जिम्बल लॉक
जिम्बल लॉक त्रि-आयामी, त्रि- गिम्बल तंत्र में स्वतंत्रता (यांत्रिकी) की डिग्री का हानि है जो तब होता है जब तीन में से दो जिम्बल की अक्षो को समानांतर विन्यास में संचालित किया जाता है, जिससे प्रणाली को विकृत दो आयामी स्थान घूर्णन में लॉक कर दिया जाता है।
जिम्बल-लॉक शब्द इस अर्थ में भ्रामक हो सकता है कि कोई भी व्यक्तिगत जिम्बल वास्तव में प्रतिबंधित नहीं है। जो सभी तीन गिंबल्स अभी भी निलंबन के अपने संबंधित अक्षों के बारे में स्वतंत्र रूप से घूम सकते हैं। फिर भी, जिम्बल के दो अक्षों के समानांतर अभिविन्यास के कारण अक्ष के चारों ओर घूमने को समायोजित करने के लिए कोई जिम्बल उपलब्ध नहीं है, जिससे निलंबित वस्तु उस अक्ष के चारों ओर प्रभावी रूप से लॉक हो जाती है (अथार्त घूमने में असमर्थ हो जाती है)।
गिम्बल्स
जिम्बल रिंग है जिसे निलंबित कर दिया जाता है जिससे यह धुरी के चारों ओर घूम सकता है। जो कि विभिन्न अक्षों के चारों ओर घूमने को समायोजित करने के लिए गिंबल्स को समान्य रूप से दूसरे के अंदर घोंसला बनाया जाता है।
वे जाइरोस्कोप और जड़त्वीय माप इकाइयों में दिखाई देते हैं जिससे आंतरिक जिम्बल के अभिविन्यास को स्थिर रखा जा सकता है जबकि बाहरी जिम्बल निलंबन किसी भी अभिविन्यास को मानता है। जिससे कम्पास और फ्लाईव्हील ऊर्जा संचयन तंत्र में वे वस्तुओं को सीधा रहने की अनुमति देते हैं। इनका उपयोग रॉकेट इंजन को रॉकेट पर उन्मुख करने के लिए किया जाता है।[1]
जो कि गणित में कुछ समन्वय प्रणालियाँ ऐसे व्यवहार करती हैं जैसे कि कोणों को मापने के लिए उपयोग किए जाने वाले वास्तविक गिम्बल हों, और विशेष रूप से यूलर कोण होते है ।
यह तीन या उससे कम नेस्टेड गिंबल्स के स्थितियों के लिए, कवरिंग स्पेस के गुणों के कारण प्रणाली में किसी बिंदु पर जिम्बल लॉक अनिवार्य रूप से होता है।
इंजीनियरिंग में
जबकि केवल दो विशिष्ट अभिविन्यास स्पष्ट जिम्बल लॉक का उत्पादन करते हैं, जिसमे व्यावहारिक यांत्रिक जिम्बल उन अभिविन्यासों के निकट कठिनाइयों का सामना करते हैं। जब जिम्बल का सेट लॉक कॉन्फ़िगरेशन के निकट होता है, तो जिम्बल प्लेटफ़ॉर्म के छोटे घुमावों के लिए आसपास के जिम्बल की बड़ी गति की आवश्यकता होती है। यद्यपि अनुपात केवल जिम्बल लॉक के बिंदु पर अनंत है, जिम्बल की व्यावहारिक गति और त्वरण सीमाएं - जड़ता (प्रत्येक जिम्बल रिंग के द्रव्यमान के परिणामस्वरूप), घर्षण के कारण, हवा या आसपास के अन्य तरल पदार्थ के प्रवाह प्रतिरोध के कारण होती हैं। गिम्बल्स (यदि वे निर्वात में नहीं हैं), और अन्य भौतिक और इंजीनियरिंग कारक- उस बिंदु के निकट प्लेटफ़ॉर्म की गति को सीमित करते हैं।
दो आयामों में
जिम्बल लॉक जिम्बल प्रणाली में स्वतंत्रता की दो डिग्री के साथ हो सकता है जैसे थियोडोलाइट एक अज़ीमुथ के बारे में घूर्णन और दो आयामों में ऊंचाई के साथ होता है। ये प्रणालियाँ शीर्षबिंदु और नादिर पर जिम्बल लॉक कर सकती हैं, क्योंकि उन बिंदुओं पर अज़ीमुथ अच्छी तरह से परिभाषित नहीं है, और अज़ीमुथ दिशा में घूमने से थियोडोलाइट जिस दिशा की ओर संकेत कर रहा है वह नहीं परिवर्तित होता है।
क्षितिज से थियोडोलाइट की ओर उड़ रहे हेलीकॉप्टर पर दृष्टि रखने पर विचार करें। जो थियोडोलाइट दूरबीन है जो तिपाई पर लगाई जाती है जिससे यह हेलीकॉप्टर को ट्रैक करने के लिए अज़ीमुथ और ऊंचाई में घूम सकता है। यह हेलीकॉप्टर थियोडोलाइट की ओर उड़ता है और दूरबीन द्वारा ऊंचाई और अज़ीमुथ में ट्रैक किया जाता है। जब हेलीकॉप्टर दिशा परिवर्तित करता है तो वह तिपाई के ठीक ऊपर उड़ता है (अर्थात यह चरम पर होता है) और 90 डिग्री पर अपने पिछले रास्ते पर उड़ता है। टेलीस्कोप या दोनों जिम्बल ओरिएंटेशन में निरंतर छलांग के बिना इस युक्तियों को ट्रैक नहीं कर सकता है। इसमें कोई निरंतर गति नहीं है जो इसे लक्ष्य का अनुसरण करने की अनुमति देती है। यह जिम्बल लॉक में है. तो शीर्षबिंदु के चारों ओर दिशाओं की अनंतता है जिसके लिए दूरबीन किसी लक्ष्य की सभी गतिविधियों को निरंतर ट्रैक नहीं कर सकती है।[2] ध्यान दें कि तथापि हेलीकॉप्टर शीर्षबिंदु से नहीं निकलता है, किन्तु केवल शीर्षबिंदु के समीप से निकलता है, जिससे जिम्बल लॉक न हो, प्रणाली को अभी भी इसे ट्रैक करने के लिए असाधारण तेजी से आगे बढ़ना चाहिए, क्योंकि यह तेजी से बीयरिंग से दूसरे तक जाता है। जिससे निकटतम बिंदु शीर्षबिंदु के जितना निकट होगा, उतनी ही तेजी से यह किया जाना चाहिए, और यदि यह वास्तव में शीर्षबिंदु से निकलता है, तो इन "तेजी से तेज" आंदोलनों की सीमा असीम रूप से तेज अर्थात् असंतत हो जाती है।
इस प्रकार से जिम्बल लॉक से उबरने के लिए उपयोगकर्ता को शीर्षबिंदु के चारों ओर जाना होगा - स्पष्ट रूप से: ऊंचाई को कम करें, लक्ष्य के दिगंश से मेल खाने के लिए दिगंश को परिवर्तित करें, फिर लक्ष्य से मेल खाने के लिए ऊंचाई को परिवर्तित करे।
गणितीय रूप से, यह इस तथ्य से मेल खाता है कि वृत्ताकार निर्देशांक शीर्षबिंदु और नादिर पर वृत्त पर एक समन्वय चार्ट को परिभाषित नहीं करते हैं। वैकल्पिक रूप से, टोरस T2 से वृत्त S2 तक संबंधित मानचित्र T2→S2 (दिए गए दिगंश और ऊंचाई वाले बिंदु द्वारा दिया गया) इन बिंदुओं पर एक कवरिंग मानचित्र नहीं है।
त्रि आयामों में
उत्तर की ओर उड़ रहे विमान के लेवल-सेंसिंग प्लेटफॉर्म के स्थिति पर विचार करें, जिसके तीन जिम्बल अक्ष परस्पर लंबवत हैं (अथार्त , रोल (उड़ान), पिच (विमानन) और यॉ कोण कोण प्रत्येक शून्य)। यदि विमान 90 डिग्री ऊपर उठता है, तो विमान और प्लेटफ़ॉर्म का यॉ अक्ष जिम्बल रोल अक्ष जिम्बल के समानांतर हो जाता है, और यॉ के बारे में परिवर्तनों की भरपाई नहीं की जा सकती है।
समाधान
इस समस्या को मोटर द्वारा सक्रिय रूप से संचालित चौथे जिम्बल के उपयोग से दूर किया जा सकता है जिससे रोल और यॉ जिम्बल अक्षों के मध्य बड़ा कोण बनाए रखा जा सकता है। जिसका अन्य समाधान यह है कि जिम्बल लॉक का पता चलने पर या अधिक जिम्बल को इच्छित स्थिति में घुमाया जाए और इस प्रकार उपकरण को रीसेट किया जाए।
यह आधुनिक अभ्यास में जिम्बल के उपयोग से पूरी तरह बचना है। जो कि जड़त्वीय नेविगेशन प्रणालियों के संदर्भ में, यह जड़त्वीय सेंसरों को सीधे वाहन के निकाय पर स्थापित करके किया जा सकता है (इसे स्ट्रैपडाउन प्रणाली कहा जाता है)[3] और वाहन अभिविन्यास और वेग प्राप्त करने के लिए चतुर्धातुक विधियों का उपयोग करके संवेदी घूर्णन और त्वरण को डिजिटल रूप से एकीकृत करना है। जिम्बल को परिवर्तन करने की दूसरी विधि द्रव बीयरिंग या प्लवनशीलता कक्ष का उपयोग करना है।[4]
अपोलो 11 पर
अपोलो 11 चंद्रमा मिशन में प्रसिद्ध जिम्बल लॉक घटना घटी थी। इस अंतरिक्ष यान पर, जड़त्वीय माप इकाई (आईएमयू) पर गिंबल्स का सेट उपयोग किया गया था। जिससे इंजीनियरों को जिम्बल लॉक की समस्या के बारे में पता था किन्तु उन्होंने चौथे जिम्बल का उपयोग करने से अस्वीकार कर दिया था।[5] इस निर्णय के पीछे के कुछ तर्क निम्नलिखित उद्धरण से स्पष्ट हैं:
निरर्थक जिम्बल के लाभ उपकरण की सरलता, आकार के लाभ और स्वतंत्रता इकाई की प्रत्यक्ष तीन डिग्री की संबंधित निहित विश्वसनीयता से अधिक प्रतीत होते हैं।
— डेविड होग, अपोलो लूनर सरफेस जर्नल
उन्होंने संकेतक का उपयोग करके वैकल्पिक समाधान को प्राथमिकता दी जो 85 डिग्री पिच के निकट होने पर चालू हो जाएगा।
उस बिंदु के पास, एक बंद स्थिरीकरण लूप में, टॉर्क मोटर्स को सैद्धांतिक रूप से जिम्बल को तुरंत 180 डिग्री फ्लिप करने का आदेश दिया जा सकता है। इसके बजाय, एलएम में, कंप्यूटर ने 70 डिग्री पर "जिम्बल लॉक" चेतावनी फ्लैश की और आईएमयू को 85 डिग्री पर फ्रीज कर दिया।
— पॉल फजेल्ड, अपोलो लूनर सरफेस जर्नल
गिम्बल्स को उनकी क्षमता से अधिक तेज़ चलाने की प्रयाश करने के अतिरिक्त , प्रणाली ने बस हार मान ली और प्लेटफ़ॉर्म को फ्रीज कर दिया गया था। इस बिंदु से, अंतरिक्ष यान को मैन्युअल रूप से जिम्बल लॉक स्थिति से दूर ले जाना होगा, और संदर्भ के रूप में सितारों का उपयोग करके प्लेटफ़ॉर्म को मैन्युअल रूप से पुन: व्यवस्थित करना होगा।[6]
यह लूनर मॉड्यूल के उतरने के बाद, कमांड मॉड्यूल पर सवार माइकल कोलिन्स (अंतरिक्ष यात्री) ने मजाक में कहा कि क्रिसमस के लिए मुझे चौथा जिम्बल भेजने के बारे में क्या विचार है?
रोबोटिक्स
रोबोटिक्स में, जिम्बल लॉक को समय रूप से कलाई फ्लिप के रूप में जाना जाता है, यह रोबोटिक हथियारों में ट्रिपल-रोल कलाई के उपयोग के कारण, जहां कलाई की तीन अक्ष, यॉ, पिच और रोल को नियंत्रित करती हैं, सभी सामान्य बिंदु से निकलती हैं।
कलाई फ्लिप का उदाहरण, जिसे कलाई विलक्षणता भी कहा जाता है, जब रोबोट जिस पथ से यात्रा कर रहा होता है, उसके कारण रोबोट की कलाई की पहली और तीसरी धुरी पंक्ति में आ जाती है। फिर दूसरी कलाई की धुरी अंतिम प्रभावक के अभिविन्यास को बनाए रखने के लिए शून्य समय में 180° घूमने का प्रयास करती है। विलक्षणता का परिणाम अधिक नाटकीय हो सकता है और रोबोट बांह, अंतिम प्रभावकारक और प्रक्रिया पर प्रतिकूल प्रभाव डाल सकता है।
रोबोटिक्स में विलक्षणताओं से बचने के महत्व ने औद्योगिक रोबोट और रोबोट प्रणाली के लिए अमेरिकी राष्ट्रीय मानक - सुरक्षा आवश्यकताओं को इसे दो या दो से अधिक रोबोट अक्षों के संरेख संरेखण के कारण होने वाली स्थिति के रूप में परिभाषित करने के लिए प्रेरित किया है जिसके परिणामस्वरूप अप्रत्याशित रोबोट गति और वेग होते हैं।[7]
अनुप्रयुक्त गणित में
जिम्बल लॉक की समस्या तब प्रकट होती है जब कोई व्यावहारिक गणित में यूलर कोण का उपयोग करता है; जो कि 3 डी मॉडलिंग, जड़त्वीय मार्गदर्शन प्रणाली और वीडियो गेम जैसे 3डी कंप्यूटर प्रोग्राम के डेवलपर्स को इससे बचने के लिए सावधानी पर ध्यान देना चाहिए।
औपचारिक भाषा में, जिम्बल लॉक होता है क्योंकि यूलर कोण से घूर्णन तक मानचित्र (टोपोलॉजिकल रूप से, 3-टोरस T3 से) वास्तविक प्रक्षेप्य स्थान 'RP3' के लिए, जो त्रि-आयामी कठोर पिंडों के घूर्णन के स्थान के समान है, जिसे औपचारिक रूप से SO(3) नाम दिया गया है) प्रत्येक बिंदु पर स्थानीय होमियोमोर्फिज्म नहीं है, और इस प्रकार कुछ बिंदुओं पर रैंक (विभेदक टोपोलॉजी) है ( स्वतंत्रता की डिग्री) 3 से नीचे गिरनी चाहिए, जिस बिंदु पर जिम्बल लॉक होता है। वह यूलर कोण तीन संख्याओं का उपयोग करके त्रि-आयामी अंतरिक्ष में किसी भी घूर्णन का संख्यात्मक विवरण देने का साधन प्रदान करते हैं, किन्तु न केवल यह विवरण अद्वितीय नहीं है, किन्तु कुछ ऐसे बिंदु भी हैं जहां लक्ष्य स्थान (घूर्णन) में प्रत्येक परिवर्तन को अनुभव नहीं किया जा सकता है स्रोत स्थान (यूलर कोण) में परिवर्तन से होता है। यह टोपोलॉजिकल बाधा है - 3-टोरस से 3-आयामी वास्तविक प्रक्षेप्य स्थान तक कोई कवरिंग मानचित्र नहीं है; एकमात्र (गैर-तुच्छ) कवरिंग मानचित्र 3-वृत्त से है, जैसा कि चतुर्भुज के उपयोग में होता है।
तुलना करने के लिए, सभी अनुवादों को तीन संख्याओं , , और , का उपयोग करके वर्णित किया जा सकता है, तीन लंबवत अक्षों , और अक्षों के साथ निरंतर तीन रैखिक आंदोलनों के उत्तराधिकार के रूप में है । जिसमे घुमावों के लिए भी यही सत्य है: सभी घुमावों को तीन संख्याओं , , और का उपयोग करके वर्णित किया जा सकता है, जो तीन अक्षों के चारों ओर तीन घूर्णी आंदोलनों के अनुक्रम के रूप में हैं जो एक से दूसरे तक लंबवत हैं। रैखिक निर्देशांक और कोणीय निर्देशांक के मध्य यह समानता यूलर कोणों को बहुत सहज बनाती है, किन्तु दुर्भाग्य से वे जिम्बल लॉक समस्या से ग्रस्त हैं।
यूलर कोणों के साथ स्वतंत्रता की डिग्री का हानि
3डी अंतरिक्ष में घूर्णन को विभिन्न विधि से आव्यूह (गणित) के साथ संख्यात्मक रूप से दर्शाया जा सकता है। इनमें से प्रतिनिधित्व है:
जांचने योग्य उदाहरण तब घटित होता है जब . जानते हुए भी और , उपरोक्त अभिव्यक्ति इसके समान हो जाती है:
आव्यूह गुणन करना:
और अंत में त्रिकोणमिति सूत्रों या कोण योग और अंतर पहचान का उपयोग करना:
उपरोक्त आव्युह में और के मानों को परिवर्तन से समान प्रभाव पड़ता है: घूर्णन कोण परिवर्तित है, किन्तु घूर्णन अक्ष दिशा में रहता है: आव्युह में अंतिम कॉलम और पहली पंक्ति जीत जाएगी। परिवर्तन नहीं और के लिए अलग-अलग भूमिकाओं को पुनर्प्राप्त करने का एकमात्र समाधान 0 को परिवर्तन है।
X-Y-Z सम्मेलन का उपयोग करके उपर्युक्त यूलर कोणों द्वारा घुमाए गए हवाई जहाज की कल्पना करना संभव है। इस स्थिति में, पहला कोण - पिच है। फिर यॉ को पर स्थित किया जाता है और अंतिम घुमाव - द्वारा - फिर से हवाई जहाज की पिच होती है। जिम्बल लॉक के कारण, इसने स्वतंत्रता की एक डिग्री खो दी है - इस स्थिति में रोल करने की क्षमता होती है।
उपरोक्त X-Y-Z सम्मेलन की तुलना में यूलर कोणों का उपयोग करके आव्यूह के साथ घूर्णन का प्रतिनिधित्व करने के लिए और सम्मेलन चुनना भी संभव है, और कोणों के लिए अन्य भिन्नता अंतराल भी चुनना संभव है, किन्तु अंत में सदैव कम से कम मान होता है जिसके लिए डिग्री स्वतंत्रता खो गई है.
जिम्बल लॉक समस्या यूलर कोणों को अमान्य नहीं बनाती है (वे सदैव उचित प्रकार से परिभाषित समन्वय प्रणाली के रूप में कार्य करते हैं), किन्तु यह उन्हें कुछ व्यावहारिक अनुप्रयोगों के लिए अनुपयुक्त बनाती है।
वैकल्पिक अभिविन्यास प्रतिनिधित्व
जिम्बल लॉक का कारण यूलर कोणों के आधार पर तीन अक्षीय घुमावों के रूप में गणना में अभिविन्यास का प्रतिनिधित्व है। इसलिए संभावित समाधान किसी अन्य विधि से अभिविन्यास का प्रतिनिधित्व करना है। यह घूर्णन आव्यूह , चतुर्भुज (चतुर्भुज और स्थानिक घूर्णन देखें), या समान अभिविन्यास प्रतिनिधित्व के रूप में हो सकता है जो अभिविन्यास को तीन अलग और संबंधित मूल्यों के अतिरिक्त मूल्य के रूप में मानता है। ऐसे प्रतिनिधित्व को देखते हुए, उपयोगकर्ता ओरिएंटेशन को मूल्य के रूप में संग्रहीत करता है। जिसमे परिवर्तन द्वारा उत्पन्न कोणीय परिवर्तनों को मापने के लिए, अभिविन्यास परिवर्तन को डेल्टा कोण/अक्ष घूर्णन के रूप में व्यक्त किया जाता है। क्रमिक परिवर्तनों में फ़्लोटिंग पॉइंट या स्पष्टता समस्याओं या फ़्लोटिंग-पॉइंट त्रुटि के संचय को रोकने के लिए परिणामी अभिविन्यास को फिर से सामान्यीकृत किया जाना चाहिए। जिसमे आव्यूह के लिए, परिणाम को पुनः सामान्य करने के लिए आव्यूह को उसके ऑर्थोनॉर्मल आव्यूह या निकटतम ऑर्थोगोनल आव्यूह में परिवर्तित करने की आवश्यकता होती है। चतुष्कोणों के लिए, पुनः सामान्यीकरण के लिए इकाई चतुष्कोणों की आवश्यकता होती है।
यह भी देखें
- SO(3) पर चार्ट
- उड़ान की गतिशीलता
- ग्रिड उत्तर (ध्रुवीय अभियानों पर समतुल्य नौवहन समस्या)
- जड़त्वीय नेविगेशन प्रणाली – Continuously computed dead reckoning
- मोशन प्लानिंग – Computational problem
- चतुर्भुज और स्थानिक घूर्णन – Correspondence between quaternions and 3D rotations
संदर्भ
- ↑ Jonathan Strickland (2008). "What is a gimbal -- and what does it have to do with NASA?".
- ↑ Adrian Popa (June 4, 1998). "Re: What is meant by the term gimbal lock?".
- ↑ Chris Verplaetse (1995). "पेन डिज़ाइन और नेविगेशन पृष्ठभूमि का अवलोकन". Archived from the original on 2009-02-14.
- ↑ Chappell, Charles, D. (2006). "आर्टिकुलेटेड गैस बेयरिंग सपोर्ट पैड".
{{cite web}}
: CS1 maint: multiple names: authors list (link) - ↑ David Hoag (1963). "Apollo Guidance and Navigation - Considerations of Apollo IMU Gimbal Lock - MIT Instrumentation Laboratory Document E-1344".
- ↑ Eric M. Jones; Paul Fjeld (2006). "क्रिसमस के लिए जिम्बल एंगल्स, जिम्बल लॉक और चौथा गिम्बल".
- ↑ ANSI/RIA R15.06-1999