परिमित अंतर

From Vigyanwiki
Revision as of 12:59, 9 January 2023 by alpha>Nitya (text)


परिमित अंतर रूप की गणितीय अभिव्यक्ति है f (x + b) − f (x + a)। यदि एक परिमित अंतर ba से विभाजित किया जाता है, अंतर भागफल मिलता है। परिमित भिन्नताओं द्वारा यौगिक का अनुमान अंतर समीकरण के संख्यात्मक विश्लेषण समाधान के लिएपरिमित अंतर विधि यों में एक केंद्रीय भूमिका निभाता है विशेष रूप से सीमा मूल्य समस्या के लिए निभाता है।

अंतर ऑपरेटर , आमतौर पर निरूपित ऑपरेटर (गणित) है जो किसी फ़ंक्शन को मैप करता है f समारोह के लिए द्वारा परिभाषित

एक अंतर समीकरण एक कार्यात्मक समीकरण है जिसमें परिमित अंतर ऑपरेटर उसी तरह शामिल होता है जैसे एक अंतर समीकरण में डेरिवेटिव शामिल होते हैं। अंतर समीकरणों और अंतर समीकरणों के बीच कई समानताएं हैं, विशेष रूप से हल करने के तरीकों में। पुनरावर्तन संबंध#अंतर समीकरणों के संबंध को संकीर्ण रूप से परिभाषित किया जा सकता है, जिसे परिमित अंतरों के साथ पुनरावृति संकेतन के स्थान पर अंतर समीकरणों के रूप में लिखा जा सकता है।

संख्यात्मक विश्लेषण में, डेरिवेटिव के साथ #Relation के लिए परिमित अंतर का व्यापक रूप से उपयोग किया जाता है, और परिमित अंतर शब्द को अक्सर डेरिवेटिव के परिमित अंतर सन्निकटन के संक्षिप्त नाम के रूप में उपयोग किया जाता है।[1][2][3] परिमित अंतर सन्निकटन ऊपर नियोजित शब्दावली में परिमित अंतर भागफल हैं।

1715 में ब्रुक टेलर द्वारा परिमित अंतर पेश किए गए थे और जॉर्ज बूले (1860), एल.एम. मिल्ने-थॉमसन (1933) द्वारा कार्यों में अमूर्त स्व-स्थायी गणितीय वस्तुओं के रूप में भी अध्ययन किया गया है, और Károly Jordan [de] (1939)। परिमित अंतर अपनी उत्पत्ति को जोस्ट बर्गी के एल्गोरिदम में से एक में खोजते हैं (c. 1592) और आइजैक न्यूटन सहित अन्य लोगों द्वारा कार्य। परिमित भिन्नताओं की औपचारिक कलन को अत्यणुओं की कलन के विकल्प के रूप में देखा जा सकता है।[4]


मूल प्रकार

thumb पर फ़ंक्शन के डेरिवेटिव का सबसे अच्छा सन्निकटन देता हैआमतौर पर तीन बुनियादी प्रकारों पर विचार किया जाता है: आगे, पीछे और केंद्रीय परिमित अंतर।[1][2][3]

एक आगे का अंतर, निरूपित एक समारोह के (गणित) f के रूप में परिभाषित एक कार्य है

आवेदन के आधार पर, रिक्ति h परिवर्तनशील या स्थिर हो सकता है। जब छोड़ा गया, h 1 लिया जाता है; वह है,

एक पश्च अंतर फ़ंक्शन मानों का उपयोग करता है x और xh, मूल्यों के बजाय पर x + h औरx:

अंत में, केंद्रीय अंतर द्वारा दिया जाता है


डेरिवेटिव्स के साथ संबंध

परिमित अंतर अक्सर व्युत्पन्न के सन्निकटन के रूप में प्रयोग किया जाता है, आमतौर पर संख्यात्मक भिन्नता में।

एक समारोह का व्युत्पन्न f एक बिंदु पर x एक फ़ंक्शन की सीमा द्वारा परिभाषित किया गया है।

यदि h शून्य के करीब पहुंचने के बजाय एक निश्चित (गैर-शून्य) मान है, तो उपरोक्त समीकरण के दाहिने हाथ की ओर लिखा जाएगा

इसलिए, आगे के अंतर से विभाजित h डेरिवेटिव का अनुमान लगाता है जब h छोटा है। इस सन्निकटन में त्रुटि टेलर के प्रमेय से प्राप्त की जा सकती है। ये मानते हुए f दो बार अवकलनीय है, हमारे पास है

पिछड़े अंतर के लिए समान सूत्र है:

हालांकि, केंद्रीय (जिसे केंद्रित भी कहा जाता है) अंतर अधिक सटीक सन्निकटन पैदा करता है। यदि f तीन गुना अवकलनीय है,

मुख्य समस्या[citation needed] हालांकि, केंद्रीय अंतर विधि के साथ, यह है कि दोलन कार्य शून्य व्युत्पन्न प्राप्त कर सकते हैं। यदि f (nh) = 1 के लिए n विषम, और f (nh) = 2 के लिए n फिर भी f ′(nh) = 0 यदि इसकी गणना केंद्रीय अंतर योजना से की जाती है। यह विशेष रूप से परेशानी भरा है अगर का डोमेन f असतत है। सममित व्युत्पन्न भी देखें

लेखक जिनके लिए परिमित अंतर का अर्थ है परिमित अंतर सन्निकटन आगे/पीछे/केंद्रीय अंतर को इस खंड में दिए गए भागफल के रूप में परिभाषित करते हैं (पिछले खंड में दी गई परिभाषाओं को नियोजित करने के बजाय)।[1][2][3]


उच्च-क्रम अंतर

एक समान तरीके से, उच्च ऑर्डर डेरिवेटिव्स और अंतर ऑपरेटरों के लिए परिमित अंतर सन्निकटन प्राप्त कर सकते हैं। उदाहरण के लिए, उपरोक्त केंद्रीय अंतर सूत्र का उपयोग करके f ′(x + h/2) और f ′(xh/2) और के व्युत्पन्न के लिए एक केंद्रीय अंतर सूत्र लागू करना f ′ पर x, हम के दूसरे व्युत्पन्न का केंद्रीय अंतर सन्निकटन प्राप्त करते हैं f:

दूसरे क्रम का केंद्रीय

इसी तरह हम अन्य भिन्न सूत्रों को पुनरावर्ती तरीके से लागू कर सकते हैं।

दूसरा आदेश आगे
दूसरा क्रम पिछड़ा

अधिक आम तौर पर,nवें क्रम आगे, पीछे, और केंद्रीय अंतर क्रमशः द्वारा दिए गए हैं,

आगे

या के लिए h = 1,

पिछड़ा

केंद्रीय

योग चिह्न के रूप में दिखाए जाने के बाद ये समीकरण द्विपद गुणांक का उपयोग करते हैं (n
i
)
. पास्कल के त्रिभुज की प्रत्येक पंक्ति के प्रत्येक मान के लिए गुणांक प्रदान करती है i.

ध्यान दें कि विषम के लिए केंद्रीय अंतर होगा n, पास होना h गैर-पूर्णांक से गुणा। यह अक्सर एक समस्या होती है क्योंकि यह विवेक के अंतराल को बदलने के बराबर होती है। का औसत लेकर समस्या का समाधान किया जा सकता है δn[ f ](xh/2) और δn[ f ](x + h/2).

एक अनुक्रम पर लागू किए गए आगे के अंतर को कभी-कभी अनुक्रम का द्विपद परिवर्तन कहा जाता है, और इसमें कई दिलचस्प संयोजी गुण होते हैं। नॉर्लंड-राइस इंटीग्रल का उपयोग करके आगे के अंतर का मूल्यांकन किया जा सकता है। इस प्रकार की श्रृंखलाओं के लिए अभिन्न प्रतिनिधित्व दिलचस्प है, क्योंकि अभिन्न का मूल्यांकन अक्सर स्पर्शोन्मुख विस्तार या लादने की सीमा तकनीकों का उपयोग करके किया जा सकता है; इसके विपरीत, आगे की अंतर श्रृंखला संख्यात्मक रूप से मूल्यांकन करने के लिए बेहद कठिन हो सकती है, क्योंकि द्विपद गुणांक बड़े के लिए तेजी से बढ़ते हैं n.

संबंधित डेरिवेटिव के साथ इन उच्च-क्रम के अंतरों का संबंध सीधा है,

बेहतर सन्निकटन बनाने के लिए उच्च-क्रम के अंतर का भी उपयोग किया जा सकता है। जैसा कि ऊपर उल्लेख किया गया है, प्रथम-क्रम अंतर आदेश की अवधि तक प्रथम-क्रम व्युत्पन्न का अनुमान लगाता है h. हालाँकि, संयोजन

अनुमानित f ′(x) आदेश की अवधि तक h2. यह टेलर श्रृंखला में उपरोक्त अभिव्यक्ति का विस्तार करके या परिमित अंतरों के कलन का उपयोग करके सिद्ध किया जा सकता है, जिसे नीचे समझाया गया है।

यदि आवश्यक हो, तो आगे, पीछे और केंद्रीय अंतरों को मिलाकर परिमित अंतर को किसी भी बिंदु पर केंद्रित किया जा सकता है।

बहुपद

डिग्री के दिए गए बहुपद के लिए n ≥ 1समारोह में व्यक्त किया P(x), वास्तविक संख्या के साथ a ≠ 0 और b और निचले क्रम की शर्तें (यदि कोई हो) के रूप में चिह्नित l.o.t.:

बाद में n जोड़ो में मतभेद, निम्नलिखित परिणाम प्राप्त किया जा सकता है, जहां h ≠ 0 अंकगणितीय अंतर को चिह्नित करने वाली एक वास्तविक संख्या है:[5]

केवल उच्चतम-क्रम पद का गुणांक रहता है। चूंकि यह परिणाम के संबंध में स्थिर है x, किसी भी जोड़ीवार अंतर का मान होगा 0.

आगमनात्मक प्रमाण

बेस केस

होने देना Q(x) डिग्री का बहुपद हो 1:

यह इसे आधार मामले के लिए साबित करता है।

स्टेप केस

होने देना R(x) डिग्री का बहुपद हो m-1 कहां m ≥ 2 और उच्चतम-क्रम पद का गुणांक हो a ≠ 0. निम्नलिखित को घात के सभी बहुपदों के लिए सत्य मानते हुए m-1:

होने देना S(x) डिग्री का बहुपद हो m. एक जोड़ो में अंतर के साथ:

जैसा ahm ≠ 0, इसका परिणाम एक बहुपद में होता है T(x) डिग्री का m-1, साथ ahm उच्चतम-क्रम अवधि के गुणांक के रूप में। उपरोक्त धारणा को देखते हुए और m-1 जोड़ीदार अंतर (जिसके परिणामस्वरूप कुल m जोड़ीदार अंतर के लिए S(x)), यह पाया जा सकता है कि:

यह प्रमाण को पूरा करता है।

आवेदन

इस पहचान का उपयोग सबसे कम-डिग्री वाले बहुपद को खोजने के लिए किया जा सकता है जो कई बिंदुओं को रोकता है (x, y) जहाँ x-अक्ष पर एक बिंदु से दूसरे बिंदु का अंतर एक स्थिरांक है h ≠ 0. उदाहरण के लिए, निम्नलिखित बिंदु दिए गए हैं:

x y
1 4
4 109
7 772
10 2641
13 6364

हम अंतर तालिका का उपयोग कर सकते हैं, जहां सभी कक्ष पहले के दाईं ओर होते हैं y, सेल के लिए तुरंत बाईं ओर कॉलम में सेल्स के लिए निम्न संबंध मौजूद है (a+1, b+1), शीर्ष-बाएँ सेल समन्वय पर होने के साथ (0, 0):

पहला पद ज्ञात करने के लिए, निम्न तालिका का उपयोग किया जा सकता है:

x y Δy Δ2y Δ3y
1 4
4 109 105
7 772 663 558
10 2641 1869 1206 648
13 6364 3723 1854 648

यह एक स्थिरांक पर आता है 648. अंकगणितीय अंतर है h=3, जैसा कि ऊपर स्थापित किया गया है। स्थिरांक तक पहुँचने के लिए जोड़ीदार अंतरों की संख्या को देखते हुए, यह अनुमान लगाया जा सकता है कि यह डिग्री का बहुपद है 3. इस प्रकार, उपरोक्त पहचान का उपयोग करना:

के लिए हल करना a, इसका मान पाया जा सकता है 4. इस प्रकार, बहुपद का पहला पद है 4x3.

फिर, पहले पद को घटाकर, जो बहुपद की घात को कम करता है, और परिमित अंतर को फिर से ज्ञात करता है:

x y Δy Δ2y
1 4 - 4(1)3 = 4 - 4 = 0
4 109 - 4(4)3 = 109 - 256 = -147 -147
7 772 - 4(7)3 = 772 - 1372 = -600 -453 -306
10 2641 - 4(10)3 = 2641 - 4000 = -1359 -759 -306
13 6364 - 4(13)3 = 6364 - 8788 = -2424 -1065 -306

यहाँ, स्थिरांक केवल 2 जोड़ीदार अंतरों के बाद प्राप्त किया जाता है, इस प्रकार निम्न परिणाम:

के लिए हल करना a, जो है -17, बहुपद का दूसरा पद है -17x2.

दूसरे पद को घटाकर, अगले पद पर जाना:

x y Δy
1 0 - (-17(1)2) = 0 + 17 = 17
4 -147 - (-17(4)2) = -147 + 272 = 125 108
7 -600 - (-17(7)2) = -600 + 833 = 233 108
10 -1359 - (-17(10)2) = -1359 + 1700 = 341 108
13 -2424 - (-17(13)2) = -2424 + 2873 = 449 108

इस प्रकार स्थिर केवल 1 जोड़ीदार अंतर के बाद प्राप्त किया जाता है:

यह पाया जा सकता है a = 36 और इस प्रकार बहुपद का तीसरा पद है 36x. तीसरे पद को घटाना:

x y
1 17 - 36(1) = 17 - 36 = -19
4 125 - 36(4) = 125 - 144 = -19
7 233 - 36(7) = 233 - 252 = -19
10 341 - 36(10) = 341 - 360 = -19
13 449 - 36(13) = 449 - 468 = -19

बिना किसी युग्मवार अंतर के, यह पाया जाता है कि बहुपद का चौथा और अंतिम पद अचर है -19. इस प्रकार, पहली तालिका में सभी बिंदुओं को इंटरसेप्ट करने वाला निम्नतम-डिग्री बहुपद पाया जाता है:


मनमाने ढंग से गुठली का आकार

रेखीय बीजगणित का उपयोग करके परिमित अंतर सन्निकटन का निर्माण किया जा सकता है जो किसी भी आदेश व्युत्पन्न के लिए बाईं ओर बिंदुओं की मनमानी संख्या और मूल्यांकन बिंदु के दाईं ओर (संभवतः भिन्न) अंकों की संख्या का उपयोग करता है। इसमें एक रेखीय प्रणाली को हल करना शामिल है जैसे कि मूल्यांकन बिंदु के चारों ओर उन बिंदुओं के योग का टेलर विस्तार वांछित व्युत्पन्न के टेलर विस्तार का सबसे अच्छा अनुमान लगाता है। इस तरह के सूत्रों को हेक्सागोनल या हीरे के आकार के ग्रिड पर रेखांकन के रूप में दर्शाया जा सकता है।[6] यह एक ग्रिड पर एक फ़ंक्शन को अलग करने के लिए उपयोगी है, जहां एक व्यक्ति ग्रिड के किनारे तक पहुंचता है, उसे एक तरफ कम और कम बिंदुओं का नमूना लेना चाहिए।

विवरण इन नोट्स में दिए गए हैं।

परिमित अंतर गुणांक कैलक्यूलेटर गैर-मानक (और यहां तक ​​कि गैर-पूर्णांक) स्टेंसिल के लिए परिमित अंतर सन्निकटन का निर्माण करता है जिसे मनमाना स्टैंसिल और वांछित व्युत्पन्न क्रम दिया जाता है .

गुण

  • सभी सकारात्मक के लिए k और n
  • लीबनिज नियम (सामान्यीकृत उत्पाद नियम) :


अंतर समीकरणों में

परिमित अंतरों का एक महत्वपूर्ण अनुप्रयोग संख्यात्मक विश्लेषण में है, विशेष रूप से संख्यात्मक आंशिक अंतर समीकरण ों में, जो साधारण अंतर समीकरण और आंशिक अंतर समीकरणों के संख्यात्मक समाधान का लक्ष्य रखता है। विचार यह है आंशिक विभेदक समीकरण में दिखाई देने वाले डेरिवेटिव को परिमित अंतर से बदल दिया जाए जो उन्हें अनुमानित करता है। परिणामी विधियों को परिमित अंतर विधियाँ कहा जाता है।

कम्प्यूटेशनल विज्ञान और इंजीनियरिंग विषयों में परिमित अंतर विधि के सामान्य अनुप्रयोग हैं, जैसे थर्मल इंजीनियरिंग , द्रव यांत्रिकी, आदि।

न्यूटन की श्रृंखला

न्यूटन बहुपद में न्यूटन फ़ॉरवर्ड डिफ़रेंस समीकरण की शर्तें शामिल हैं, जिसका नाम इसहाक न्यूटन के नाम पर रखा गया है; संक्षेप में, यह न्यूटन इंटरपोलेशन फॉर्मूला है, जो पहली बार 1687 में उनके 'फिलोसोफी नेचुरेलिस प्रिंसिपिया मैथेमेटिका' में प्रकाशित हुआ था।[7] अर्थात् निरंतर टेलर विस्तार का असतत अनुरूप,

जो किसी भी बहुपद समारोह के लिए है f और कई (लेकिन सभी नहीं) विश्लेषणात्मक कार्य ों के लिए। (यह कब पकड़ में नहीं आता है f चरघातांकी प्रकार है . यह आसानी से देखा जा सकता है, क्योंकि साइन फ़ंक्शन के पूर्णांक गुणकों पर गायब हो जाता है ; संबंधित न्यूटन श्रृंखला समान रूप से शून्य है, क्योंकि इस मामले में सभी परिमित अंतर शून्य हैं। फिर भी स्पष्ट रूप से, ज्या फलन शून्य नहीं है।) यहाँ, व्यंजक

द्विपद गुणांक है, और

खाली उत्पाद होने पर फैक्टोरियल या लोअर फैक्टोरियल गिर रहा है (x)0 1 के रूप में परिभाषित किया गया है। इस विशेष मामले में, के मूल्यों में परिवर्तन के लिए इकाई चरणों की धारणा है x, h = 1 नीचे दिए गए सामान्यीकरण का।

टेलर के प्रमेय के इस परिणाम के औपचारिक पत्राचार पर ध्यान दें। ऐतिहासिक रूप से, यह, साथ ही चू-वंडरमोंड पहचान,

(इससे अनुसरण करते हुए, और द्विपद प्रमेय के अनुरूप), उन टिप्पणियों में शामिल हैं जो अम्ब्रल कैलकुलस की प्रणाली के लिए परिपक्व हैं।

न्यूटन श्रृंखला विस्तार टेलर श्रृंखला विस्तार से बेहतर हो सकता है जब क्वांटम स्पिन (होल्स्टीन-प्रिमाकॉफ परिवर्तन देखें), नॉर्मल_ऑर्डर#बोसोनिक_ऑपरेटर_फंक्शन या असतत गिनती के आंकड़ों जैसी असतत मात्राओं पर लागू किया जाता है।[8] वास्तविक अभ्यास में कोई न्यूटन के सूत्र का उपयोग कैसे कर सकता है, यह समझाने के लिए, फाइबोनैचि अनुक्रम को दोगुना करने के पहले कुछ शब्दों पर विचार करें। f = 2, 2, 4, ... कोई एक बहुपद खोज सकता है जो पहले एक अंतर तालिका की गणना करके, और उसके बाद के अंतरों को प्रतिस्थापित करके इन मानों को पुन: उत्पन्न करता है x0 (रेखांकित) सूत्र में निम्नानुसार है,

के मूल्यों में गैर-समान चरणों के मामले में x, न्यूटन विभाजित अंतरों की गणना करता है,

उत्पादों की श्रृंखला,

और परिणामी बहुपद अदिश गुणनफल है,[9]

.

पी-एडिक संख्या के साथ विश्लेषण में |p-आदिक संख्या, Mahler के प्रमेय में कहा गया है कि धारणा है कि f एक बहुपद समारोह है कि धारणा के लिए सभी तरह से कमजोर किया जा सकता है f केवल निरंतर है।

कार्लसन की प्रमेय न्यूटन श्रृंखला के अद्वितीय होने के लिए आवश्यक और पर्याप्त शर्तें प्रदान करती है, यदि यह मौजूद है। हालाँकि, न्यूटन श्रृंखला सामान्य रूप से मौजूद नहीं है।

न्यूटन श्रृंखला, स्टर्लिंग श्रृंखला और सेलबर्ग वर्ग के साथ, सामान्य अंतर श्रृंखला का एक विशेष मामला है, जिनमें से सभी को उपयुक्त रूप से आगे बढ़ने वाले अंतरों के संदर्भ में परिभाषित किया गया है।

एक संकुचित और थोड़ा अधिक सामान्य रूप और समदूरस्थ नोड्स में सूत्र पढ़ता है


परिमित अंतरों की गणना

आगे के अंतर को एक ऑपरेटर (गणित) के रूप में माना जा सकता है, जिसे अंतर ऑपरेटर कहा जाता है, जो फ़ंक्शन को मैप करता है f को Δh[ f ].[10][11] इस ऑपरेटर की राशि है

कहां Th द्वारा परिभाषित चरण एच के साथ शिफ्ट ऑपरेटर है Th[ f ](x) = f (x + h), और I पहचान ऑपरेटर है।

उच्च आदेशों के परिमित अंतर को पुनरावर्ती तरीके से परिभाषित किया जा सकता है Δn
h
≡ Δhn − 1
h
)
. एक अन्य समकक्ष परिभाषा है Δn
h
= [ThI]n
.

अंतर ऑपरेटर Δh एक रैखिक संकारक है, इसलिए यह संतुष्ट करता है Δh[αf + βg](x) = α Δh[ f ](x) + β Δh[g](x).

यह ऊपर बताए गए एक विशेष लीबनिज़ नियम (सामान्यीकृत उत्पाद नियम) को भी संतुष्ट करता है, Δh(f (x)g(x)) = (Δhf (x)) g(x+h) + f (x) (Δhg(x)). इसी तरह के बयान पिछड़े और केंद्रीय मतभेदों के लिए हैं।

औपचारिक रूप से टेलर श्रृंखला के संबंध में आवेदन करना h, सूत्र देता है

कहां D निरंतर व्युत्पन्न ऑपरेटर, मैपिंग को दर्शाता है f इसके व्युत्पन्न के लिए f ′. विस्तार तब मान्य होता है जब दोनों पक्ष पर्याप्त रूप से छोटे के लिए विश्लेषणात्मक कार्यों पर कार्य करते हैं h. इस प्रकार, Th = ehD, और औपचारिक रूप से घातीय पैदावार को उलटा करना

यह सूत्र इस अर्थ में है कि बहुपद पर लागू होने पर दोनों संकारक समान परिणाम देते हैं।

विश्लेषणात्मक कार्यों के लिए भी, दाईं ओर की श्रृंखला को अभिसरण की गारंटी नहीं है; यह एक स्पर्शोन्मुख श्रृंखला हो सकती है। हालांकि, इसका उपयोग व्युत्पन्न के लिए अधिक सटीक सन्निकटन प्राप्त करने के लिए किया जा सकता है। उदाहरण के लिए, श्रृंखला के पहले दो पदों को बनाए रखने से दूसरे क्रम का सन्निकटन प्राप्त होता है f ′(x) #उच्च-क्रम अंतर|अनुभाग उच्च-क्रम अंतर के अंत में उल्लेख किया गया है।

पिछड़े और केंद्रीय अंतर ऑपरेटरों के लिए समान सूत्र हैं

परिमित अंतरों की गणना कॉम्बिनेटरिक्स के अम्ब्रल कैलकुलस से संबंधित है। यह उल्लेखनीय रूप से व्यवस्थित पत्राचार अम्ब्रल मात्रा के commutators की पहचान के कारण उनके निरंतर अनुरूप है (h → 0 सीमाएं),

बड़ी संख्या में मानक कलन के औपचारिक अंतर संबंध शामिल हैं कार्यों f (x) इस प्रकार अम्ब्रल परिमित-अंतर एनालॉग्स को शामिल करने के लिए व्यवस्थित रूप से मैप करें f (xT−1
h
)
.

उदाहरण के लिए, एक मोनोमियल का उम्ब्रल एनालॉग xn उपरोक्त गिरने वाले फैक्टोरियल (पोचममेर के-प्रतीक) का सामान्यीकरण है,

ताकि

इसलिए उपरोक्त न्यूटन इंटरपोलेशन फॉर्मूला (मनमाने कार्य के विस्तार में गुणांक मिलान करके f (x) ऐसे प्रतीकों में), और इसी तरह।

उदाहरण के लिए, उम्ब्रल साइन है

सातत्य सीमा के रूप में, का आइजनफंक्शन Δh/h भी एक घातीय होता है,

और इसलिए निरंतर कार्यों के फूरियर योगों को आसानी से अम्ब्रल फूरियर योगों के लिए मैप किया जाता है, यानी, इन umbral आधार घातांकों को गुणा करने वाले समान फूरियर गुणांकों को शामिल करना।[12] यह उम्ब्रल एक्सपोनेंशियल इस प्रकार पोचममेर प्रतीकों के एक्सपोनेंशियल जनरेटिंग फ़ंक्शन की मात्रा है।

इस प्रकार, उदाहरण के लिए, डिराक डेल्टा समारोह मैप्स को इसके उम्ब्रल संवाददाता, सिंक समारोह ,

इत्यादि।[13] अंतर समीकरणों को अक्सर उन तकनीकों के साथ हल किया जा सकता है जो अंतर समीकरणों को हल करने के लिए बहुत समान हैं।

फ़ॉरवर्ड डिफ़रेंस ऑपरेटर का व्युत्क्रम संकारक, इसलिए फिर उम्ब्रल इंटीग्रल, अनिश्चित योग या प्रतिपक्ष संकारक है।

परिमित अंतर ऑपरेटरों की गणना के लिए नियम

भेदभाव नियमों के अनुरूप, हमारे पास है:

  • निरंतर नियम : यदि c एक स्थिरांक (गणित) है, तब
  • विभेदन की रैखिकता: यदि a और b स्थिर हैं (गणित),

उपरोक्त सभी नियम किसी भी अंतर ऑपरेटर पर समान रूप से अच्छी तरह से लागू होते हैं, जिनमें शामिल हैं के रूप में Δ.

या

संदर्भ देखें।[14][15][16][17]


सामान्यीकरण

  • एक सामान्यीकृत परिमित अंतर को आमतौर पर इस रूप में परिभाषित किया जाता है
    कहां μ = (μ0, …, μN) इसका गुणांक वेक्टर है। एक अनंत अंतर एक और सामान्यीकरण है, जहां ऊपर परिमित योग को एक श्रृंखला (गणित) द्वारा प्रतिस्थापित किया जाता है। सामान्यीकरण का दूसरा तरीका गुणांक बना रहा है μk बिन्दु पर निर्भर है x: μk = μk(x), इस प्रकार भारित परिमित अंतर पर विचार करना। कोई कदम भी उठा सकता है h बिन्दु पर निर्भर है x: h = h(x). इस तरह के सामान्यीकरण निरंतरता के विभिन्न मापांकों के निर्माण के लिए उपयोगी होते हैं।
  • सामान्यीकृत अंतर को बहुपद के छल्ले के रूप में देखा जा सकता है R[Th]. यह अंतर बीजगणित की ओर जाता है।
  • डिफरेंस ऑपरेटर आंशिक रूप से ऑर्डर किए गए सेट पर मोबियस इनवर्जन का सामान्यीकरण करता है।
  • घुमाव ऑपरेटर के रूप में: घटना बीजगणित की औपचारिकता के माध्यम से, अंतर ऑपरेटर और अन्य मोबियस व्युत्क्रम को पोसेट पर एक फ़ंक्शन के साथ कनवल्शन द्वारा दर्शाया जा सकता है, जिसे मोबियस फ़ंक्शन कहा जाता है μ; अंतर ऑपरेटर के लिए μ क्रम है (1, −1, 0, 0, 0, …).

बहुभिन्नरूपी परिमित अंतर

परिमित अंतरों को एक से अधिक चरों में माना जा सकता है। वे कई चरों में आंशिक डेरिवेटिव के अनुरूप हैं।

कुछ आंशिक व्युत्पन्न सन्निकटन हैं:

वैकल्पिक रूप से, उन अनुप्रयोगों के लिए जिनमें की गणना f सबसे महंगा कदम है, और पहले और दूसरे डेरिवेटिव दोनों की गणना की जानी चाहिए, अंतिम मामले के लिए एक अधिक कुशल सूत्र है

चूंकि गणना करने के लिए केवल वही मान हैं जिनकी पहले से ही पिछले चार समीकरणों के लिए आवश्यकता नहीं है f (x + h, y + k) और f (xh, yk).

यह भी देखें


संदर्भ

  1. 1.0 1.1 1.2 Paul Wilmott; Sam Howison; Jeff Dewynne (1995). वित्तीय डेरिवेटिव का गणित: एक छात्र परिचय. Cambridge University Press. p. 137. ISBN 978-0-521-49789-3.
  2. 2.0 2.1 2.2 Peter Olver (2013). आंशिक विभेदक समीकरणों का परिचय. Springer Science & Business Media. p. 182. ISBN 978-3-319-02099-0.
  3. 3.0 3.1 3.2 M Hanif Chaudhry (2007). ओपन-चैनल फ्लो. Springer. p. 369. ISBN 978-0-387-68648-6.
  4. Jordán, op. cit., p. 1 and Milne-Thomson, p. xxi. Milne-Thomson, Louis Melville (2000): The Calculus of Finite Differences (Chelsea Pub Co, 2000) ISBN 978-0821821077
  5. "बहुपदों के परिमित अंतर". February 13, 2018.
  6. Fraser, Duncan C. (1 January 1909). "इंटरपोलेशन फॉर्मूले के ग्राफिक चित्रण पर". Journal of the Institute of Actuaries. 43 (2): 235–241. doi:10.1017/S002026810002494X. Retrieved 17 April 2017.
  7. Newton, Isaac, (1687). Principia, Book III, Lemma V, Case 1
  8. Jürgen König and Alfred Hucht, SciPost Phys. 10, 007 (2021) doi:10.21468/SciPostPhys.10.1.007
  9. Richtmeyer, D. and Morton, K.W., (1967). Difference Methods for Initial Value Problems, 2nd ed., Wiley, New York.
  10. Boole, George, (1872). A Treatise On The Calculus of Finite Differences, 2nd ed., Macmillan and Company. On line. Also, [Dover edition 1960]
  11. Jordan, Charles, (1939/1965). "Calculus of Finite Differences", Chelsea Publishing. On-line: [1]
  12. Zachos, C. (2008). "डिस्क्रीट स्पेस-टाइम पर अम्ब्रल विरूपण". International Journal of Modern Physics A. 23 (13): 2005–2014. arXiv:0710.2306. Bibcode:2008IJMPA..23.2005Z. doi:10.1142/S0217751X08040548. S2CID 16797959.
  13. Curtright, T. L.; Zachos, C. K. (2013). "अम्ब्राल वेड मेकुम". Frontiers in Physics. 1: 15. arXiv:1304.0429. Bibcode:2013FrP.....1...15C. doi:10.3389/fphy.2013.00015. S2CID 14106142.
  14. Levy, H.; Lessman, F. (1992). परिमित अंतर समीकरण. Dover. ISBN 0-486-67260-3.
  15. Ames, W. F., (1977). Numerical Methods for Partial Differential Equations, Section 1.6. Academic Press, New York. ISBN 0-12-056760-1.
  16. Hildebrand, F. B., (1968). Finite-Difference Equations and Simulations, Section 2.2, Prentice-Hall, Englewood Cliffs, New Jersey.
  17. Flajolet, Philippe; Sedgewick, Robert (1995). "मेलिन ट्रांसफॉर्म और एसिम्प्टोटिक्स: परिमित अंतर और राइस इंटीग्रल" (PDF). Theoretical Computer Science. 144 (1–2): 101–124. doi:10.1016/0304-3975(94)00281-M..
  • Richardson, C. H. (1954): An Introduction to the Calculus of Finite Differences (Van Nostrand (1954) online copy
  • Mickens, R. E. (1991): Difference Equations: Theory and Applications (Chapman and Hall/CRC) ISBN 978-0442001360


इस पेज में लापता आंतरिक लिंक की सूची

  • गणना
  • बहुत छोता
  • समारोह (गणित)
  • संख्यात्मक विभेदन
  • एक समारोह की सीमा
  • तरल यांत्रिकी
  • घातीय प्रकार
  • फिबोनाची अनुक्रम
  • विभाजित मतभेद
  • अदिश उत्पाद
  • रैखिक ऑपरेटर
  • पोछाम्मेर क-सिंबल
  • निरंतरता की सीमा
  • पोछाम्मेर सिंबल
  • मैं अनिश्चित काल के लिए हूं
  • विभेदन नियम
  • निरंतर (गणित)
  • भेदभाव की रैखिकता
  • निरंतरता का मापांक
  • आंशिक रूप से आदेशित सेट

बाहरी कड़ियाँ

श्रेणी: संख्यात्मक अंतर समीकरण श्रेणी:गणितीय विश्लेषण श्रेणी: क्रमगुणित और द्विपद विषय श्रेणी: कैलकुलस में लीनियर ऑपरेटर्स श्रेणी: संख्यात्मक विश्लेषण श्रेणी: गैर-न्यूटोनियन कलन