ग्लौबर-सुदर्शन पी प्रतिनिधित्व

From Vigyanwiki
Revision as of 02:24, 4 December 2023 by alpha>Akanksha

सुदर्शन-ग्लौबर पी प्रतिनिधित्व क्वांटम यांत्रिकी के चरण स्थान निर्माण में क्वांटम प्रणाली के चरण स्थान वितरण को लिखने की सुझायी गयी विधि है। पी प्रतिनिधित्व अर्धसंभाव्यता वितरण है जिसमें अवलोकनों को सामान्य क्रम में व्यक्त किया जाता है। क्वांटम प्रकाशिकी में, यह प्रतिनिधित्व, औपचारिक रूप से कई अन्य अभ्यावेदन के बराबर है,[1][2] कभी-कभी प्रकाशीय चरण स्थान में प्रकाश का वर्णन करने के लिए ऐसे वैकल्पिक अभ्यावेदन पर प्राथमिकता दी जाती है, क्योंकि विशिष्ट प्रकाशीय अवलोकन, जैसे कि कण संख्या ऑपरेटर, स्वाभाविक रूप से सामान्य क्रम में व्यक्त किए जाते हैं। इसका नाम जॉर्ज सुदर्शन के नाम पर रखा गया है[3] और रॉय जे. ग्लौबर,[4] जिन्होंने 1963 में इस विषय पर काम किया था।[5] लेज़र सिद्धांत और सुसंगतता सिद्धांत में कई उपयोगी अनुप्रयोगों के अतिरिक्त, सुदर्शन-ग्लौबर पी प्रतिनिधित्व की विशिष्टता यह है कि यह सदैव सकारात्मक नहीं होता है, और यह प्रामाणिक संभाव्यता फ़ंक्शन नहीं है।

दैव सकारात्मक नहीं होता है, और यह प्रामाणिक संभाव्यता फ़ंक्शन नहीं है। नहीं होता है, और यह प्रामाणिक संभाव्यता फ़ंक्शन नहीं है। संभाव्यता फ़ंक्शन नहीं है। नहीं होता है, और यह प्रामाणिक संभाव्यता फ़ंक्शन नहीं है।

परिभाषा

हम इस संपत्ति के साथ फ़ंक्शन का निर्माण करना चाहते हैं कि घनत्व मैट्रिक्स सुसंगत अवस्थाओं के आधार पर विकर्ण मैट्रिक्स है, अर्थात,

हम फ़ंक्शन का निर्माण भी इस तरह करना चाहते हैं कि सामान्य रूप से ऑर्डर किए गए ऑपरेटर का अपेक्षित मूल्य प्रकाशीय तुल्यता प्रमेय को संतुष्ट करे। इसका तात्पर्य यह है कि घनत्व मैट्रिक्स सामान्य-विरोधी क्रम में होना चाहिए जिससे हम घनत्व मैट्रिक्स को शक्ति श्रृंखला के रूप में व्यक्त कर सकें

पहचान ऑपरेटर सम्मिलित करना

हमने देखा कि

और इस प्रकार हम औपचारिक रूप से निर्दिष्ट करते हैं

किसी भी व्यावहारिक गणना के लिए P के लिए अधिक उपयोगी अभिन्न सूत्र आवश्यक हैं। विधि[6] विशेषता फ़ंक्शन (संभावना सिद्धांत) को परिभाषित करना है

और फिर फूरियर रूपांतरण लें

P के लिए एक और उपयोगी अभिन्न सूत्र है[7]

ध्यान दें कि ये दोनों अभिन्न सूत्र विशिष्ट प्रणालियों के लिए किसी भी सामान्य अर्थ में अभिसरण नहीं करते हैं। हम फॉक अवस्था में के मैट्रिक्स तत्वों का भी उपयोग कर सकते हैं। निम्नलिखित सूत्र से पता चलता है कि व्युत्क्रम (एकल मोड के लिए यहां दिया गया है) का उपयोग करके ऑपरेटर ऑर्डर की अपील किए बिना इस विकर्ण रूप में घनत्व मैट्रिक्स को लिखना सदैव संभव है[3]

जहाँ r और θ, α का आयाम और चरण हैं। यद्यपि यह इस संभावना का पूर्ण औपचारिक समाधान है, इसके लिए डिराक डेल्टा फ़ंक्शन के असीमित कई व्युत्पन्न की आवश्यकता होती है, जो किसी भी सामान्य वितरण (गणित) या टेम्पर्ड वितरण और फूरियर ट्रांसफॉर्म की पहुंच से कहीं परे है।

चर्चा

यदि क्वांटम प्रणाली में मौलिक एनालॉग है, उदा। सुसंगत अवस्था या थर्मल विकिरण, फिर P सामान्य संभाव्यता वितरण की तरह हर जगह गैर-नकारात्मक है। चूँकि, यदि क्वांटम प्रणाली का कोई मौलिक एनालॉग नहीं है, उदाहरण के लिए असंगत फॉक अवस्था या क्वांटम उलझी हुई प्रणाली है, तो P डिराक डेल्टा फ़ंक्शन की तुलना में कहीं न कहीं नकारात्मक या अधिक विलक्षण है। (वितरण द्वारा (गणित या वितरण के रूप में कार्य, डिराक डेल्टा फ़ंक्शन की तुलना में अधिक विलक्षण वितरण सदैव कहीं न कहीं नकारात्मक होते हैं।) ऐसी नकारात्मक संभावना या उच्च स्तर की विलक्षणता प्रतिनिधित्व में निहित विशेषता है और P के संबंध में ली गई अपेक्षा मूल्यों की सार्थकता को कम नहीं करती है। तथापि P सामान्य संभाव्यता वितरण की तरह व्यवहार करता है, चूँकि, स्थिति इतनी सरल नहीं है। मंडेल और वुल्फ के अनुसार: विभिन्न सुसंगत अवस्था परस्पर ऑर्थोगोनल नहीं हैं, तथापि वास्तविक संभाव्यता घनत्व फ़ंक्शन की तरह व्यवहार किया जाता है, यह परस्पर अनन्य अवस्थाओं की संभावनाओं का वर्णन नहीं करता है।[8]

उदाहरण

थर्मल विकिरण

फॉक आधार में सांख्यिकीय यांत्रिकी तर्कों से, तापमान T पर एक ब्लैक बॉडी के लिए वेववेक्टर k और ध्रुवीकरण स्थिति s के साथ एक मोड की औसत फोटॉन संख्या ज्ञात होती है

ब्लैक बॉडी का P} प्रतिनिधित्व है

दूसरे शब्दों में, ब्लैक बॉडी का प्रत्येक मोड सुसंगत अवस्थाओं के आधार पर सामान्य वितरण है। तब से P सकारात्मक एवं परिबद्ध है, यह प्रणाली मूलतः मौलिक है। यह वास्तव में अधिक उल्लेखनीय परिणाम है क्योंकि थर्मल संतुलन के लिए घनत्व मैट्रिक्स भी फॉक आधार पर विकर्ण है, किंतु फॉक अवस्था गैर-मौलिक हैं।

अत्यधिक विलक्षण उदाहरण

यहां तक ​​कि बहुत साधारण दिखने वाले अवस्था भी अत्यधिक गैर-मौलिक व्यवहार प्रदर्शित कर सकते हैं। दो सुसंगत अवस्थाओं के अध्यारोपण पर विचार करें

जहाँ c0 , c1 सामान्यीकरण बाधा के अधीन स्थिरांक हैं

ध्यान दें कि यह क्वबिट से अधिक अलग है क्योंकि और ऑर्थोगोनल नहीं हैं। चूँकि की गणना करना सरल है, हम P की गणना करने के लिए उपरोक्त मेहता सूत्र का उपयोग कर सकते हैं,