सरल आवर्त गति
Part of a series on |
चिरसम्मत यांत्रिकी |
---|
यांत्रिकी और भौतिकी में, सरल हार्मोनिक गति (कभी-कभी संक्षिप्त एसएचएम) विशेष प्रकार की आवधिक कार्य गति है जहां गतिमान वस्तु पर प्रत्यानयन बल वस्तु के विस्थापन के परिमाण के सीधे आनुपातिकता (गणित) होता है और वस्तु की संतुलन स्थिति की ओर कार्य करता है। इसका परिणाम दोलन में होता है जो अनिश्चित काल तक जारी रहता है, यदि घर्षण या ऊर्जा के किसी अन्य अपव्यय से निर्जन होता है।
सरल हार्मोनिक गति विभिन्न गतियों के लिए गणितीय मॉडल के रूप में काम कर सकती है, किन्तु स्प्रिंग (डिवाइस) पर द्रव्यमान के दोलन द्वारा टाइप किया जाता है, जब यह हुक के नियम द्वारा दी गई रैखिक लोच (भौतिकी) बहाल करने वाली शक्ति के अधीन होता है। गति समय में साइनसोइडल है और एकल अनुनाद आवृत्ति प्रदर्शित करती है। अन्य घटनाओं को सरल हार्मोनिक गति द्वारा प्रतिरूपित किया जा सकता है, जिसमें पेंडुलम की गति भी सम्मिलित है, चूंकि इसके लिए त्रुटिहीन मॉडल होने के लिए, पेंडुलम के अंत में वस्तु पर शुद्ध बल विस्थापन के समानुपाती होना चाहिए (और फिर भी, यह केवल अच्छा सन्निकटन है जब स्विंग का कोण छोटा होता है; लघु-कोण सन्निकटन देखें)। आणविक कंपन के मॉडल के लिए सरल हार्मोनिक गति का भी उपयोग किया जा सकता है।
सरल हार्मोनिक गति फूरियर विश्लेषण की विधि के माध्यम से अधिक जटिल आवधिक गति के लक्षण वर्णन के लिए आधार प्रदान करती है।
परिचय
कण की गति एक सीधी रेखा के साथ एक त्वरण के साथ चलती है जिसकी दिशा हमेशा रेखा पर निश्चित बिंदु (गणित) की ओर होती है और जिसका परिमाण निश्चित बिंदु से दूरी के समानुपाती होता है, सरल हार्मोनिक गति कहलाती है।[1]
आरेख में, हार्मोनिक ऑसीलेटर, जिसमें वसंत के छोर से जुड़े वजन को दिखाया गया है। स्प्रिंग का दूसरा सिरा दीवार जैसे कठोर सपोर्ट से जुड़ा होता है। यदि सिस्टम को यांत्रिक संतुलन की स्थिति में आराम से छोड़ दिया जाता है, तो द्रव्यमान पर कोई शुद्ध बल कार्य नहीं करता है। चूंकि, यदि द्रव्यमान को संतुलन की स्थिति से विस्थापित किया जाता है, तो स्प्रिंग एक्सर्शन पुनर्स्थापना लोच (भौतिकी) बल है जो हुक के नियम का पालन करता है।
गणितीय रूप से, प्रत्यानयन बल F द्वारा दिया गया है
किसी भी साधारण यांत्रिक हार्मोनिक दोलक के लिए:
- जब तंत्र अपनी संतुलन स्थिति से विस्थापित हो जाता है, तो प्रत्यानयन बल जो हुक के नियम का पालन करता है, प्रणाली को संतुलन में लाने के लिए प्रवृत्त होता है।
एक बार जब द्रव्यमान अपनी संतुलन स्थिति से विस्थापित हो जाता है, तो यह शुद्ध प्रत्यानयन बल का अनुभव करता है। परिणामस्वरुप, यह त्वरण और संतुलन की स्थिति में वापस जाना प्रारंभ कर देता है। जब द्रव्यमान संतुलन की स्थिति के करीब जाता है, तो प्रत्यानयन बल कम हो जाता है। साम्यावस्था की स्थिति में, शुद्ध प्रत्यानयन बल लुप्त हो जाता है। चूंकि, पर x = 0, प्रत्यानयन बल द्वारा प्रदान किए गए त्वरण के कारण द्रव्यमान में संवेग होता है। इसलिए, द्रव्यमान संतुलन की स्थिति से आगे बढ़ता रहता है, वसंत को संकुचित करता है। शुद्ध पुनर्स्थापन बल तब इसे धीमा कर देता है जब तक कि इसका वेग शून्य तक नहीं पहुंच जाता है, जिसके बाद यह फिर से संतुलन की स्थिति में वापस आ जाता है।
जब तक सिस्टम में कोई ऊर्जा हानि नहीं होती है, द्रव्यमान दोलन करता रहता है। इस प्रकार सरल आवर्त गति एक प्रकार की आवृत्ति गति है। यदि सिस्टम में ऊर्जा खो जाती है, तो द्रव्यमान अवमंदित दोलित्र प्रदर्शित करता है।
ध्यान दें कि यदि वास्तविक स्थान और चरण स्थान प्लॉट सह-रैखिक नहीं हैं, तो चरण स्थान गति अण्डाकार हो जाती है। संलग्न क्षेत्र आयाम और अधिकतम गति पर निर्भर करता है।
डायनेमिक्स
न्यूटोनियन यांत्रिकी में, एक-आयामी सरल हार्मोनिक गति के लिए, गति का समीकरण, जो निरंतर गुणांक के साथ एक दूसरे क्रम का रैखिक साधारण अवकल समीकरण है, न्यूटन के दूसरे नियम और स्प्रिंग पर द्रव्यमान के लिए हुक के नियम के माध्यम से प्राप्त किया जा सकता है ( उपकरण)।
इसलिए,
कहाँ पे स्थिरांक का अर्थ तथा आसानी से पाया जा सकता है: सेटिंग ऊपर के समीकरण पर हम देखते हैं , जिससे कण की प्रारंभिक स्थिति है, ; उस समीकरण का व्युत्पन्न लेना और शून्य पर मूल्यांकन करना हमें वह मिलता है , जिससे कोणीय आवृत्ति से विभाजित कण की प्रारंभिक गति है, . इस प्रकार हम लिख सकते हैं:
या समकक्ष
समाधान में, c1 तथा c2 प्रारंभिक स्थितियों द्वारा निर्धारित दो स्थिरांक हैं (विशेष रूप से, समय पर प्रारंभिक स्थिति t = 0 है c1, जबकि प्रारंभिक वेग है c2ω), और मूल को संतुलन की स्थिति के रूप में सेट किया गया है।[A] इनमें से प्रत्येक स्थिरांक गति का भौतिक अर्थ रखता है: A आयाम है (संतुलन स्थिति से अधिकतम विस्थापन), ω = 2πf कोणीय आवृत्ति है, और φ प्रारंभिक चरण (लहरें) है।[B]
कलन की विधि का उपयोग करते हुए, समय के फलन के रूप में वेग और त्वरण पाया जा सकता है:
- रफ़्तार:
- अधिकतम गति: v = ωA (संतुलन बिंदु पर)
- अधिकतम त्वरण: Aω2 (चरम बिंदुओं पर)
परिभाषा के अनुसार, यदि द्रव्यमान m सरल आवर्त गति के अधीन है तो इसका त्वरण विस्थापन के समानुपाती होता है।
ऊर्जा
स्थानापन्न ω2 साथ k/m, गतिज ऊर्जा K समय पर प्रणाली की t है
और संभावित ऊर्जा है
उदाहरण
निम्नलिखित भौतिक प्रणालियाँ हार्मोनिक ऑसिलेटर के कुछ उदाहरण हैं।
वसंत पर द्रव्यमान
द्रव्यमान m वसंत स्थिरांक के वसंत से जुड़ा हुआ है k बंद स्थान में सरल हार्मोनिक गति प्रदर्शित करता है। अवधि का वर्णन करने के लिए समीकरण
एकसमान वर्तुलाकार गति
सरल आवर्त गति को एकसमान वर्तुल गति का आयामी प्रक्षेपण (गणित) माना जा सकता है। यदि कोई वस्तु कोणीय वेग से चलती है ω त्रिज्या के वृत्त के चारों ओर r के मूल (गणित) पर केंद्रित है xy-प्लेन, फिर प्रत्येक समन्वय के साथ इसकी गति आयाम के साथ सरल हार्मोनिक गति है r और कोणीय आवृत्ति ω.
ऑसिलेटरी मोशन
यह पिंड की गति है जब यह निश्चित बिंदु के चारों ओर घूमता है। इस प्रकार की गति को दोलन गति या कंपन गति भी कहते हैं। द्वारा समयावधि की गणना की जा सकती है
सरल लोलक का द्रव्यमान
छोटे-कोण सन्निकटन में, साधारण पेंडुलम की गति को सरल हार्मोनिक गति द्वारा अनुमानित किया जाता है। लंबाई के पेंडुलम से जुड़े द्रव्यमान की अवधि l गुरुत्वाकर्षण त्वरण के साथ द्वारा दिया गया है
कोणीय त्वरण के लिए अभिव्यक्ति के कारण यह सन्निकटन केवल छोटे कोणों के लिए त्रुटिहीन है α विस्थापन कोण की ज्या के समानुपाती होना:
स्कॉच योक
घूर्णी गति और रेखीय प्रत्यागामी गति के बीच रूपांतरण के लिए स्कॉच योक तंत्र का उपयोग किया जा सकता है। स्लॉट के आकार के आधार पर रैखिक गति विभिन्न रूप ले सकती है, किन्तु स्थिर घूर्णन गति के साथ मूल योक रैखिक गति उत्पन्न करता है जो सरल हार्मोनिक रूप में होता है।
यह भी देखें
टिप्पणियाँ
संदर्भ
- Fowles, Grant R.; Cassiday, George L. (2005). Analytical Mechanics (7th ed.). Thomson Brooks/Cole. ISBN 0-534-49492-7.
- Taylor, John R. (2005). Classical Mechanics. University Science Books. ISBN 1-891389-22-X.
- Thornton, Stephen T.; Marion, Jerry B. (2003). Classical Dynamics of Particles and Systems (5th ed.). Brooks Cole. ISBN 0-534-40896-6.
- Walker, Jearl (2011). Principles of Physics (9th ed.). Hoboken, New Jersey: Wiley. ISBN 978-0-470-56158-4.