद्रित है, जो हिल्बर्ट अंतरिक्ष पर स्वयं-आसन्न ऑपरेटर के लिए है। हालांकि, जैसा कि ऊपर बताया गया है, स्पेक्ट्रल प्रमेय भी हिल्बर्ट स्पेस पर सामान्य ऑपरेटरों के लिए है।
परिमित-आयामी मामला
हर्मिटियन मानचित्र और हर्मिटियन मैट्रिक्स
हम एक हर्मिटियन मैट्रिक्स पर विचार करके शुरू करते हैं (लेकिन निम्नलिखित चर्चा सममित मैट्रिक्स के अधिक प्रतिबंधात्मक मामले के अनुकूल होगी ). हम एक हर्मिटियन ऑपरेटर पर विचार करते हैं A एक परिमित-आयामी जटिल संख्या आंतरिक उत्पाद स्थान पर V एक निश्चित बिलिनियर फॉर्म सेस्क्विलिनियर रूप आंतरिक उत्पाद के साथ संपन्न . हर्मिटियन स्थिति चालू है मतलब सभी के लिए x, y ∈ V,
समतुल्य शर्त यह है A* = A, कहाँ A* का हर्मिटियन संयुग्म है A. उस मामले में A की पहचान हर्मिटियन मैट्रिक्स से की जाती है, जिसका मैट्रिक्स A* को इसके संयुग्मी संक्रमण से पहचाना जा सकता है। (अगर A एक वास्तविक आव्यूह है, तो यह इसके समतुल्य है AT = A, वह है, A एक सममित मैट्रिक्स है।)
इस स्थिति का तात्पर्य है कि एक हर्मिटियन मानचित्र के सभी eigenvalues वास्तविक हैं: इसे उस स्थिति में लागू करने के लिए पर्याप्त है जब x = y एक ईजेनवेक्टर है। (याद रखें कि एक रेखीय मानचित्र का एक आइजन्वेक्टर A एक (गैर-शून्य) वेक्टर है x ऐसा है कि Ax = λx कुछ अदिश के लिए λ. मूल्य λ संगत eigenvalue है। इसके अलावा, eigenvalues विशेषता बहुपद की जड़ें हैं।)
प्रमेय। अगर A हर्मिटियन चालू है V, तो वहाँ का एक अलौकिक आधार मौजूद है V के eigenvectors से मिलकर A. प्रत्येक eigenvalue वास्तविक है।
हम उस मामले के लिए सबूत का एक स्केच प्रदान करते हैं जहां स्केलर्स का अंतर्निहित क्षेत्र सम्मिश्र संख्या है।
बीजगणित के मौलिक प्रमेय द्वारा, की विशेषता बहुपद पर लागू A, कम से कम एक eigenvalue है λ1 और ईजेनवेक्टर e1. तब से
- हम पाते हैं λ1 यह सचमुच का है। अब अंतरिक्ष पर विचार करें K = span{e1}⊥, का ऑर्थोगोनल पूरक e1. हर्मिटिसिटी द्वारा, K की एक अपरिवर्तनीय उपसमष्टि है A. इसी तर्क को लागू करना K पता चलता है कि A में एक आइजनवेक्टर है e2 ∈ K. परिमित प्रेरण तब प्रमाण को समाप्त करता है।
वर्णक्रमीय प्रमेय परिमित-आयामी वास्तविक आंतरिक उत्पाद स्थानों पर सममित मानचित्रों के लिए भी है, लेकिन एक ईजेनवेक्टर का अस्तित्व बीजगणित के मौलिक प्रमेय से तुरंत अनुसरण नहीं करता है। इसे सिद्ध करने के लिए विचार करें A एक हर्मिटियन मैट्रिक्स के रूप में और इस तथ्य का उपयोग करें कि एक हर्मिटियन मैट्रिक्स के सभी eigenvalues वास्तविक हैं।
का मैट्रिक्स प्रतिनिधित्व A eigenvectors के आधार में विकर्ण है, और निर्माण के द्वारा प्रमाण पारस्परिक रूप से ऑर्थोगोनल eigenvectors का आधार देता है; यूनिट वैक्टर होने के लिए उन्हें चुनकर ईजेनवेक्टरों का एक ऑर्थोनॉर्मल आधार प्राप्त होता है। A को जोड़ीदार ऑर्थोगोनल अनुमानों के एक रैखिक संयोजन के रूप में लिखा जा सकता है, जिसे इसका वर्णक्रमीय अपघटन कहा जाता है। होने देना
एक आइगेनवैल्यू के अनुरूप आइगेनस्पेस हो λ. ध्यान दें कि परिभाषा विशिष्ट eigenvectors के किसी भी विकल्प पर निर्भर नहीं करती है। V रिक्त स्थान का ऑर्थोगोनल प्रत्यक्ष योग है Vλ जहां सूचकांक eigenvalues से अधिक है।
दूसरे शब्दों में, अगर Pλ ओर्थोगोनल प्रोजेक्शन#ऑर्थोगोनल प्रोजेक्शन को दर्शाता है Vλ, और λ1, ..., λm के आइगेनवैल्यू हैं A, तो वर्णक्रमीय अपघटन के रूप में लिखा जा सकता है
यदि A का वर्णक्रमीय अपघटन है , तब और किसी भी अदिश के लिए यह किसी भी बहुपद के लिए अनुसरण करता है f किसी के पास
वर्णक्रमीय अपघटन शूर अपघटन और एकवचन मूल्य अपघटन दोनों का एक विशेष मामला है।
सामान्य मैट्रिक्स
वर्णक्रमीय प्रमेय मैट्रिसेस के अधिक सामान्य वर्ग तक फैला हुआ है। होने देना A परिमित-आयामी आंतरिक उत्पाद स्थान पर एक ऑपरेटर बनें। A को सामान्य मैट्रिक्स कहा जाता है यदि A*A = AA*. कोई यह दिखा सकता है A सामान्य है अगर और केवल अगर यह एकात्मक रूप से विकर्ण है। प्रमाण: शूर अपघटन द्वारा, हम किसी भी मैट्रिक्स को लिख सकते हैं A = UTU*, कहाँ U एकात्मक है और T ऊपरी-त्रिकोणीय है। अगर A सामान्य है, तो कोई देखता है TT* = T*T. इसलिए, T विकर्ण होना चाहिए क्योंकि एक सामान्य ऊपरी त्रिकोणीय मैट्रिक्स विकर्ण होता है (सामान्य मैट्रिक्स#परिणाम देखें)। उलटा स्पष्ट है।
दूसरे शब्दों में, A सामान्य है अगर और केवल अगर एक एकात्मक मैट्रिक्स मौजूद है U ऐसा है कि
कहाँ D एक विकर्ण मैट्रिक्स है। फिर, के विकर्ण की प्रविष्टियाँ D के आइगेनवैल्यू हैं A. के स्तंभ वैक्टर U के ईजेनवेक्टर हैं A और वे अलौकिक हैं। हर्मिटियन मामले के विपरीत, की प्रविष्टियाँ D वास्तविक होने की आवश्यकता नहीं है।
कॉम्पैक्ट स्व-आसन्न ऑपरेटर
हिल्बर्ट रिक्त स्थान की अधिक सामान्य सेटिंग में, जिसमें एक अनंत आयाम हो सकता है, कॉम्पैक्ट ऑपरेटर स्व-आसन्न ऑपरेटरों के लिए वर्णक्रमीय प्रमेय का कथन वस्तुतः परिमित-आयामी मामले के समान है।
प्रमेय। कल्पना करना A हिल्बर्ट स्पेस (वास्तविक या जटिल) पर एक कॉम्पैक्ट सेल्फ-एडजॉइंट ऑपरेटर है V. फिर इसका एक अलौकिक आधार है V के eigenvectors से मिलकर A. प्रत्येक eigenvalue वास्तविक है।
हर्मिटियन मेट्रिसेस के लिए, मुख्य बिंदु कम से कम एक नॉनजीरो ईजेनवेक्टर के अस्तित्व को साबित करना है। ईजेनवेल्यूज के अस्तित्व को दिखाने के लिए निर्धारकों पर भरोसा नहीं किया जा सकता है, लेकिन आइगेनवैल्यूज के वैरिएबल कैरेक्टराइजेशन के अनुरूप अधिकतमकरण तर्क का उपयोग किया जा सकता है।
यदि संहतता धारणा को हटा दिया जाता है, तो यह सच नहीं है कि प्रत्येक स्व-संलग्न संचालिका के ईजेनवेक्टर होते हैं।
परिबद्ध स्व-आसन्न संकारक
ईजेनवेक्टरों की संभावित अनुपस्थिति
हम जिस अगले सामान्यीकरण पर विचार करते हैं, वह हिल्बर्ट स्पेस पर परिबद्ध संचालिका सेल्फ-एडजॉइंट ऑपरेटर्स का है। ऐसे ऑपरेटरों के पास कोई eigenvalues नहीं हो सकता है: उदाहरण के लिए चलो A गुणन का संचालक हो t पर , वह है,[3]
इस ऑपरेटर के पास कोई आइजनवेक्टर नहीं है , हालांकि इसमें बड़ी जगह में ईजेनवेक्टर हैं। अर्थात् वितरण (गणित) , कहाँ डिराक डेल्टा समारोह है, एक उपयुक्त अर्थ में लगाए जाने पर एक ईजेनवेक्टर है। डिराक डेल्टा फ़ंक्शन हालांकि शास्त्रीय अर्थों में एक फ़ंक्शन नहीं है और हिल्बर्ट स्पेस में नहीं है L2[0, 1] या कोई अन्य बनच स्थान। इस प्रकार, डेल्टा-फ़ंक्शन सामान्यीकृत ईजेनवेक्टर हैं लेकिन सामान्य अर्थों में ईजेनवेक्टर नहीं।
स्पेक्ट्रल उप-स्थान और प्रक्षेपण-मूल्यवान उपाय
(सच्चे) ईजेनवेक्टरों की अनुपस्थिति में, लगभग ईजेनवेक्टरों से युक्त उप-स्थानों की तलाश की जा सकती है। उपरोक्त उदाहरण में, उदाहरण के लिए, कहाँ हम छोटे अंतराल पर समर्थित कार्यों के उप-स्थान पर विचार कर सकते हैं अंदर . के अंतर्गत यह स्थान अपरिवर्तनीय है और किसी के लिए इस उपक्षेत्र में, के बहुत निकट है . वर्णक्रमीय प्रमेय के इस दृष्टिकोण में, यदि एक बंधा हुआ स्वयं-आसन्न संकारक है, तो कोई ऐसे वर्णक्रमीय उप-स्थानों के बड़े परिवारों की तलाश करता है।[4] प्रत्येक उप-स्थान, बदले में, संबंधित प्रक्षेपण ऑपरेटर द्वारा एन्कोड किया गया है, और सभी उप-स्थानों का संग्रह तब प्रक्षेपण-मूल्यवान माप द्वारा दर्शाया गया है।
वर्णक्रमीय प्रमेय का एक सूत्रीकरण ऑपरेटर को व्यक्त करता है A ऑपरेटर के ईजेनवेक्टर#अनंत आयामों पर समन्वय समारोह के अभिन्न अंग के रूप में प्रक्षेपण-मूल्यवान माप के संबंध में।[5]
जब प्रश्न में स्व-आसन्न ऑपरेटर कॉम्पैक्ट ऑपरेटर होता है, तो स्पेक्ट्रल प्रमेय का यह संस्करण उपरोक्त परिमित-आयामी स्पेक्ट्रल प्रमेय के समान कुछ कम हो जाता है, सिवाय इसके कि ऑपरेटर को अनुमानों के परिमित या अनगिनत अनंत रैखिक संयोजन के रूप में व्यक्त किया जाता है, अर्थात माप में केवल परमाणु होते हैं।
गुणन ऑपरेटर संस्करण
वर्णक्रमीय प्रमेय का एक वैकल्पिक सूत्रीकरण कहता है कि प्रत्येक परिबद्ध स्व-संयोजक संकारक गुणन संकारक के समतुल्य है। इस परिणाम का महत्व यह है कि गुणन संचालक कई तरह से समझने में आसान हैं।
Theorem.[6] — Let A be a bounded self-adjoint operator on a Hilbert space H. Then there is a measure space (X, Σ, μ) and a real-valued essentially bounded measurable function f on X and a unitary operator U:H → L2(X, μ) such that
स्पेक्ट्रल प्रमेय ऑपरेटर सिद्धांत नामक कार्यात्मक विश्लेषण के विशाल शोध क्षेत्र की शुरुआत है; स्पेक्ट्रल माप # स्पेक्ट्रल माप भी देखें।
हिल्बर्ट रिक्त स्थान पर बंधे सामान्य ऑपरेटरों के लिए एक समान वर्णक्रमीय प्रमेय भी है। निष्कर्ष में केवल इतना ही अंतर है कि अब f जटिल-मूल्यवान हो सकता है।
प्रत्यक्ष अभिन्न
डायरेक्ट इंटीग्रल के संदर्भ में वर्णक्रमीय प्रमेय का एक सूत्रीकरण भी है। यह गुणन-संचालक सूत्रीकरण के समान है, लेकिन अधिक विहित है।
होने देना एक बाउंडेड सेल्फ-एडजॉइंट ऑपरेटर बनें और दें का स्पेक्ट्रम हो . वर्णक्रमीय प्रमेय का प्रत्यक्ष-अभिन्न सूत्रीकरण दो मात्राओं को जोड़ता है . सबसे पहले, एक उपाय पर , और दूसरा, हिल्बर्ट स्पेसेस का एक परिवार फिर हम डायरेक्ट इंटीग्रल हिल्बर्ट स्पेस बनाते हैं
Theorem — If is a bounded self-adjoint operator, then is unitarily equivalent to the "multiplication by " operator on
रिक्त स्थान के लिए eigenspaces जैसी किसी चीज़ के बारे में सोचा जा सकता है . हालाँकि, ध्यान दें कि जब तक कि एक-तत्व सेट न हो सकारात्मक उपाय है, अंतरिक्ष वास्तव में प्रत्यक्ष समाकलन की उपसमष्टि नहीं है। इस प्रकार को सामान्यीकृत ईजेनस्पेस के रूप में सोचा जाना चाहिए-अर्थात, के तत्व ईजेनवेक्टर हैं जो वास्तव में हिल्बर्ट स्पेस से संबंधित नहीं हैं।
यद्यपि वर्णक्रमीय प्रमेय के गुणन-संचालक और प्रत्यक्ष अभिन्न सूत्रीकरण दोनों एक स्व-संयोजक संकारक को गुणन संकारक के समान रूप से व्यक्त करते हैं, प्रत्यक्ष अभिन्न दृष्टिकोण अधिक विहित है। सबसे पहले, वह सेट जिस पर डायरेक्ट इंटीग्रल होता है (ऑपरेटर का स्पेक्ट्रम) विहित है। दूसरा, जिस फ़ंक्शन से हम गुणा कर रहे हैं वह प्रत्यक्ष-अभिन्न दृष्टिकोण में कैननिकल है: बस फ़ंक्शन .
चक्रीय वैक्टर और सरल स्पेक्ट्रम
एक सदिश के लिए चक्रीय सदिश कहलाता है यदि वैक्टर हिल्बर्ट अंतरिक्ष के घने उप-क्षेत्र में फैला हुआ है। कल्पना करना एक परिबद्ध स्व-आसन्न संकारक है जिसके लिए एक चक्रीय वेक्टर मौजूद है। उस मामले में, वर्णक्रमीय प्रमेय के प्रत्यक्ष-अभिन्न और गुणन-संचालक योगों के बीच कोई अंतर नहीं है। दरअसल, उस मामले में एक उपाय है स्पेक्ट्रम पर का ऐसा है कि एकात्मक रूप से गुणन के बराबर है ऑपरेटर चालू .[8] यह परिणाम दर्शाता है एक साथ गुणन ऑपरेटर के रूप में और प्रत्यक्ष अभिन्न के रूप में, चूंकि केवल एक सीधा अभिन्न अंग है जिसमें प्रत्येक हिल्बर्ट स्थान बस है .
प्रत्येक परिबद्ध स्व-संलग्न संकारक एक चक्रीय सदिश को स्वीकार नहीं करता; वास्तव में, प्रत्यक्ष अभिन्न अपघटन में अद्वितीयता से, यह तभी हो सकता है जब सभी का आयाम एक है। जब ऐसा होता है, तो हम कहते हैं स्व-आसन्न_संचालक#स्पेक्ट्रल_बहुलता_सिद्धांत के अर्थ में सरल स्पेक्ट्रम है। यही है, एक चक्रीय सदिश को स्वीकार करने वाले एक बाध्य स्व-आसन्न ऑपरेटर को अलग-अलग eigenvalues के साथ स्व-संलग्न मैट्रिक्स के अनंत-आयामी सामान्यीकरण के रूप में माना जाना चाहिए (यानी, प्रत्येक eigenvalue में बहुलता है)।
हालांकि हर नहीं एक चक्रीय सदिश को स्वीकार करता है, यह देखना आसान है कि हम हिल्बर्ट अंतरिक्ष को अपरिवर्तनीय उप-स्थानों के प्रत्यक्ष योग के रूप में विघटित कर सकते हैं एक चक्रीय वेक्टर है। यह अवलोकन वर्णक्रमीय प्रमेय के गुणन-संचालक और प्रत्यक्ष-अभिन्न रूपों के प्रमाणों की कुंजी है।
कार्यात्मक कलन
स्पेक्ट्रल प्रमेय (किसी भी रूप में) का एक महत्वपूर्ण अनुप्रयोग कार्यात्मक पथरी को परिभाषित करने का विचार है। यानी एक फंक्शन दिया के स्पेक्ट्रम पर परिभाषित किया गया है , हम एक ऑपरेटर को परिभाषित करना चाहते हैं . अगर बस एक सकारात्मक शक्ति है, , तब बस है किसकी सत्ता , . दिलचस्प मामले कहां हैं एक गैर-बहुपद कार्य है जैसे कि वर्गमूल या एक घातांक। स्पेक्ट्रल प्रमेय के किसी भी संस्करण में ऐसी कार्यात्मक गणना प्रदान की जाती है।[9] प्रत्यक्ष-अभिन्न संस्करण में, उदाहरण के लिए, गुणा के रूप में कार्य करता है डायरेक्ट इंटीग्रल में ऑपरेटर:
- .
यानी हर जगह प्रत्यक्ष अभिन्न में एक (सामान्यीकृत) आइगेनस्पेस है आइगेनवैल्यू के साथ .
सामान्य स्व-आसन्न संकारक
गणितीय विश्लेषण में पाए जाने वाले कई महत्वपूर्ण रेखीय संकारक, जैसे अवकल संकारक, अबाधित होते हैं। स्व-संलग्न संचालकों के लिए एक वर्णक्रमीय प्रमेय भी है जो इन मामलों में लागू होता है। एक उदाहरण देने के लिए, प्रत्येक स्थिर-गुणांक अंतर संकारक एक गुणन संकारक के समतुल्य है। वास्तव में, एकात्मक संकारक जो इस तुल्यता को लागू करता है, फूरियर रूपांतरण है; गुणा ऑपरेटर एक प्रकार का गुणक (फूरियर विश्लेषण) है।
सामान्य तौर पर, स्व-संलग्न ऑपरेटरों के लिए वर्णक्रमीय प्रमेय कई समकक्ष रूप ले सकता है।[10] विशेष रूप से, पिछले अनुभाग में दिए गए सभी फॉर्मूले सीमित स्व-आसन्न ऑपरेटरों के लिए दिए गए हैं - प्रोजेक्शन-वैल्यू माप संस्करण, गुणन-संचालक संस्करण, और प्रत्यक्ष-अभिन्न संस्करण - छोटे के साथ अनबाउंड स्व-आसन्न ऑपरेटरों के लिए जारी है डोमेन मुद्दों से निपटने के लिए तकनीकी संशोधन।
यह भी देखें
- Hahn-Hellinger theorem
- कॉम्पैक्ट ऑपरेटरों का वर्णक्रमीय सिद्धांत
- सामान्य सी * - बीजगणित का वर्णक्रमीय सिद्धांत
- बोरेल कार्यात्मक पथरी
- वर्णक्रमीय सिद्धांत
- मैट्रिक्स अपघटन
- कानूनी फॉर्म
- जॉर्डन सामान्य रूप, जिसमें वर्णक्रमीय अपघटन एक विशेष मामला है।
- विलक्षण मूल्य अपघटन, मनमाना मैट्रिसेस के लिए वर्णक्रमीय प्रमेय का सामान्यीकरण।
- मैट्रिक्स का आइगेनडीकम्पोज़िशन
- वीनर-खिनचिन प्रमेय
टिप्पणियाँ
- ↑ Hawkins, Thomas (1975). "कौची और मैट्रिसेस का वर्णक्रमीय सिद्धांत". Historia Mathematica. 2: 1–29. doi:10.1016/0315-0860(75)90032-4.
- ↑ A Short History of Operator Theory by Evans M. Harrell II
- ↑ Hall 2013 Section 6.1
- ↑ Hall 2013 Theorem 7.2.1
- ↑ Hall 2013 Theorem 7.12
- ↑ Hall 2013 Theorem 7.20
- ↑ Hall 2013 Theorem 7.19
- ↑ Hall 2013 Lemma 8.11
- ↑ E.g., Hall 2013 Definition 7.13
- ↑ See Section 10.1 of Hall 2013
संदर्भ
- Sheldon Axler, Linear Algebra Done Right, Springer Verlag, 1997
- Hall, B.C. (2013), Quantum Theory for Mathematicians, Graduate Texts in Mathematics, vol. 267, Springer, ISBN 978-1461471158
- Paul Halmos, "What Does the Spectral Theorem Say?", American Mathematical Monthly, volume 70, number 3 (1963), pages 241–247 Other link
- M. Reed and B. Simon, Methods of Mathematical Physics, vols I–IV, Academic Press 1972.
- G. Teschl, Mathematical Methods in Quantum Mechanics with Applications to Schrödinger Operators, https://www.mat.univie.ac.at/~gerald/ftp/book-schroe/, American Mathematical Society, 2009.
- Valter Moretti (2018). Spectral Theory and Quantum Mechanics; Mathematical Foundations of Quantum Theories, Symmetries and Introduction to the Algebraic Formulation 2nd Edition. Springer. ISBN 978-3-319-70705-1.