समूह क्रिया

From Vigyanwiki
Revision as of 14:21, 3 December 2022 by Indicwiki (talk | contribs) (13 revisions imported from alpha:समूह_क्रिया)
चक्रीय समूह C3 तीन शीर्षों के समूह पर 0°, 120° और 240° के घूर्णन से मिलकर बनता है।

एक अंतरिक्ष पर एक समूह क्रिया (गणित) अंतरिक्ष के गणित में, परिवर्तन (ज्यामिति) के समूह में दिए गए समूह (गणित) का एक समूह समरूपता है। इसी तरह, एक गणितीय संरचना पर एक समूह क्रिया संरचना के प्रकारस्वरूपण समूह में एक समूह का समूह समरूपता है। ऐसा कहा जाता है कि समूह अंतरिक्ष या संरचना पर 'कार्य' करता है। यदि कोई समूह किसी संरचना पर कार्य करता है, तो वह सामान्यतः उस संरचना से निर्मित वस्तुओं पर भी कार्य करेगा। उदाहरण के लिए, यूक्लिडियन आइसोमेट्री का समूह यूक्लिडियन अंतरिक्ष पर और उसमें खींची गई आकृतियों पर भी कार्य करता है। उदाहरण के लिए, यह सभी त्रिकोणों के समूह पर कार्य करता है। इसी तरह, बहुतल के समरूपता का समूह बहुतल के शीर्ष (ज्यामिति), किनारे (ज्यामिति) और फलक (ज्यामिति) पर कार्य करता है।

सदिश स्थान पर एक समूह क्रिया को समूह का प्रतिनिधित्व कहा जाता है। एक परिमित-आयामी सदिश अंतरिक्ष के मामले में, यह GL(n, K) के उपसमूहों के साथ कई समूहों की क्षेत्र K पर आयाम n के व्युत्क्रमणीय आव्यूहों का समूह की पहचान करने की अनुमति देता है , ।

सममित समूह Sn, सममित समूह Sn समूह के तत्वों की अनुमति देकर n तत्वों के साथ किसी भी समूह पर कार्य करता है यदि एक समुच्चय के सभी क्रमपरिवर्तनों का समूह औपचारिक रूप से समुच्चय पर निर्भर करता है, समूह क्रिया की अवधारणा किसी को एक समूह पर विचार करने की अनुमति देती है ताकि सभी समूहों के क्रमपरिवर्तन का अध्ययन समान प्रमुखता के साथ किया जा सके।

परिभाषा

बाएं समूह कार्रवाई

यदि G पहचान e तत्व वाला समूह है, और X एक समूह है, तब X पर G की (बाएं) समूह क्रिया α एक फलन है

जो निम्नलिखित दो स्वयंसिद्धों को संतुष्ट करता है:[1]

पहचान:
अनुरूपता:

( α(g, x) के साथ अधिकंशतः gx या gx तक छोटा कर दिया जाता है जब विचार की जा रही कार्रवाई संदर्भ से स्पष्ट हो):

पहचान:
अनुरूपता:

g के सभी G और h और x में सभी X के लिए.

कहा जाता है की समूह G,X (बाएं से) पर कार्य करता है। G की क्रिया के साथ एक समूह X को एक G (बाएं) समूह कहा जाता है।

इन दो अभिगृहीतों से यह निष्कर्ष निकलता है कि G किसी नियत g के लिए, X स्वयं का कार्य जो x से gx को मापता है, x एक आक्षेप है जिसमे व्युत्क्रम आक्षेप है जो g−1 के लिए संबंधित माप है . इसलिए, कोई समान रूप से X पर G की एक समूह क्रिया को G से एक समूह समरूपता के रूप में परिभाषित कर सकता है जो की X स्वयं के सभी आक्षेपों के सममित समूह Sym(X) में है।[2]

सही समूह कार्रवाई

इसी तरह, X पर G की सही समूह कार्रवाई पर एक फलन है

जो निम्नलिखित दो अभिगृहीतों को संतुष्ट करता है:[3]

पहचान:
अनुरूपता:

(α(x, g) अधिकंशतः xg या xg तक छोटा कर दिया जाता है जब विचार की जा रही क्रिया संदर्भ से स्पष्ट हो)

पहचान:
अनुरूपता

g के सभी G और h और x में सभी X.

बाएँ और दाएँ क्रियाओं के बीच का अंतर उस क्रम में है जिसमें एक उत्पाद gh, x पर कार्य करता है. बाईं क्रिया के लिए, h पहले कार्य करता है, उसके बाद g दूसरा। सही कार्रवाई के लिए, g पहले कार्य करता है, उसके बाद h दूसरा। सूत्र (gh)−1 = h−1g−1 के कारण, समूह के व्युत्क्रम संचालन के साथ रचना करके एक बाएं क्रिया का निर्माण एक सही क्रिया से किया जा सकता है। साथ ही, एक समूह की सही क्रिया G पर X पर इसके विपरीत समूह Gop पर X की बाईं क्रिया के रूप में माना जा सकता है.

इस प्रकार, समूह क्रियाओं के सामान्य गुणों को स्थापित करने के लिए, यह केवल बाईं क्रियाओं पर विचार करने के लिए पर्याप्त है। लेकिन, ऐसे मामले भी हैं जहां यह संभव नहीं है। उदाहरण के लिए, एक समूह का गुणन समूह पर ही बाएं क्रिया और दाएं क्रिया दोनों - क्रमशः बाईं ओर और दाईं ओर गुणन। को प्रेरित करता है

क्रियाओं के उल्लेखनीय गुण

मान ले कि एक समूह पर कार्य करने वाला समूह होने दे. तो क्रिया को विश्वसनीय या प्रभावी कहा जाता है। यदि सभी के लिए इसका अर्थ है. समान रूप से, से क्रिया के अनुरूप के द्विभाजनों के समूह के लिए रूपवाद अन्तःक्षेपण है।

क्रिया को नि: शुल्क (या अर्ध-नियमित या निश्चित-बिंदु मुक्त) कहा जाता है यदि कथन है कि कुछ के लिए पहले से ही इसका तात्पर्य है. दूसरे शब्दों में, का कोई गैर-तुच्छ तत्व के एक बिंदु को तय नही करता है. यह विश्वासयोग्यता से अधिक शक्तिशाली गुण है।।

उदाहरण के लिए, बाएं गुणन द्वारा किसी भी समूह की कार्रवाई स्वयं पर मुक्त है। यह अवलोकन केली के प्रमेय का तात्पर्य है कि किसी भी समूह को एक सममित समूह में अंतर्निहित किया जा सकता है (जो कि समूह होने पर अनंत है)। एक परिमित समूह अपनी प्रमुखता की तुलना में बहुत छोटे आकार के समूह पर विश्वसनीय से कार्य कर सकता है (चूँकिऐसी कार्रवाई मुक्त नहीं हो सकती)। उदाहरण के लिए एबेलियन 2-ग्रुप (कार्डिनैलिटी का ) आकार के एक समूह पर विश्वसनीय से कार्य करता है. यह हमेशा सही स्थितिया नहीं होता है, उदाहरण के लिए चक्रीय समूह से कम आकार के समूह पर विश्वसनीय से कार्य नहीं कर सकता .

सामान्य तौर पर सबसे छोटा समूह जिस पर एक विश्वसनीय क्रिया को परिभाषित किया जा सकता है, उसी आकार के समूहों के लिए बहुत भिन्न हो सकता है। उदाहरण के लिए, आकार 120 के तीन समूह सममित समूह हैं , आइकोसाहेड्रल समूह और चक्रीय समूह . सबसे छोटे समूह जिन पर इन समूहों के लिए विश्वासयोग्य कार्यों को परिभाषित किया जा सकता है, वे क्रमशः आकार 5, 12 और 16 के हैं।

संक्रामिता गुण

पर की क्रिया सकर्मक कहलाती है यदि किन्हीं दो बिंदुओं के लिए एक एक जिससे की मौजूद है .

क्रिया केवल सकर्मक(या तीव्र सकर्मक, या नियमित) हो यदि यह सकर्मक और मुक्त दोनों है। इसका मतलब है कि दिया गया तत्व संक्रामकता की परिभाषा में अद्वितीय है। यदि पर केवल एक समूह द्वारा सकर्मक रूप से कार्य किया जाता है तो इसे या एक -मस्तिष्क के लिए एक प्रमुख सजातीय स्थान कहा जाता है

एक पूर्णांक के लिए , के लिए क्रिया n-संक्रमणीय है यदि कम से कम तत्वों है, और किसी भी जोड़ी के लिए -टुपल्स जोड़ीदार अलग प्रविष्टियों के साथ (अर्थात , जब ) वहाँ मौजूद है ऐसा है कि के लिये . दूसरे शब्दों में के उपसमुच्चय पर क्रिया बार-बार प्रविष्टियों के बिना टुपल्स की संख्या सकर्मक है। के लिये इसे अधिकंशतः डबल, ट्रिपल, संक्रामिता कहा जाता है। 2-संक्रमणीय समूहों का वर्ग (अर्थात, एक परिमित सममित समूह के उपसमूह जिनकी क्रिया 2-संक्रमणीय है) और अधिक सामान्यतः बहुगुणित सकर्मक समूह परिमित समूह सिद्धांत में अच्छी तरह से अध्ययन किए जाते हैं।

बार-बार प्रविष्टियों के बिना टुपल्स पर कार्रवाई तीव्र रूप से संक्रामक होने पर एक क्रिया तीव्र n-संक्रमणीय है

उदाहरण

के सममित समूह की क्रिया सकर्मक है, वास्तव में -किसी भी के लिए सकर्मक की प्रमुखता तक संक्रमणीय है।. यदि प्रमुखता है वैकल्पिक समूह की क्रिया -सकर्मक है लेकिन -सकर्मक नहीं है।

एक सदिश स्थान के सामान्य रैखिक समूह की क्रिया मंच पर गैर-शून्य वैक्टर सकर्मक है, लेकिन 2-सकर्मक नहीं है (इसी तरह विशेष रैखिक समूह की कार्रवाई के लिए यदि आयाम कम से कम 2) है। यूक्लिडियन अंतरिक्ष के ऑर्थोगोनल समूह की क्रिया अशून्य सदिशों पर सकर्मक नहीं है, लेकिन यह इकाई क्षेत्र पर है।

आदिम क्रियाएं

पर के समुच्चय का विभाजन न होने पर आदिम कहलाता है तुच्छ विभाजनों (एक टुकड़े में विभाजन और इसके दोहरे, एकल में विभाजन)। के अलावा के सभी तत्वों द्वारा संरक्षित होते है

सांस्थितिक गुण

मान लो की एक एक स्थलाकृतिक है और की क्रिया समरूपता द्वारा होती है।

यदि हर एक पड़ोस है तो क्रिया इधर-उधर रही है जहा केवल बहुत कम संख्या हैं जैसे .[4]

एक बिंदु की कार्रवाई के लिए असंततता का बिंदु कहा जाता है यदि कोई खुला उपसमुच्चय है जैसे कि साथ बहुत सारे हैं. क्रिया के असातत्य का क्षेत्र असातत्य के सभी बिंदुओं का समुच्चय है। समान रूप से यह सबसे बड़ा है -स्थिर खुला सबसमूह ऐसी कि क्रिया पर घूम रहा है।[5] गतिशील संदर्भ में इसे घूमता समूह भी कहा जाता है।

यदि प्रत्येक सघन उपसमूह के लिए क्रिया ठीक से बंद हो जाती है निश्चित रूप से बहुत सारे हैं ऐसा है कि . यह घुमने से सख्त मजबूत है; उदाहरण के लिए की क्रिया पर के द्वारा दिया गया घूम रहा है और मुक्त है लेकिन ठीक से बंद नहीं है।[6]

एक कवरिंग अंतरिक्ष पर स्थानीय रूप से बस जुड़े स्थान के मौलिक समूह के डेक परिवर्तन द्वारा क्रिया घूम रही है और मुक्त है। इस तरह की कार्रवाइयों को निम्नलिखित संपत्ति की विशेषता हो सकती है: प्रत्येक एक पड़ोस है ऐसा है कि हर एक के लिए .[7] इस संपत्ति के साथ क्रियाओं को कभी-कभी स्वतंत्र रूप से असंतत कहा जाता है, और सबसे बड़ा उपसमुच्चय जिस पर क्रिया स्वतंत्र रूप से बंद होती है, उसे मुक्त नियमित समूह कहा जाता है।[8] एक समूह की एक क्रिया स्थानीय रूप से सघन स्थान पर सघन उपसमुच्चय मौजूद होने पर सहसघन कहा जाता है ऐसा है कि . एक ठीक से बंद कार्रवाई के लिए, . सहसंबद्धता भागफल स्थान की सघनता के बराबर है

स्थलाकृतिक समूहों की क्रियाएं

अब मान लीजिए एक सामयिक समूह है और एक संस्थानिक अंतरिक्ष जिस पर यह होमोमोर्फिज्म द्वारा कार्य करता है। क्रिया को निरंतर कहा जाता है यदि नक्शा उत्पाद सांस्थिति के लिए निरंतर है।

क्रिया को उचित कहा जाता है यदि नक्शा द्वारा परिभाषित उचित मानचित्र है।[9] इसका मतलब है कि दिए गए सघन समूह के समुच्चय ऐसा है कि सघन है। विशेष रूप से, यह उचित विच्छेदन के बराबर है जब एक असतत समूह है।

यदि पड़ोस मौजूद है तो इसे स्थानीय रूप से मुक्त कहा जाता है का ऐसा है कि सभी के लिए तथा .

यदि कक्षीय मानचित्र हो तो क्रिया को दृढ़ता से निरंतर कहा जाता है हर के लिए निरंतर है . नाम से पता चलता है कि इसके विपरीत, यह कार्रवाई की निरंतरता की तुलना में कमजोर संपत्ति है।[10]

यदि एक झूठ समूह है और एक अलग-अलग कई गुना योग्य है, फिर कार्रवाई के लिए चिकनी बिंदुओं का उप-स्थान बिंदुओं का समूह है ऐसा नक्शा चिकना नक्शा है। लाई समूह क्रियाओं का एक सुविकसित सिद्धांत है, अर्थात ऐसी क्रियाएं जो पूरे स्थान पर सहज होती हैं।

रैखिक क्रियाएं

यदि एक कम्यूटेटिव रिंग पर एक मॉड्यूल (गणित) पर रैखिक परिवर्तनों द्वारा कार्य करता है, यदि कोई उचित गैर-शून्य नहीं है तो कार्रवाई को अप्रासंगिक कहा जाता है -अपरिवर्तनीय सबमॉड्यूल। यदि यह अपरिवर्तनीय क्रियाओं के प्रत्यक्ष योग के रूप में विघटित हो जाता है। इसे अर्ध-सरल कहा जाता है

कक्षाएं और स्थिरिकारी

पांच टेट्राहेड्रा के परिसर में, समरूपता समूह (घूर्णी) इकोसाहेड्रल समूह I है, जिसका क्रम 60 है, जबकि एकल चुने हुए टेट्राहेड्रोन का स्थिरिकारी क्रम 12 का (घूर्णी) टेट्राहेड्रल समूह T है, और कक्षा स्थान I/T ( क्रम 60/12 = 5) को स्वाभाविक रूप से 5 टेट्राहेड्रा के साथ पहचाना जाता है - कोसमूह Gटी टेट्राहेड्रोन से मेल खाता है जिसमें G चुने हुए टेट्राहेड्रोन को भेजता है।

समूह G पर विचार करें जो समुच्चय X पर कार्य कर रहा है एक तत्व की कक्षा x में क्ष तत्वों का समूह है जिसमें G के तत्वों द्वारा x को स्थानांतरित किया जा सकता है। x की कक्षा को : दर्शाया जाता है


एक समूह के परिभाषित गुण इस बात की गारंटी देते हैं कि G की कार्रवाई के अनुसारX की कक्षाओं का समूह (अंक x in) X के एक समूह का एक विभाजन बनाता है। संबद्ध तुल्यता संबंध यदि और केवल को यह कहकर परिभाषित किया जाता है यदि G में के साथ एक g मौजूद है कक्षाएँ तब इस संबंध के अंतर्गत तुल्यता वर्ग हैं; दो तत्व x और y समतुल्य हैं यदि उनकी कक्षाएँ समान हैं, अर्थात,

समूह क्रिया समूह क्रिया है (गणित) क्रियाओं के प्रकार यदि और केवल यदि इसकी ठीक एक कक्षा है, यदि, के साथ X में x मौजूद है यह स्थितिया है यदि और केवल यदि के लिये सभी x में X (दिया गया है कि X खाली नहीं है)।

G की क्रिया के अनुसारX की सभी कक्षाओं के समूह को X/G (या, कम बार: G\X) के रूप में लिखा जाता है, और इसे लब्धि कार्रवाई कहा जाता है । ज्यामितीय स्थितियों में इसे कक्षा अंतरिक्ष कहा जा सकता है, जबकि बीजगणितीय स्थितियों में इसे संयोग का स्थान कहा जा सकता है, और लिखा जाता है अपरिवर्तनशीलताओं (फिक्स्ड पॉइंट्स) के विपरीत, XG से दर्शाया जाता है सहपरिवर्तक एक लब्धि है जबकि एक उपसमूह अपरिवर्तनीय है. सहपरिवर्ती शब्दावली और संकेतन का उपयोग विशेष रूप से समूह

सह-समरूपता और समूह अनुरूपता में किया जाता है, जो एक ही ऊपर की ओर लिखा हुआ/नीचे की ओर लिखा हुआ सम्मेलन का उपयोग करते हैं।

अपरिवर्तनीय उपसमुच्चय

यदि Y, X का उपसमुच्चय है, तो समूह को दर्शाता है उपसमुच्चय Y को G के अंतर्गत अपरिवर्तनीय कहा जाता है यदि (जो बराबर है ). उस स्थिति में, G भी Y पर कार्रवाई को Y तक सीमित करके संचालित करता है। सबसमूह Y को G के अनुसारनिश्चित कहा जाता है यदि G में सभी g के लिए और Y में सभी y के लिए। प्रत्येक उपसमुच्चय जो G के अंतर्गत निश्चित है, G के अंतर्गत भी अपरिवर्तनीय है, लेकिन इसके विपरीत नहीं।

प्रत्येक कक्षा X का एक अपरिवर्तनीय उपसमुच्चय है जिस पर G समूह क्रिया (गणित) क्रियाओं के प्रकार कार्य करता है। इसके विपरीत, X का कोई भी अपरिवर्तनीय उपसमुच्चय कक्षाओं का एक संघ है। X पर G की क्रिया सकर्मक है यदि और केवल यदि सभी तत्व समतुल्य हैं, जिसका अर्थ है कि केवल एक कक्षा है।

X का G-इनवेरिएंट तत्व है ऐसा है कि सभी के लिए ऐसे सभी x के समुच्चय को निरूपित किया जाता है और X का G-अपरिवर्तनशीलताओं कहा जाता है। जब X एक G-मॉड्यूल है|G-मॉड्यूल, XG X में गुणांकों के साथ G का शून्य समूह कोहोलॉ G समूह है, और उच्च कोहोलॉ G समूह G-अपरिवर्तनशीलताओं के गुणन के व्युत्पन्न गुणन हैं।

निश्चित बिंदु और स्थिरिकारी उपसमूह

G में g और x में X के साथ दिया गया यह कहा जाता है कि x, g का एक निश्चित बिंदु है या कि g, x को ठीक करता है। x में हर x के लिए, 'stabilizer subgroupG का x के संबंध में (जिसे आइसोट्रॉपी समूह या छोटा समूह भी कहा जाता है)[11]) G में सभी तत्वों का समूह है जो x को ठीक करता है:

यह G का एक उपसमूह है, चूँकिसामान्यतः पर सामान्य नहीं है। X पर G की क्रिया समूह क्रिया है (गणित) क्रियाओं के प्रकार यदि और केवल यदि सभी स्थिरिकारी तुच्छ हैं। सममित समूह के साथ समरूपता का कर्नेल एन, स्थिरक G के चौराहा (समूह सिद्धांत) द्वारा दिया गया हैxX में सभी x के लिए। यदि N तुच्छ है, तो क्रिया को विश्वासयोग्य (या प्रभावी) कहा जाता है।

मान लीजिए x और y, X में दो अवयव हैं, और मान लीजिए एक समूह फिर दो स्थिरक समूह तथा से संबंधित हैं प्रमाण: परिभाषा के अनुसार, यदि और केवल यदि को लागू करने इस समानता पैदावार के दोनों पक्षों के लिए वह है, एक विपरीत समावेशन लेने के समान ही होता है और मान लीजिए

ऊपर कहा गया है कि एक ही कक्षा में तत्वों के स्थिरक एक दूसरे के लिए संयुग्मन वर्ग हैं। इस प्रकार, प्रत्येक कक्षा में, हम G के एक उपसमूह के संयुग्मी वर्ग को संबद्ध कर सकते हैं (अर्थात, उपसमूह के सभी संयुग्मों का समुच्चय)। होने देना H के संयुग्मी वर्ग को निरूपित करें। फिर कक्षा O का प्रकार है यदि स्थिरक O में कुछ/किसी x का है . एक अधिकतम कक्षा प्रकार को अधिकंशतः एक प्रमुख कक्षा प्रकार कहा जाता है।

कक्षा-स्थिरिकारी प्रेमय और बर्नसाइड का लेम्मा

कक्षाएँ और स्थिरिकारी निकट से संबंधित हैं। X में निश्चित x के लिए, के द्वारा दिया गया माप पर विचार करें परिभाषा के अनुसार छवि इस नक्शे की कक्षा है दो तत्वों की एक ही छवि होने की स्थिति है

दूसरे शब्दों में, यदि और केवल यदि तथा स्थिरिकारी उपसमूह के लिए एक ही को उपसमूह में लेट जाये. इस प्रकार, फाइबर (गणित) G·x में किसी भी y के ऊपर का f इस तरह के उपसमूह में समाहित है, और ऐसा हर उपसमूह फाइबर के रूप में भी होता है। इसलिए f स्थिरिकारी उपसमूह और कक्षा के लिए उपसमूहो की जो .[12] द्विभाजन समूह के बीच भेजता है इस परिणाम को कक्षा-स्थिरीकरण प्रमेय के रूप में जाना जाता है।

यदि G परिमित है तो कक्षा-स्थिरीकरण प्रमेय, लैग्रेंज की प्रमेय(समूह सिद्धांत),के साथ देता है

दूसरे शब्दों में x की कक्षा की लंबाई उसके स्थिरिकारी के क्रम से समूह का क्रम है। विशेष रूप से इसका तात्पर्य है कि कक्षा की लंबाई समूह क्रम का विभाजक है।

'उदाहरण:' मान लीजिए G एक अभाज्य कोटि p का एक समूह है जो k तत्वों वाले समुच्चय X पर कार्य करता है। चूँकि प्रत्येक कक्षा में या तो 1 या p तत्व होते हैं, इसलिए कम से कम लंबाई 1 की कक्षाएँ जो G-अपरिवर्तनीय तत्व हैं।

यह परिणाम विशेष रूप से उपयोगी है क्योंकि इसे तर्कों की गणना के लिए नियोजित किया जा सकता है (सामान्यतः उन स्थितियों में जहां Xभी सीमित है)।

क्यूबिकल ग्राफ़ जिसमें कोने लेबल किए गए हैं

उदाहरण: हम एक ग्राफ (असतत गणित) के ऑटोमोर्फिज्म समूह की गणना करने के लिए कक्षा-स्थिरीकरण प्रमेय का उपयोग कर सकते हैं। चित्र के रूप में क्यूबिकल ग्राफ पर विचार करें, और G को इसके ग्राफ ऑटोमोर्फिज्म समूह को निरूपित करने दें। फिर G शीर्षों के समुच्चय {1, 2, ..., 8} पर कार्य करता है, और यह क्रिया सकर्मक है, जैसा कि घन के केंद्र के चारों ओर घुमावों की रचना करके देखा जा सकता है। इस प्रकार, कक्षा-स्थिरीकरण प्रमेय द्वारा, प्रमेय को अब स्थिरीकरण पर लागू करना हम प्राप्त कर सकते हैं G का कोई भी तत्व जो 1 को ठीक करता है, उसे 2 या तो 2, 4, या 5 भेजना होगा। ऐसे ऑटोमोर्फिज्म के उदाहरण के रूप में 1 और 7 के माध्यम से विकर्ण अक्ष के चारों ओर घूर्णन पर विचार करें। जो 2,4,5 और 3,6,8 को क्रमागत करता है, और 1 और 7 को ठीक करता है। इस प्रकार, प्रमेय को तीसरी बार लागू करने पर प्राप्त होता है G का कोई भी तत्व जो 1 और 2 को ठीक करता है, उसे 3 या तो 3 या 6 को भेजना चाहिए। घन को 1,2,7 और 8 के माध्यम से विमान पर प्रतिबिंबित करना एक ऐसा ऑटोमोर्फिज्म है जो 3 से 6 भेज रहा है, इस प्रकार . एक यह भी देखता है केवल पहचान ऑटोमोर्फिज्म के होते हैं, क्योंकि G स्थिर 1, 2 और 3 के किसी भी तत्व को अन्य सभी शिखरों को भी ठीक करना चाहिए, क्योंकि वे 1, 2 और 3 के निकट के द्वारा निर्धारित किए जाते हैं। पूर्ववर्ती गणनाओं को मिलाकर, अब हम को प्राप्त कर सकते हैं

कक्षा-स्थिरीकरण प्रमेय से निकटता से संबंधित परिणाम बर्नसाइड की लेम्मा है:

जहां Xg G द्वारा निर्धारित बिंदुओं का समूह है। यह परिणाम मुख्य रूप से तब उपयोग किया जाता है जब G और X परिमित होते हैं, अब इसकी व्याख्या निम्नानुसार किया जा सकता है: कक्षाओं की संख्या प्रति समूह तत्व तय किए गए बिंदुओं की औसत संख्या के बराबर होती है।

एक समूह G को ठीक करना, परिमित G-समूह के औपचारिक मतभेदों का समूह G की बर्नसाइड छल्ले नामक एक वलयबनाता है, जहां जोड़ अलग संघ से मेल खाता है, और कार्तीय गुणन उत्पाद से मेल खाता है।

उदाहरण

  • किसी तुच्छ समुच्चय X पर किसी समूह G की क्रिया द्वारा परिभाषित किया जाता है gx = x G में सभी g और X में सभी x के लिए; अर्थात्, प्रत्येक समूह तत्व X पर पहचान फलन को प्रेरित करता है।[13]
  • प्रत्येक समूह G में, बायाँ गुणन G पर G की एक क्रिया gx = gx है: सभी G के लिए, G में X। यह क्रिया मुक्त और संक्रमणीय (नियमित) है, और केली के प्रमेय तो G से प्रमाण का आधार बनाती है - कि प्रत्येक समूह समूह G के क्रमपरिवर्तन के सममित समूह के उपसमूह के लिए आइसोमोर्फिक है।
  • उपसमूह H के साथ प्रत्येक समूह G में, बाएं गुणन उपसमूह G/H के समूह पर G की एक क्रिया है: में सभी g,a के लिए। विशेष रूप से यदि H में G का कोई गैर-तुच्छ सामान्य उपसमूह नहीं है, तो यह G से डिग्री [G: H] के क्रमपरिवर्तन समूह के एक उपसमूह में एक समरूपता को प्रेरित करता है।
  • प्रत्येक समूह G में, आंतरिक ऑटोमोर्फिज़्म G पर G की एक क्रिया है: gx = gxg−1. एक घातीय संकेतन सामान्यतः सही क्रिया प्रकार xg = g−1xg के लिए उपयोग किया जाता है; यह (xg)h = xgh को संतुष्ट करता है
  • उपसमूह H के साथ प्रत्येक समूह G में, संयुग्मन H के संयुग्मों पर G की एक gK = gKg−1 G में सभी g और H के K संयुग्मों के लिए क्रिया है:
  • सममित समूह Sn और इसके उपसमूह { 1, …, n } इसके तत्वों की अनुमति देकर समूह पर कार्य करते हैं
  • किसी बहुफलक का सममिति समूह उस बहुफलक के शीर्षों के समुच्चय पर कार्य करता है। यह फलकों के समुच्चय या बहुफलक के किनारों के समुच्चय पर भी कार्य करता है।
  • किसी भी ज्यामितीय वस्तु का सममिति समूह उस वस्तु के बिन्दुओं के समुच्चय पर कार्य करता है।
  • सदिश स्थान (या ग्राफ़ सिद्धांत, या समूह, या वलय...) का ऑटोमोर्फिज़्म समूह सदिश स्थान (या ग्राफ़, या समूह, या वलय के शीर्षों का समूह...) पर कार्य करता है।
  • सामान्य रैखिक समूह GL(n, K) और इसके उपसमूह, विशेष रूप से इसके लाई उपसमूह (विशेष रैखिक समूह सहित SL(n, K), ओर्थोगोनल समूह O(n, K), विशेष ऑर्थोगोनल समूह SO(n, K), और सहानुभूति समूह Sp(n, K)) वे समूह हैं जो सदिश स्थान K पर कार्य करते हैंएन. समूह संचालन K से वैक्टर वाले समूहों से मैट्रिसेस को गुणा करके दिया जाता हैएन.
  • सामान्य रैखिक समूह GL(n, Z) Z . में काम करती हैn प्राकृतिक मैट्रिक्स क्रिया द्वारा। इसकी क्रिया की कक्षाओं को 'Z' में वेक्टर के निर्देशांक के सबसे बड़े सामान्य विभाजक द्वारा वर्गीकृत किया गया है।एन.
  • affine समूह एक affine स्थान के बिंदुओं पर # प्रकार की क्रियाओं को कार्य करता है, और एफ़िन समूह के उपसमूह V (अर्थात, एक सदिश स्थान) में इन बिंदुओं पर सकर्मक और मुक्त (अर्थात, नियमित) क्रिया होती है;[14] वास्तव में इसका उपयोग एफ़िन अंतरिक्ष की परिभाषा देने के लिए किया जा सकता है।
  • प्रक्षेपी रैखिक समूह PGL(n + 1, K) और इसके उपसमूह, विशेष रूप से इसके लाई उपसमूह, जो लाई समूह हैं जो प्रोजेक्टिव अंतरिक्ष पी पर कार्य करते हैंएन(के)। यह प्रक्षेपी स्थान पर सामान्य रेखीय समूह की कार्रवाई का भागफल है। विशेष उल्लेखनीय है PGL(2, K), प्रक्षेप्य रेखा की समरूपता, जो तीव्र रूप से 3-संक्रमणीय है, क्रॉस अनुपात को संरक्षित करती है; मोबियस समूह PGL(2, C) विशेष रुचि है।
  • विमान की आइसोमेट्री 2D छवियों और पैटर्न के समूह पर कार्य करती है, जैसे कि वॉलपेपर समूह। छवि या पैटर्न से क्या मतलब है, यह निर्दिष्ट करके परिभाषा को और अधिक सटीक बनाया जा सकता है, उदाहरण के लिए, रंगों के एक समूह में मूल्यों के साथ स्थिति का एक कार्य। आइसोमेट्री वास्तव में एफाइन ग्रुप (कार्रवाई) का एक उदाहरण है।[dubious ]
  • समूह G द्वारा कार्य किए गए समूह में G-समूह की श्रेणी (गणित) सम्मालित है जिसमें वस्तुएं G-समूह हैं और मॉर्फिज्म G-समूह होमोमोर्फिज्म हैं: फ़ंक्शन f : XY ऐसा है कि g⋅(f(x)) = f(gx) G में प्रत्येक G के लिए
  • क्षेत्र विस्तार एल/के का गैलोइस समूह एल क्षेत्र पर कार्य करता है लेकिन उपक्षेत्र के के तत्वों पर केवल एक छोटी सी कार्रवाई होती है। गैल (एल/के) के उपसमूह एल के उपक्षेत्रों के अनुरूप होते हैं जिनमें के, यानी मध्यवर्ती होता है। L और K के बीच क्षेत्र विस्तार।
  • वास्तविक संख्याओं का योगात्मक समूह (R, +) समय अनुवाद द्वारा शास्त्रीय यांत्रिकी (और अधिक सामान्य गतिशील प्रणालियों में) में अच्छी तरह से व्यवहार किए गए सिस्टम के चरण स्थान पर कार्य करता है: यदि t 'R' में है और x चरण स्थान में है, तो x सिस्टम की स्थिति का वर्णन करता है, और t + x यदि t धनात्मक है या −t सेकण्ड पहले यदि t ऋणात्मक है तो इसे t सेकंड बाद प्रणाली की स्थिति के रूप में परिभाषित किया जाता है।
  • वास्तविक संख्याओं का योज्य समूह (R, +) वास्तविक चर के वास्तविक कार्यों के समूह पर विभिन्न तरीकों से कार्य करता है, उदाहरण के लिए (t⋅f)(x) के बराबर, f(x + t), f(x) + t, f(xet), f(x)et, f(x + t)et, या f(xet) + t, लेकिन नहीं f(xet + t).
  • X पर G की समूह क्रिया को देखते हुए, हम X के घात समूह पर G की प्रेरित क्रिया को परिभाषित कर सकते हैं। gU = {gu : uU} X के प्रत्येक उपसमुच्चय U और G में प्रत्येक g के लिए। यह उपयोगी है, उदाहरण के लिए, 24-समूह पर बड़े मैथ्यू समूह की क्रिया का अध्ययन करने और परिमित ज्यामिति के कुछ मॉडलों में समरूपता का अध्ययन करने में।
  • चतुष्कोण 1 (छंद) के मानक के साथ चतुष्कोण, गुणक समूह के रूप में, 'आर' पर कार्य करते हैं3: ऐसे किसी भी quaternion के लिए z = cos α/2 + v sin α/2, मैपिंग f(x) = zxz यूनिट वेक्टर 'v' द्वारा दिए गए अक्ष के बारे में कोण α के माध्यम से वामावर्त रोटेशन है; z एक ही घुमाव है; चतुष्कोण और स्थानिक घुमाव देखें। ध्यान दें कि यह एक विश्वसनीय कार्रवाई नहीं है क्योंकि चतुष्कोण -1 सभी बिंदुओं को वहीं छोड़ देता है जहां वे थे, जैसा कि चतुष्कोण 1 करता है।
  • बाएं G-समूह दिए गए हैं , एक बायां G-समूह है जिनके तत्व G-equivariant मानचित्र हैं , और बाएं G-एक्शन द्वारा दिया गया (कहाँ पेद्वारा सही गुणा को इंगित करता है ). इस G-समूह में यह गुण है कि इसके निश्चित बिंदु समतुल्य मानचित्रों के अनुरूप हैं ; अधिक सामान्यतः, यह G-समूह की श्रेणी में एक घातीय वस्तु है।

ग्रुप एक्शन और ग्रुपॉयड्स

ग्रुप एक्शन की धारणा को एक्शन ग्रुपॉइड द्वारा एनकोड किया जा सकता है समूह क्रिया से संबंधित। एक्शन के स्थिरिकारी ग्रुपॉयड के शीर्ष समूह हैं और क्रिया की कक्षाएँ इसके घटक हैं।

G-समूह के बीच आकारिकी और समरूपता

यदि X और Y दो G-समुच्चय हैं, तो X से Y तक एक रूपवाद एक फलन है f : XY ऐसा है कि f(gx) = gf(x) G में सभी G और Xमें सभी Xके लिए। G-समूह के आकारिकी को समकक्ष माप या G-मानचित्र भी कहा जाता है।

दो रूपवाद की संरचना फिर से एक रूपवाद है। यदि एक आकृतिवाद f आच्छादक है, तो इसका व्युत्क्रम भी एक आकारिकी है। इस मामले में f को एक समरूपता कहा जाता है, और दो G-समूह X और Y को समरूपी कहा जाता है; सभी व्यावहारिक उद्देश्यों के लिए, आइसोमॉर्फिक G-समूह अप्रभेद्य हैं।

कुछ उदाहरण समरूपता:

  • प्रत्येक नियमित G क्रिया बाएं गुणन द्वारा दिए गए G पर G की क्रिया के लिए आइसोमोर्फिक है।
  • प्रत्येक मुक्त G क्रिया के लिए तुल्याकारी है G × S, जहाँ S कुछ समुच्चय है और G कार्य करता है G × S पहले निर्देशांक पर बाएँ गुणन द्वारा। (S को कक्षा X/G का समुच्चय माना जा सकता है।)
  • प्रत्येक सकर्मक G क्रिया, G के कुछ उपसमूह H के बाएँ कोसमूह के समूह पर G द्वारा बाएँ गुणन के लिए आइसोमॉर्फिक है। (H को मूल G-समूह के किसी भी तत्व के स्टेबलाइज़र समूह के रूप में लिया जा सकता है।)

रूपवाद की इस धारणा के साथ, सभी G-समूहों का संग्रह एक श्रेणी सिद्धांत बनाता है; यह श्रेणी एक ग्रोथेंडिक टोपोस (वास्तव में, एक शास्त्रीय मेटालॉजिक मानते हुए, यह टोपोस बूलियन भी होगा) है।

संस्करण और सामान्यीकरण

हम ऊपर बताए गए समान दो अभिगृहीतों का उपयोग करके समुच्चयों पर मोनोइड्स की क्रियाओं पर भी विचार कर सकते हैं। चूँकि यह विशेषण मानचित्र और तुल्यता संबंधों को परिभाषित नहीं करता है। सेमीग्रुप एक्शन देखें।

समूह पर क्रियाओं के अतिरिक्त , हम समूहों और मोनोइड्स की क्रियाओं को एक मनमाना श्रेणी की वस्तुओं पर परिभाषित कर सकते हैं: किसी श्रेणी के वस्तु X से प्रारभ करें, और फिर X पर एक क्रिया को एक मोनोइड होमोमोर्फिज्म के रूप में Xके एंडोमोर्फिज्म के मोनोइड में परिभाषित करें। यदि X का एक अंतर्निहित समूह है, तो ऊपर बताई गई सभी परिभाषाओं और तथ्यों को आगे बढ़ाया जा सकता है। उदाहरण के लिए, यदि हम सदिश समष्टियों की श्रेणी लेते हैं, तो हमें इस प्रकार समूह निरूपण प्राप्त होते हैं।

हम समूह G को एक ऐसी श्रेणी के रूप में देख सकते हैं जिसमें एक ही वस्तु है जिसमें प्रत्येक रूपवाद उलटा हो सकता है। A (बाएं) समूह कार्रवाई तब G से समूह की श्रेणी के लिए एक (सहसंयोजक) फ़ैक्टर के अलावा कुछ भी नहीं है, और एक समूह प्रतिनिधित्व G से वेक्टर रिक्त स्थान की श्रेणी में एक फ़ंक्टर है। G-समूह के बीच एक रूपवाद तब समूह क्रिया फ़ैक्टरों के बीच एक प्राकृतिक परिवर्तन है। समानता में, ग्रुपॉयड की एक क्रिया ग्रुपॉयड से समूह की श्रेणी या किसी अन्य श्रेणी के लिए एक मज़ेदार है।

टोपोलॉजिकल अंतरिक्ष पर टोपोलॉजिकल समूहों की निरंतर समूह कार्रवाई के अलावा, कई बार झूठ समूहों की कई गुना,B या G विविधता पर बीजगणितीय समूहों की नियमित कार्रवाई, और योजना (गणित) पर समूह योजनाओं की समूह-योजना कार्रवाई पर भी विचार किया जाता है। ये सभी समूह वस्तुओं के उदाहरण हैं जो अपनी संबंधित श्रेणी की वस्तुओं पर कार्य करते हैं।

गैलरी


यह भी देखें

  • लाभ ग्राफ
  • ऑपरेटरों के साथ समूह
  • मापने योग्य समूह कार्रवाई
  • मोनॉयड क्रिया

टिप्पणियाँ


उद्धरण

  1. Eie & Chang (2010). सार बीजगणित पर एक कोर्स. p. 144.
  2. This is done, for example, by Smith (2008). Introduction to abstract algebra. p. 253.
  3. "परिभाषा: राइट ग्रुप एक्शन एक्सिओम्स". Proof Wiki. Retrieved 19 December 2021.
  4. Thurston 1997, Definition 3.5.1(iv).
  5. Kapovich 2009, p. 73.
  6. Thurston 1980, p. 176.
  7. Hatcher 2002, P. 72.
  8. Maskit, II.A.1, II.A.2.
  9. tom Dieck 1987.
  10. Yuan, Qiaochu (27 February 2013). "विकी की "दृढ़ता से निरंतर समूह कार्रवाई" की परिभाषा गलत है?". Mathematics Stack Exchange. Retrieved 1 April 2013.
  11. Procesi, Claudio (2007). लाई ग्रुप्स: एन अप्रोच थ्रू इनवेरिएंट्स एंड रिप्रेजेंटेशन्स (in English). Springer Science & Business Media. p. 5. ISBN 9780387289298. Retrieved 23 February 2017.
  12. M. Artin, Algebra, Proposition 6.4 on p. 179
  13. Eie & Chang (2010). सार बीजगणित पर एक कोर्स. p. 145.
  14. Reid, Miles (2005). ज्यामिति और टोपोलॉजी. Cambridge, UK New York: Cambridge University Press. p. 170. ISBN 9780521613255.


संदर्भ


इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची

बाहरी संबंध