एक समांतर चतुर्भुज। पक्षों को नीले रंग में और विकर्णों को लाल रंग में दिखाया गया है।
गणित में, समानांतर चतुर्भुज विधि (जिसे समानांतर-चतुर्भुज भी कहा जाता है) का सरलतम रूप प्राथमिक ज्यामिति से संबंधित है। इसमें कहा गया है कि एक समांतर चतुर्भुज की चारों भुजाओं की लंबाई के वर्गों का योग दो विकर्णों की लंबाई के वर्गों के योग के बराबर होता है। हम इन अंकन का उपयोग पक्षों के लिए करते हैं: AB, BC, CD, DA। लेकिन चूंकि यूक्लिडियन ज्यामिति में एक समानांतर व्याकरण आवश्यक रूप से विपरीत पक्षों के बराबर है, AB = CD और BC = DA, नियम को कहा जा सकता है।
यदि समानांतर चतुर्भुज आयत है, तो दो विकर्णों बराबर लंबाई AC = BD, इसलिए
और यह कथन पाइथागोरियन प्रमेय में कम हो जाता है। चार पक्षों के साथ सामान्य चतुर्भुज के लिए आवश्यक रूप से समान नहीं,
जहां विकर्णों के मध्य बिंदुओं में रेखाखंड की लंबाई है। है। यह चित्र से देखा जा सकता है कि एक समानांतर चतुर्भुज के लिए को प्रदर्शित किया गया है, और इसलिए सामान्य सूत्र समानांतर चतुर्भुज नियम को सरल बनाता है।
अब वर्गों का योग के रूप में व्यक्त किया जा सकता है:
इस अभिव्यक्ति को सरल बनाना:
आंतरिक उत्पाद रिक्त स्थान में समानांतर चतुर्भुज नियम
समांतर चतुर्भुज नियम में शामिल वैक्टर।
एक सामान्य स्थान में, समानांतर व्याकरण नियम का कथन मानदंडों से संबंधित एक समीकरण है::
समांतर चतुर्भुज- नियम कमजोर बयान के बराबर प्रतीत होता है
क्योंकि विपरीत असमानता को इसके प्रतिस्थापन से प्राप्त किया जा सकता है, जिससे कि के लिये तथा के लिये के लिए और फिर सरल बनाने के लिए। इसी प्रमाण के साथ, समानांतर चतुर्भुज नियम भी इस प्रकार हैः
एक आंतरिक उत्पाद स्थान में, मानक आंतरिक उत्पाद का उपयोग करके निर्धारित किया जाता है:
इस परिभाषा के एक परिणाम के रूप में, एक आंतरिक उत्पाद स्थान में समानांतर चतुर्भुज नियम एक बीजगणितीय पहचान है, जो आंतरिक उत्पाद के गुणों का उपयोग करके आसानी से स्थापित है:
इन दो अभिव्यक्तियों को जोड़ना:
जैसी ज़रूरत।
यदि इसके लिए ओर्थोगोनल है अर्थ और राशि के मानदंड के लिए उपरोक्त समीकरण बन जाता है:
अधिकांश वास्तविक संख्या और जटिल संख्या मानक वेक्टर रिक्त स्थानों में आंतरिक उत्पाद नहीं होते हैं, लेकिन सभी मानक वेक्टर स्थानों में मानक (परिभाषा द्वारा) होते हैं। उदाहरण के लिए, एक सदिश के लिए एक सामान्य रूप से प्रयोग किया जाने वाला सामान्य नियम है: वास्तविक समन्वय स्थान में पी-मानक है |-आदर्श:
एक नियम के अनुसार, एक व्यक्ति ऊपर के समानांतर - चतुर्भुज नियम के दोनों पक्षों का मूल्यांकन कर सकता है । एक उल्लेखनीय तथ्य यह है कि यदि समानांतर-वर्मा नियम रखता है, तो नियम किसी आंतरिक उत्पाद से सामान्य रूप से उत्पन्न होना चाहिए। विशेष रूप से, के लिए रखती है -मानक अगर और केवल अगर तथाकथित यूक्लिड संबंधी मानदंड या मानक मानदंड।[1][2] किसी भी नियम के लिए समानांतर-चतुर्भुज नियम (जो आवश्यक रूप से एक आंतरिक उत्पाद मानक है) को संतुष्ट करने के लिए, मानक पैदा करने वाला आंतरिक उत्पाद ध्रुवीकरण पहचान के परिणामस्वरूप अद्वितीय है। वास्तविक मामले में, ध्रुवीकरण की पहचान निम्नलिखित द्वारा दी गई है:में, ध्रुवीकरण की पहचान निम्न द्वारा दी गई है:
या उसके समकक्ष
जटिल मामले में यह निम्नलिखित है:
उदाहरण के लिए, का उपयोग करना -मानक के साथ और वास्तविक वैक्टर तथा आंतरिक उत्पाद आय का मूल्यांकन इस प्रकार है:
जो दो सदिशों का मानक बिंदु गुणनफल है।
एक अन्य आवश्यक और पर्याप्त स्थिति जो एक आंतरिक उत्पाद के अस्तित्व के लिए एक और पर्याप्त स्थिति है, जो दी गई मानक के लिए है::[3]