क्वांटम अनिश्चितता
के बारे में लेखों की एक श्रृंखला का हिस्सा |
क्वांटम यांत्रिकी |
---|
क्वांटम अनिश्चितता भौतिक प्रणाली के वर्णन में स्पष्ट आवश्यक अपूर्णता है, जो क्वांटम भौतिकी के मानक विवरण की विशेषता बन गई है। क्वांटम भौतिकी से पूर्व ऐसा विचार किया जाता था
- भौतिक प्रणाली में निर्धारित स्थिति होती है जो विशिष्ट रूप से इसके मापनीय गुणों के सभी मानों को निर्धारित करती है, और
- इसके विपरीत, इसके मापनीय गुणों के मानों ने स्तिथि को विशिष्ट रूप से निर्धारित किया है।
क्वांटम अनिश्चितता को मात्रात्मक रूप से प्रेक्षण योग्य माप के परिणामों के सेट पर संभाव्यता वितरण द्वारा वर्णित किया जा सकता है। वितरण विशिष्ट रूप से प्रणाली स्थिति द्वारा निर्धारित किया जाता है, और इसके अतिरिक्त क्वांटम यांत्रिकी इस संभाव्यता वितरण की गणना के लिए युक्ति प्रदान करता है।
माप में अनिश्चितता क्वांटम यांत्रिकी का नवाचार नहीं था, क्योंकि यह प्रयोगवादियों द्वारा शीघ्र ही स्थापित किया गया था कि माप में अवलोकन संबंधी त्रुटि से अनिश्चित परिणाम हो सकते हैं। 18वीं शताब्दी के उत्तरार्ध तक, माप त्रुटियों का उचित प्रकार से अध्यन्न किया गया था और यह ज्ञात किया गया था कि उन्हें या तो श्रेष्ठ उपकरण द्वारा कम किया जा सकता है या सांख्यिकीय त्रुटि मॉडल द्वारा गणना की जा सकती है। क्वांटम यांत्रिकी में, चूँकि, अनिश्चितता का सिद्धांत मूलभूत है, जिसका त्रुटियों से कोई सम्बन्ध नहीं है।
माप
क्वांटम अनिश्चितता के पर्याप्त विवरण के लिए माप के सिद्धांत की आवश्यकता होती है। क्वांटम यांत्रिकी के प्रारम्भ के पश्चात् विभिन्न सिद्धांत प्रस्तावित किए गए हैं और सैद्धांतिक और प्रायोगिक भौतिकी दोनों में क्वांटम मापन सक्रिय अनुसंधान क्षेत्र बना हुआ है।[1] संभवतः जॉन वॉन न्यूमैन द्वारा गणितीय सिद्धांत पर प्रथम व्यवस्थित प्रयास विकसित किया गया था। उन्होंने जिस प्रकार के मापों का अन्वेषण किया था, उन्हें वर्तमान में प्रक्षेपी माप कहा जाता है। यह सिद्धांत शीघ्र ही विकसित किये गए स्व-संलग्न संचालकों के लिए प्रक्षेपण-महत्वपूर्ण साधन के सिद्धांत (वॉन न्यूमैन द्वारा और स्वतंत्र रूप से मार्शल स्टोन द्वारा) और क्वांटम यांत्रिकी के हिल्बर्ट स्पेस सूत्रीकरण पर आधारित था (वॉन न्यूमैन द्वारा पॉल डिराक को उत्तरदायी बनाया गया)|
इस सूत्रीकरण में, भौतिक प्रणाली की स्थिति सम्मिश्र संख्याओं पर हिल्बर्ट स्पेस H में लंबाई 1 के वेक्टर (ज्यामिति) के समान है। ऑब्जर्वेबल H पर स्व-आसन्न (अर्थात हर्मिटियन ऑपरेटर) ऑपरेटर A द्वारा दर्शाया गया है। यदि H परिमित आयामी है, वर्णक्रमीय प्रमेय द्वारा, A में आइगेनवेक्टर का ऑर्थोनॉर्मल आधार है। यदि प्रणाली ψ स्थिति में है, तो A का आइगेनवेक्टर e है और प्रेक्षित मान λ समीकरण A e = λ e का समान आइगेन मान है। सामान्य रूप से मापन गैर-नियतात्मक है। इसके अतिरिक्त, क्वांटम यांत्रिकी, प्रारंभिक प्रणाली की स्थिति ψ दिए जाने पर संभावित परिणामों पर प्रायिकता वितरण पीआर की गणना के लिए साधन देता है।
उदाहरण
इस उदाहरण में, हम स्पिन 1/2 कण (जैसे इलेक्ट्रॉन) पर विचार करते हैं जिसमें हम मात्र स्पिन की स्वतंत्रत डिग्री पर विचार करते हैं। संबंधित हिल्बर्ट स्पेस द्वि-आयामी जटिल हिल्बर्ट स्पेस C2 है, जिसमें प्रत्येक क्वांटम स्थिति C2 में इकाई वेक्टर के अनुरूप है। इस स्तिथि में, अवस्था स्थान को ज्यामितीय रूप से गोले की सतह के रूप में दर्शाया जा सकता है, जैसा कि दाईं ओर की आकृति में प्रदर्शित है।
पाउली मेट्रिसेस के सभी आइगेन मान +1, -1 हैं।
- σ1 के लिए, ये आइगेन मान आइगेनवेक्टर के अनुरूप हैं
- σ3 के लिए, ये आइगेनवेक्टर के अनुरूप हैं
ऐसे में
उपरोक्त अनिश्चितता अभिकथन के सम्बन्ध में विभिन्न प्रश्न पूछे जा सकते हैं-
- क्या स्पष्ट अनिश्चितता को वास्तव में नियतात्मक के रूप में समझा जा सकता है, किन्तु वर्तमान सिद्धांत में प्रतिरूपित मात्राओं पर निर्भर नहीं है, जो इसलिए अपूर्ण होगा? क्या ऐसे अदृश्य चर हैं जो वास्तविक रूप से सांख्यिकीय अनिश्चितता के लिए उत्तरदायी हो सकते हैं?
- क्या मापी जा रही प्रणाली की अव्यवस्था के रूप में अनिश्चितता को समझा जा सकता है?
वॉन न्यूमैन ने प्रश्न 1 प्रस्तुत किया और कारण दिया कि उत्तर क्यों नहीं होना चाहिए, यदि कोई उस औपचारिकता को स्वीकार करता है जिसका वह प्रस्ताव कर रहा था। चूँकि, बेल के अनुसार, वॉन न्यूमैन के औपचारिक प्रमाण ने उनके अनौपचारिक निष्कर्ष को उचित नहीं बताया है।[2] नकारात्मक उत्तर प्रयोग द्वारा बेल की असमानताओं का उल्लंघन किया जाता है क्यूँकि, ऐसा कोई भी अदृश्य चर स्थानीय नहीं हो सकता है (बेल परीक्षण प्रयोग देखें)।
प्रश्न 2 का उत्तर) इस बात पर निर्भर करता है कि विक्षोभ किस प्रकार ज्ञात किया जाता है, विशेष रूप से चूँकि माप में विक्षोभ होता है (चूँकि ध्यान दें कि यह प्रेक्षक प्रभाव (भौतिकी) है, जो अनिश्चितता सिद्धांत से भिन्न है)। तब भी, उत्तर स्वाभाविक नहीं है। मापन के दो अनुक्रमों पर विचार करें: (ए) जो विशेष रूप से σ1 को मापता है और (बी) जो ψ में स्पिन प्रणाली के σ3 को मापता है। (ए) के माप परिणाम +1 हैं, जबकि माप (बी) के सांख्यिकीय वितरण को अभी भी समान संभावना के साथ +1, -1 के मध्य विभाजित किया गया है।
अनिश्चितता के अन्य उदाहरण
क्वांटम अनिश्चितता को निश्चित रूप से मापी गई गति के साथ कण के रूप में भी चित्रित किया जा सकता है, जिसके लिए मूलभूत सीमा होनी चाहिए कि इसका स्थान कितना त्रुटिहीन निर्दिष्ट किया जा सकता है। यह क्वांटम अनिश्चितता सिद्धांत अन्य चर के संदर्भ में व्यक्त किया जा सकता है, उदाहरण के लिए, निश्चित रूप से मापी गई ऊर्जा वाले कण की मूलभूत सीमा होती है कि कोई कितना त्रुटिहीन निर्दिष्ट कर सकता है कि ऊर्जा कितनी देर तक रहेगी।
क्वांटम अनिश्चितता में सम्मिलित इकाइयां प्लैंक स्थिरांक के क्रम में होती हैं ( 6.62607015×10−34 J⋅Hz−1[3] में परिभाषित किया गया है)|
अनिश्चितता और अपूर्णता
क्वांटम अनिश्चितता का अभिकथन है कि प्रणाली की स्थिति मापनीय गुणों के लिए मानों का अनूठा संग्रह निर्धारित नहीं करती है। कोचेन-स्पेकर प्रमेय के अनुसार, क्वांटम यांत्रिक औपचारिकता में यह असंभव है कि, क्वान्टम दशा के लिए, इनमें से प्रत्येक औसत गुण (अवलोकन) निश्चित (तीव्र) मान है। अवलोकित मान गैर-नियतात्मक रूप से संभाव्यता वितरण के अनुसार प्राप्त किए जा सकते जो विशिष्ट रूप से प्रणाली स्थिति द्वारा निर्धारित किया जाता है। अवस्था माप से नष्ट हो जाती है, इसलिए जब हम मूल्यों के संग्रह का संदर्भ देते हैं, तो इस संग्रह में प्रत्येक मान अवस्था का उपयोग करके प्राप्त किया जाना चाहिए।
भौतिक प्रणाली के विवरण में अनिश्चितता को आवश्यक अपूर्णता के रूप में माना जा सकता है। चूँकि, जैसा कि उपरोक्त वर्णन किया गया है, अनिश्चितता केवल माप के मानों पर प्रस्तावित होती है, क्वांटम स्थिति पर प्रस्तावित नहीं होती है। उपरोक्त स्पिन 1/2 उदाहरण में, प्रणाली को ψ स्थिति में फिल्टर के रूप में σ1 के माप का उपयोग करके प्रस्तुत किया जा सकता है जो केवल उन कणों को रखता है जैसे कि σ1 से +1 प्राप्त होता है। वॉन न्यूमैन (तथाकथित) के अनुसार, माप के उपरांत प्रणाली निश्चित रूप से अवस्था ψ में है।
चूँकि, आइंस्टीन का विचार था कि क्वांटम दशा भौतिक प्रणाली का पूर्ण विवरण नहीं हो सकता है। वास्तव में, आइंस्टीन, बोरिस पोडॉल्स्की और नाथन रोसेन ने प्रदर्शित किया कि यदि क्वांटम यांत्रिकी उचित है, तो वास्तविक दुनिया किस प्रकार कार्य करती है (कम से कम विशेष सापेक्षता के पश्चात् ) यह दृष्टिकोण मान्य नहीं है। इस सम्बन्ध में निम्नलिखित दो विचार सम्मिलित थे-
- भौतिक प्रणाली के मापनीय गुणों का अनुमान निश्चितता के साथ लगाया जा सकता है जो वास्तविकता का तत्व है (यह ईपीआर विरोधाभास द्वारा उपयोगी शब्दावली थी)।
- स्थानीय क्रियाओं के प्रभाव में परिमित प्रसार गति होती है।
शास्त्रीय दृष्टिकोण की विफलता ईपीआर विचार प्रयोग के निष्कर्ष में थी जिसमें दो दूर स्थित पर्यवेक्षक, जिन्हें सामान्यतः ऐलिस और बॉब के रूप में संदर्भित किया जाता है, जो इलेक्ट्रॉन युग्मक पर स्पिन के स्वतंत्र माप का प्रदर्शन करते हैं। इस अवस्था को स्पिन सिंग्लेट अवस्था कहा जाता है। यह क्वांटम सिद्धांत के औपचारिक उपकरण का उपयोग करते हुए ईपीआर का निष्कर्ष था, कि ऐलिस ने x दिशा में स्पिन को मापा, x दिशा में बॉब का माप निश्चित रूप से निर्धारित किया गया था, जबकि ऐलिस के माप से पूर्व बॉब का परिणाम केवल सांख्यिकीय रूप से निर्धारित किया गया था। इससे यह ज्ञात होता है कि या तो x दिशा में स्पिन का मान वास्तविकता का तत्व नहीं है या ऐलिस के माप के प्रभाव में प्रसार की अनंत गति है।
मिश्रित अवस्थाओं के लिए अनिश्चितता
हमने क्वांटम प्रणाली के लिए अनिश्चितता का वर्णन किया है जो शुद्ध अवस्था में है। मिश्रित अवस्था (भौतिकी) शुद्ध अवस्थाओं के सांख्यिकीय मिश्रण द्वारा प्राप्त सामान्य प्रकार की अवस्था है। मिश्रित अवस्थाओं के लिए
किसी मापन के प्रायिकता बंटन को निर्धारित करने के लिए क्वांटम सूत्र का निर्धारण इस प्रकार किया जाता है,
माना, A क्वांटम मैकेनिकल प्रणाली का अवलोकनीय है। A, H पर सघन रूप से परिभाषित स्व-आसन्न संकारक द्वारा दिया गया है। A का वर्णक्रमीय माप स्थिति द्वारा परिभाषित प्रक्षेपण-महत्वपूर्ण साधन है|
'R' के प्रत्येक बोरेल उपसमुच्चय U के लिए हैं। मिश्रित अवस्था S को देखते हुए, हम S के अंतर्गत A का वितरण इस प्रकार प्रस्तुत करते हैं-
यह R के बोरेल उपसमुच्चय पर परिभाषित प्रायिकता माप है जो S में A को माप कर प्राप्त किया गया प्रायिकता वितरण है।
तार्किक स्वतंत्रता और क्वांटम यादृच्छिकता
क्वांटम अनिश्चितता को अधिकांशतः सूचना के रूप में अध्यन्न किया जाता है, जिसके अस्तित्व का हम अनुमान लगाते हैं कि माप से पूर्व व्यक्तिगत क्वांटम प्रणाली में होता है। क्वांटम यादृच्छिकता उस अनिश्चितता की सांख्यिकीय अभिव्यक्ति है, जिसे विभिन्न प्रयोगों के परिणामों में अवलोकित किया जा सकता है। चूँकि, क्वांटम अनिश्चितता और यादृच्छिकता के मध्य सूक्ष्म संबंध होता है और इसपर भिन्न रूप से विचार किया जा सकता है।[4]
भौतिकी में, संयोग के प्रयोग, जैसे सिक्का उछालना और पासा फेंकना, नियतात्मक हैं, प्रारंभिक स्थितियों का उचित ज्ञान परिणामों को पूर्ण रूप से अनुमानित करेगा। प्रारंभिक टॉस या थ्रो में भौतिक जानकारी की अज्ञानता से 'यादृच्छिकता' उत्पन्न होती है। वास्तविक विषमता में, क्वांटम भौतिकी की स्तिथि में, कोचेन और स्पेकर के प्रमेय,[5] जॉन बेल की असमानताएं,[6] और एलेन पहलू के प्रायोगिक साक्ष्य,[7][8] सभी निर्देशित करते हैं कि क्वांटम यादृच्छिकता ऐसे किसी भी भौतिक ज्ञान से उत्पन्न नहीं होती है।
2008 में, टोमाज़ पटेरेक एट अल ने गणितीय ज्ञान में स्पष्टीकरण प्रदान किया था। उन्होंने सिद्ध किया कि क्वांटम यादृच्छिकता, विशेष रूप से, माप प्रयोगों का आउटपुट है, जिनकी इनपुट सेटिंग्स क्वांटम प्रणाली में स्वतंत्रता (गणितीय तर्क) का परिचय देती हैं।[9][10]
गणितीय नियम में लॉजिकल स्वतंत्रता प्रसिद्ध घटना है। यह शून्य लॉजिकल कनेक्टिविटी को संदर्भित करता है जो गणितीय प्रस्तावों (उसी भाषा में) के मध्य उपस्थित है जो न तो एक दूसरे को सिद्ध करते हैं और न ही अप्रमाणित करते हैं।[11]
पैटेरेक एट अल के कार्य में, शोधकर्ता बूलियन प्रस्तावों की औपचारिक प्रणाली में क्वांटम यादृच्छिकता और लॉजिकल स्वतंत्रता को जोड़ने वाले लिंक को प्रदर्शित करते हैं। फोटॉन ध्रुवीकरण को मापने वाले प्रयोगों में, पैटेरेक एट अल ने लॉजिकल रूप से निर्भर गणितीय प्रस्तावों के साथ पूर्वानुमेय परिणामों और तार्किक रूप से स्वतंत्र प्रस्तावों के साथ यादृच्छिक परिणामों के संबंध में आंकड़े प्रदर्शित करें।[12][13]
2020 में, स्टीव फॉल्कनर ने टॉमाज़ पाटेरेक एट अल के निष्कर्षों पर काम करने की सूचना दी; मैट्रिक्स यांत्रिकी के उचित क्षेत्र में, पैट्रेक बूलियन प्रस्तावों में तार्किक स्वतंत्रता का क्या अर्थ है, यह दिखा रहा है। उन्होंने प्रदर्शित किया कि मिश्रित अवस्थाों का प्रतिनिधित्व करने वाले विकसित घनत्व संचालकों में अनिश्चितता कैसे उत्पन्न होती है, जहाँ माप प्रक्रियाएं अपरिवर्तनीय 'विलुप्त इतिहास' और अस्पष्टता के अंतर्ग्रहण का सामना करती हैं।[14]
यह भी देखें
- अनिश्चित सिद्धांत
- क्वांटम यांत्रिकी
- क्वांटम जटिलता
- पूरकता (भौतिकी)
- क्वांटम यांत्रिकी की व्याख्या: तुलना
- क्वांटम माप
- क्वांटम प्रासंगिकता
- प्रतितथ्यात्मक निश्चितता
- ईपीआर विरोधाभास
टिप्पणियाँ
- ↑ V. Braginski and F. Khalili, Quantum Measurements, Cambridge University Press, 1992.
- ↑ J.S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, 2004, pg. 5.
- ↑ "2018 CODATA Value: Planck constant". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2021-04-28.
- ↑ Gregg Jaeger, "Quantum randomness and unpredictability" Philosophical Transactions of the Royal Society of London A doi/10.1002/prop.201600053 (2016)|Online=http://onlinelibrary.wiley.com/doi/10.1002/prop.201600053/epdf PDF
- ↑ S Kochen and E P Specker, The problem of hidden variables in quantum mechanics, Journal of Mathematics and Mechanics 17 (1967), 59–87.
- ↑ John Bell, On the Einstein Podolsky Rosen paradox, Physics 1 (1964), 195–200.
- ↑ Alain Aspect, Jean Dalibard, and Gérard Roger, Experimental test of Bell’s inequalities using time-varying analyzers, Physical Revue Letters 49 (1982), no. 25, 1804–1807.
- ↑ Alain Aspect, Philippe Grangier, and Gérard Roger, Experimental realization of Einstein–Podolsky–Rosen–Bohm gedankenexperiment: A new violation of Bell’s inequalities, Physical Review Letters 49 (1982), no. 2, 91–94.
- ↑ Tomasz Paterek, Johannes Kofler, Robert Prevedel, Peter Klimek, Markus Aspelmeyer, Anton Zeilinger, and Caslav Brukner, "Logical independence and quantum randomness", New Journal of Physics 12 (2010), no. 013019, 1367–2630.
- ↑ Tomasz Paterek, Johannes Kofler, Robert Prevedel, Peter Klimek, Markus Aspelmeyer, Anton Zeilinger, and Caslav Brukner, "Logical independence and quantum randomness — with experimental data", https://arxiv.org/pdf/0811.4542.pdf (2010).
- ↑ Edward Russell Stabler, An introduction to mathematical thought, Addison-Wesley Publishing Company Inc., Reading Massachusetts USA, 1948.
- ↑ Tomasz Paterek, Johannes Kofler, Robert Prevedel, Peter Klimek, Markus Aspelmeyer, Anton Zeilinger, and Caslav Brukner, "Logical independence and quantum randomness", New Journal of Physics 12 (2010), no. 013019, 1367–2630.
- ↑ Tomasz Paterek, Johannes Kofler, Robert Prevedel, Peter Klimek, Markus Aspelmeyer, Anton Zeilinger, and Caslav Brukner, "Logical independence and quantum randomness — with experimental data", https://arxiv.org/pdf/0811.4542.pdf (2010).
- ↑ Steve Faulkner, The Underlying Machinery of Quantum Indeterminacy (2020). [1]
संदर्भ
- A. Aspect, Bell's inequality test: more ideal than ever, Nature 398 189 (1999). [2]
- G. Bergmann, The Logic of Quanta, American Journal of Physics, 1947. Reprinted in Readings in the Philosophy of Science, Ed. H. Feigl and M. Brodbeck, Appleton-Century-Crofts, 1953. Discusses measurement, accuracy and determinism.
- J.S. Bell, On the Einstein–Poldolsky–Rosen paradox, Physics 1 195 (1964).
- A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47 777 (1935). [3] Archived 2006-02-08 at the Wayback Machine
- G. Mackey, Mathematical Foundations of Quantum Mechanics, W. A. Benjamin, 1963 (paperback reprint by Dover 2004).
- J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, 1955. Reprinted in paperback form. Originally published in German in 1932.
- R. Omnès, Understanding Quantum Mechanics, Princeton University Press, 1999.
बाहरी संबंध
- Common Misconceptions Regarding Quantum Mechanics See especially part III "Misconceptions regarding measurement".