टेंसर (आंतरिक परिभाषा)
गणित में, टेन्सर के सिद्धांत का आधुनिक घटक-मुक्त दृष्टिकोण टेन्सर को एक ऐसे संक्षेप वस्तु के रूप में देखता है, जो कुछ निश्चित प्रकार की बहुरेखीय प्रतिचित्रण अवधारणा को व्यक्त करता है। उनके गुण उनकी परिभाषाओं से प्राप्त किए जा सकते हैं, जैसे रैखिक प्रतिचित्र या अधिक सामान्यतः; और टेंसर के अन्तःक्षेप के नियम रैखिक बीजगणित से बहुरेखीय बीजगणित के विस्तार के रूप में उत्पन्न होते हैं।
विभेदक ज्यामिति में, आंतरिक ज्यामितीय कथन को मैनिफोल्ड पर टेन्सर क्षेत्र द्वारा वर्णित किया जा सकता है, और फिर निर्देशांक का संदर्भ देने की निश्चित ही आवश्यकता नहीं होती है। भौतिक गुण का वर्णन करने वाले टेंसर क्षेत्र के सामान्य सापेक्षता में भी यही सत्य है। घटक-मुक्त दृष्टिकोण का उपयोग संक्षेप बीजगणित और अनुरूप बीजगणित में भी बड़े पैमाने पर किया जाता है, जहां टेंसर स्वाभाविक रूप से उत्पन्न होते हैं।
- नोट: यह लेख चुने गए आधार (रैखिक बीजगणित) के बिना सदिश रिक्त समष्टि के टेंसर उत्पाद की समझ मानता है। विषय का अवलोकन मुख्य टेंसर लेख में पाया जा सकता है।
सदिश समष्टि के टेंसर उत्पादों के माध्यम से परिभाषा
एक सामान्य क्षेत्र (गणित) F पर सदिश समष्टि के एक परिमित समुच्चय { V1, ..., Vn } को देखते हुए, कोई अपना टेंसर उत्पाद V1 ⊗ ... ⊗ Vn, बना सकता है, जिसके एक अवयव को टेंसर कहा जाता है।
सदिश समष्टि V पर एक टेंसर को तब रूप के सदिश समष्टि के एक अवयव (अर्थात, एक सदिश) के रूप में परिभाषित किया जाता है:
जहां V∗V की दोहरी समष्टि है।
यदि हमारे उत्पाद में V की m प्रतियां और V∗ की n प्रतियां हैं, तो टेंसर को प्रकार (m, n) और क्रम m के प्रतिपरिवर्ती और क्रम n के सहसंयोजक और कुल टेंसर क्रम m + n का कहा जाता है। क्रम शून्य के टेंसर मात्र अदिश (क्षेत्र F के अवयव) हैं, विपरीत क्रम 1 वाले टेंसर V में सदिश हैं, और सहसंवर्ती क्रम 1 वाले टेंसर V∗ में रैखिक कार्यात्मक हैं (इस कारण से, अंतिम दो स्थानों के अवयवों को प्रायः प्रतिपरिवर्ती और सहसंयोजक सदिश कहा जाता है)। प्रकार (m, n) के सभी टेंसरों की समष्टि
- दर्शाया गया है।
उदाहरण 1. प्रकार (1, 1) टेंसर, की समष्टि, V से V तक रैखिक परिवर्तनों के समष्टि के लिए प्राकृतिक विधि से समरूपी है।
'उदाहरण 2.' वास्तविक सदिश समष्टि V, पर एक द्विरेखीय रूप, में एक प्रकार (0, 2) टेंसर से प्राकृतिक विधि से मेल खाता है। ऐसे द्विरेखीय रूप का एक उदाहरण परिभाषित किया जा सकता है, जिसे संबंधित मापीय टेंसर कहा जाता है, और सामान्यतः इसे g से दर्शाया जाता है।
टेंसर पद
एक साधारण टेंसर (जिसे पद का टेंसर, प्राथमिक टेंसर या डीकंपोजेबल टेंसर भी कहा जाता है) (Hackbusch 2012, pp. 4)) टेंसर है जिसे रूप के टेंसर के उत्पाद के रूप में लिखा जा सकता है
जहां ए, बी, ..., डी शून्येतर हैं और V या V में हैं∗ - अर्थात, यदि टेंसर शून्येतर और पूरी तरह से गुणनखंडन है। प्रत्येक टेंसर को सरल टेंसर के योग के रूप में व्यक्त किया जा सकता है। टेन्सर T की पद सरल टेन्सर की न्यूनतम संख्या है जिसका योग T होता है (Bourbaki 1989, II, §7, no. 8).
शून्य टेंसर की पद शून्य होती है। गैर-शून्य क्रम 0 या 1 टेंसर की पद हमेशा 1 होती है। गैर-शून्य क्रम 2 या उच्चतर टेंसर की पद उच्चतम-आयाम वाले सदिश को छोड़कर सभी के आयामों के उत्पाद से कम या उसके बराबर होती है (उत्पादों का योग) ) जिससे टेंसर को व्यक्त किया जा सकता है, जो कि d हैn−1 जब प्रत्येक उत्पाद आयाम d के परिमित-आयामी सदिश समष्टि से n सदिश का होता है।
टेंसर की पद शब्द रैखिक बीजगणित में मैट्रिक्स की पद की धारणा को विस्तारित करता है, हालांकि इस शब्द का उपयोग प्रायः टेंसर के क्रम (या डिग्री) के अर्थ के लिए भी किया जाता है। मैट्रिक्स की पद पंक्ति और कॉलम रिक्त समष्टि को फैलाने के लिए आवश्यक कॉलम सदिश की न्यूनतम संख्या है। इस प्रकार मैट्रिक्स की पद होती है यदि इसे दो गैर-शून्य सदिशों के बाहरी उत्पाद के रूप में लिखा जा सकता है:
मैट्रिक्स ए की पद ऐसे बाहरी उत्पादों की सबसे छोटी संख्या है जिसे इसे उत्पन्न करने के लिए जोड़ा जा सकता है:
सूचकांकों में, पद 1 का टेंसर रूप का टेंसर होता है
क्रम 2 के टेंसर की पद पद से सहमत होती है जब टेंसर को मैट्रिक्स (गणित) के रूप में माना जाता है (Halmos 1974, §51), और उदाहरण के लिए गाऊसी उन्मूलन से निर्धारित किया जा सकता है। हालाँकि क्रम 3 या उच्चतर टेंसर की पद निर्धारित करना प्रायः बहुत कठिन होता है, और टेंसर की निम्न पद का अपघटन कभी-कभी बहुत व्यावहारिक रुचि का होता है (de Groote 1987). मैट्रिक्स के कुशल गुणन और बहुपदों के कुशल मूल्यांकन जैसे कम्प्यूटेशनल कार्यों को साथ द्विरेखीय रूपों के समुच्चय के मूल्यांकन की समस्या के रूप में पुनर्गठित किया जा सकता है।
दिए गए इनपुट के लिए xiऔर यj. यदि टेंसर टी का निम्न-पद अपघटन ज्ञात है, तो कुशल मूल्यांकन रणनीति ज्ञात है (Knuth 1998, pp. 506–508).
सार्वभौमिक गुण
अंतरिक्ष बहुरेखीय प्रतिचित्रण के संदर्भ में इसे सार्वभौमिक गुण द्वारा चित्रित किया जा सकता है। इस दृष्टिकोण के फायदों में से यह है कि यह यह दिखाने का तरीका देता है कि कई रैखिक प्रतिचित्रण प्राकृतिक या ज्यामितीय हैं (दूसरे शब्दों में आधार की किसी भी पसंद से स्वतंत्र हैं)। स्पष्ट कम्प्यूटेशनल जानकारी को फिर आधारों का उपयोग करके लिखा जा सकता है, और प्राथमिकताओं का यह क्रम प्राकृतिक प्रतिचित्रण को जन्म देने वाले सूत्र को साबित करने से अधिक सुविधाजनक हो सकता है। दूसरा पहलू यह है कि टेंसर उत्पादों का उपयोग मात्र मुफ़्त मॉड्यूल के लिए नहीं किया जाता है, और सार्वभौमिक दृष्टिकोण अधिक सामान्य स्थितियों में अधिक आसानी से लागू होता है।
सदिश रिक्त समष्टि के कार्टेशियन उत्पाद (या मॉड्यूल का प्रत्यक्ष योग) पर स्केलर-मूल्यवान फ़ंक्शन
यदि यह प्रत्येक तर्क में रैखिक है तो बहुरेखीय है। से सभी बहुरेखीय प्रतिचित्रणों की समष्टि V1 × ... × VN से W को L दर्शाया गया हैएन(बी1, ..., मेंN; डब्ल्यू). जब N = 1, बहुरेखीय प्रतिचित्रण मात्र साधारण रैखिक प्रतिचित्रण होता है, और V से W तक सभी रैखिक प्रतिचित्रणों की समष्टि दर्शाया जाता है L(V; W).
टेंसर उत्पाद#यूनिवर्सल प्रॉपर्टी का तात्पर्य यह है कि, प्रत्येक बहुरेखीय फ़ंक्शन के लिए
(कहाँ अदिश क्षेत्र, सदिश समष्टि, या टेंसर समष्टि का प्रतिनिधित्व कर सकता है) अद्वितीय रैखिक फ़ंक्शन मौजूद है
ऐसा है कि
सभी के लिए और सार्वभौमिक गुण का उपयोग करते हुए, यह निम्नानुसार है कि (m,n)-टेंसर्स की समष्टि प्राकृतिक समरूपता को स्वीकार करता है
टेंसर की परिभाषा में प्रत्येक V V से मेल खाता है*रेखीय प्रतिचित्रों के तर्क के अंदर, और इसके विपरीत। (ध्यान दें कि पहले मामले में, V की m प्रतियां और V की n प्रतियां हैं*, और बाद वाले मामले में इसके विपरीत)। विशेष रूप से, के पास है
टेन्सर क्षेत्र
डिफरेंशियल ज्योमेट्री, भौतिक विज्ञान और अभियांत्रिकी को प्रायः चिकनी मैनिफोल्ड ्स पर टेंसर फील्ड से निपटना चाहिए। टेन्सर शब्द का प्रयोग कभी-कभी टेन्सर क्षेत्र के लिए आशुलिपि के रूप में किया जाता है। टेंसर क्षेत्र टेंसर की अवधारणा को व्यक्त करता है जो मैनिफोल्ड पर बिंदु से दूसरे बिंदु पर भिन्न होता है।
संदर्भ
- Abraham, Ralph; Marsden, Jerrold E. (1985), Foundations of Mechanics (2 ed.), Reading, Mass.: Addison-Wesley, ISBN 0-201-40840-6.
- Bourbaki, Nicolas (1989), Elements of Mathematics, Algebra I, Springer-Verlag, ISBN 3-540-64243-9.
- de Groote, H. F. (1987), Lectures on the Complexity of Bilinear Problems, Lecture Notes in Computer Science, vol. 245, Springer, ISBN 3-540-17205-X.
- Halmos, Paul (1974), Finite-dimensional Vector Spaces, Springer, ISBN 0-387-90093-4.
- Jeevanjee, Nadir (2011), "An Introduction to Tensors and Group Theory for Physicists", Physics Today, 65 (4): 64, Bibcode:2012PhT....65d..64P, doi:10.1063/PT.3.1523, ISBN 978-0-8176-4714-8
- Knuth, Donald E. (1998) [1969], The Art of Computer Programming vol. 2 (3rd ed.), pp. 145–146, ISBN 978-0-201-89684-8.
- Hackbusch, Wolfgang (2012), Tensor Spaces and Numerical Tensor Calculus, Springer, p. 4, ISBN 978-3-642-28027-6.