टेंसर (आंतरिक परिभाषा)
गणित में, टेन्सर के सिद्धांत का आधुनिक घटक-मुक्त दृष्टिकोण टेन्सर को अमूर्त वस्तु के रूप में देखता है, जो कुछ निश्चित प्रकार की मल्टीलाइनर_मैप अवधारणा को व्यक्त करता है। उनके गुण उनकी परिभाषाओं से प्राप्त किए जा सकते हैं, जैसे रैखिक मानचित्र या अधिक सामान्यतः; और टेंसर के हेरफेर के नियम रैखिक बीजगणित से बहुरेखीय बीजगणित के विस्तार के रूप में उत्पन्न होते हैं।
विभेदक ज्यामिति में, आंतरिक ज्यामितीय कथन को कई गुना पर [[टेन्सर फ़ील्ड]] द्वारा वर्णित किया जा सकता है, और फिर निर्देशांक का संदर्भ देने की बिल्कुल भी आवश्यकता नहीं होती है। भौतिक संपत्ति का वर्णन करने वाले टेंसर फ़ील्ड के सामान्य सापेक्षता में भी यही सच है। घटक-मुक्त दृष्टिकोण का उपयोग अमूर्त बीजगणित और होमोलॉजिकल बीजगणित में भी बड़े पैमाने पर किया जाता है, जहां टेंसर स्वाभाविक रूप से उत्पन्न होते हैं।
- नोट: यह लेख चुने गए आधार (रैखिक बीजगणित) के बिना वेक्टर रिक्त स्थान के टेंसर उत्पाद की समझ मानता है। विषय का अवलोकन मुख्य टेंसर लेख में पाया जा सकता है।
वेक्टर स्थानों के टेंसर उत्पादों के माध्यम से परिभाषा
एक परिमित समुच्चय दिया गया है { V1, ..., Vn } सामान्य फ़ील्ड (गणित) एफ पर वेक्टर रिक्त स्थान का, कोई अपना टेन्सर उत्पाद बना सकता है#वेक्टर रिक्त स्थान का टेन्सर उत्पाद V1 ⊗ ... ⊗ Vn, जिसके तत्व को टेंसर कहा जाता है।
वेक्टर स्पेस V पर टेंसर को तब फॉर्म के वेक्टर स्पेस के तत्व (यानी, वेक्टर इन) के रूप में परिभाषित किया जाता है:
जहां वी∗V का दोहरा स्थान है।
यदि V की m प्रतियाँ और V की n प्रतियाँ हैं∗हमारे उत्पाद में, टेंसर को कहा जाता हैtype (m, n) और क्रम एम के प्रतिपरिवर्ती और क्रम एन के सहसंयोजक और कुल टेंसर ऑर्डर के m + n. क्रम शून्य के टेंसर केवल अदिश (क्षेत्र F के तत्व) हैं, विपरीत क्रम 1 वाले टेंसर V में सदिश हैं, और सहसंयोजक क्रम 1 वाले टेंसर V में रैखिक कार्यात्मक|एक-रूप हैं∗ (इस कारण से, अंतिम दो स्थानों के तत्वों को अक्सर कॉन्ट्रावेरिएंट और सहसंयोजक वैक्टर कहा जाता है)। प्रकार के सभी टेंसरों का स्थान (m, n) दर्शाया गया है
उदाहरण 1. प्रकार का स्थान (1, 1) टेंसर, वी से वी तक रैखिक परिवर्तनों के स्थान के लिए प्राकृतिक तरीके से आइसोमोर्फिक है।
'उदाहरण 2.' वास्तविक सदिश समष्टि V पर द्विरेखीय रूप, प्रकार से प्राकृतिक तरीके से मेल खाता है (0, 2) टेंसर इन ऐसे द्विरेखीय रूप का उदाहरण परिभाषित किया जा सकता है,संबंधित मीट्रिक टेंसर कहा जाता है, और आमतौर पर इसे जी दर्शाया जाता है।
टेंसर रैंक
एक साधारण टेंसर (जिसे रैंक का टेंसर, प्राथमिक टेंसर या डीकंपोजेबल टेंसर भी कहा जाता है) (Hackbusch 2012, pp. 4)) टेंसर है जिसे फॉर्म के टेंसर के उत्पाद के रूप में लिखा जा सकता है
जहां ए, बी, ..., डी शून्येतर हैं और वी या वी में हैं∗ - अर्थात, यदि टेंसर शून्येतर और पूरी तरह से गुणनखंडन है। प्रत्येक टेंसर को सरल टेंसर के योग के रूप में व्यक्त किया जा सकता है। टेन्सर T की रैंक सरल टेन्सर की न्यूनतम संख्या है जिसका योग T होता है (Bourbaki 1989, II, §7, no. 8).
शून्य टेंसर की रैंक शून्य होती है। गैर-शून्य क्रम 0 या 1 टेंसर की रैंक हमेशा 1 होती है। गैर-शून्य क्रम 2 या उच्चतर टेंसर की रैंक उच्चतम-आयाम वाले वैक्टर को छोड़कर सभी के आयामों के उत्पाद से कम या उसके बराबर होती है (उत्पादों का योग) ) जिससे टेंसर को व्यक्त किया जा सकता है, जो कि d हैn−1 जब प्रत्येक उत्पाद आयाम d के परिमित-आयामी वेक्टर स्थान से n वैक्टर का होता है।
टेंसर की रैंक शब्द रैखिक बीजगणित में मैट्रिक्स की रैंक की धारणा को विस्तारित करता है, हालांकि इस शब्द का उपयोग अक्सर टेंसर के क्रम (या डिग्री) के अर्थ के लिए भी किया जाता है। मैट्रिक्स की रैंक पंक्ति और कॉलम रिक्त स्थान को फैलाने के लिए आवश्यक कॉलम वैक्टर की न्यूनतम संख्या है। इस प्रकार मैट्रिक्स की रैंक होती है यदि इसे दो गैर-शून्य वैक्टरों के बाहरी उत्पाद के रूप में लिखा जा सकता है:
मैट्रिक्स ए की रैंक ऐसे बाहरी उत्पादों की सबसे छोटी संख्या है जिसे इसे उत्पन्न करने के लिए जोड़ा जा सकता है:
सूचकांकों में, रैंक 1 का टेंसर फॉर्म का टेंसर होता है
क्रम 2 के टेंसर की रैंक रैंक से सहमत होती है जब टेंसर को मैट्रिक्स (गणित) के रूप में माना जाता है (Halmos 1974, §51), और उदाहरण के लिए गाऊसी उन्मूलन से निर्धारित किया जा सकता है। हालाँकि ऑर्डर 3 या उच्चतर टेंसर की रैंक निर्धारित करना अक्सर बहुत कठिन होता है, और टेंसर की निम्न रैंक का अपघटन कभी-कभी बहुत व्यावहारिक रुचि का होता है (de Groote 1987). मैट्रिक्स के कुशल गुणन और बहुपदों के कुशल मूल्यांकन जैसे कम्प्यूटेशनल कार्यों को साथ द्विरेखीय रूपों के सेट के मूल्यांकन की समस्या के रूप में पुनर्गठित किया जा सकता है।
दिए गए इनपुट के लिए xiऔर यj. यदि टेंसर टी का निम्न-रैंक अपघटन ज्ञात है, तो कुशल मूल्यांकन रणनीति ज्ञात है (Knuth 1998, pp. 506–508).
सार्वभौमिक संपत्ति
अंतरिक्ष बहुरेखीय मानचित्रण के संदर्भ में इसे सार्वभौमिक संपत्ति द्वारा चित्रित किया जा सकता है। इस दृष्टिकोण के फायदों में से यह है कि यह यह दिखाने का तरीका देता है कि कई रैखिक मानचित्रण प्राकृतिक या ज्यामितीय हैं (दूसरे शब्दों में आधार की किसी भी पसंद से स्वतंत्र हैं)। स्पष्ट कम्प्यूटेशनल जानकारी को फिर आधारों का उपयोग करके लिखा जा सकता है, और प्राथमिकताओं का यह क्रम प्राकृतिक मानचित्रण को जन्म देने वाले सूत्र को साबित करने से अधिक सुविधाजनक हो सकता है। दूसरा पहलू यह है कि टेंसर उत्पादों का उपयोग केवल मुफ़्त मॉड्यूल के लिए नहीं किया जाता है, और सार्वभौमिक दृष्टिकोण अधिक सामान्य स्थितियों में अधिक आसानी से लागू होता है।
वेक्टर रिक्त स्थान के कार्टेशियन उत्पाद (या मॉड्यूल का प्रत्यक्ष योग) पर स्केलर-मूल्यवान फ़ंक्शन
यदि यह प्रत्येक तर्क में रैखिक है तो बहुरेखीय है। से सभी बहुरेखीय मानचित्रणों का स्थान V1 × ... × VN से W को L दर्शाया गया हैएन(बी1, ..., मेंN; डब्ल्यू). जब N = 1, बहुरेखीय मानचित्रण केवल साधारण रैखिक मानचित्रण होता है, और V से W तक सभी रैखिक मानचित्रणों का स्थान दर्शाया जाता है L(V; W).
टेंसर उत्पाद#यूनिवर्सल प्रॉपर्टी का तात्पर्य यह है कि, प्रत्येक बहुरेखीय फ़ंक्शन के लिए
(कहाँ अदिश क्षेत्र, सदिश समष्टि, या टेंसर समष्टि का प्रतिनिधित्व कर सकता है) अद्वितीय रैखिक फ़ंक्शन मौजूद है
ऐसा है कि
सभी के लिए और सार्वभौमिक संपत्ति का उपयोग करते हुए, यह निम्नानुसार है कि (m,n)-टेंसर्स का स्थान प्राकृतिक समरूपता को स्वीकार करता है
टेंसर की परिभाषा में प्रत्येक V V से मेल खाता है*रेखीय मानचित्रों के तर्क के अंदर, और इसके विपरीत। (ध्यान दें कि पहले मामले में, V की m प्रतियां और V की n प्रतियां हैं*, और बाद वाले मामले में इसके विपरीत)। विशेष रूप से, के पास है
टेन्सर फ़ील्ड
डिफरेंशियल ज्योमेट्री, भौतिक विज्ञान और अभियांत्रिकी को अक्सर चिकनी कई गुना ्स पर टेंसर फील्ड से निपटना चाहिए। टेन्सर शब्द का प्रयोग कभी-कभी टेन्सर क्षेत्र के लिए आशुलिपि के रूप में किया जाता है। टेंसर फ़ील्ड टेंसर की अवधारणा को व्यक्त करता है जो मैनिफोल्ड पर बिंदु से दूसरे बिंदु पर भिन्न होता है।
संदर्भ
- Abraham, Ralph; Marsden, Jerrold E. (1985), Foundations of Mechanics (2 ed.), Reading, Mass.: Addison-Wesley, ISBN 0-201-40840-6.
- Bourbaki, Nicolas (1989), Elements of Mathematics, Algebra I, Springer-Verlag, ISBN 3-540-64243-9.
- de Groote, H. F. (1987), Lectures on the Complexity of Bilinear Problems, Lecture Notes in Computer Science, vol. 245, Springer, ISBN 3-540-17205-X.
- Halmos, Paul (1974), Finite-dimensional Vector Spaces, Springer, ISBN 0-387-90093-4.
- Jeevanjee, Nadir (2011), "An Introduction to Tensors and Group Theory for Physicists", Physics Today, 65 (4): 64, Bibcode:2012PhT....65d..64P, doi:10.1063/PT.3.1523, ISBN 978-0-8176-4714-8
- Knuth, Donald E. (1998) [1969], The Art of Computer Programming vol. 2 (3rd ed.), pp. 145–146, ISBN 978-0-201-89684-8.
- Hackbusch, Wolfgang (2012), Tensor Spaces and Numerical Tensor Calculus, Springer, p. 4, ISBN 978-3-642-28027-6.