फंक्टर
गणित में, विशेष रूप से श्रेणी सिद्धांत , एक फंक्शनर श्रेणी (गणित) के बीच एक नक्शा (गणित) है।फंक्शनर्स को पहले बीजगणितीय टोपोलॉजी में माना जाता था, जहां बीजगणितीय वस्तुएं (जैसे मौलिक समूह ) सामयिक स्थान स्थान से जुड़े होते हैं, और इन बीजीय वस्तुओं के बीच के नक्शे रिक्त स्थान के बीच निरंतर फ़ंक्शन मानचित्रों से जुड़े होते हैं।आजकल, विभिन्न श्रेणियों से संबंधित करने के लिए आधुनिक गणित में फंक्शनर्स का उपयोग किया जाता है।इस प्रकार, गणित के भीतर सभी क्षेत्रों में फंक्शनर्स महत्वपूर्ण हैं, जिसमें श्रेणी सिद्धांत लागू किया जाता है।
शब्द श्रेणी और फंक्शनर क्रमशः दार्शनिकों अरस्तू और रुडोल्फ कार्नाप के गणितज्ञों द्वारा उधार लिए गए थे।[1] उत्तरार्द्ध एक भाषाविज्ञान संदर्भ में फंक्शनर का इस्तेमाल किया;[2] फ़ंक्शन शब्द देखें।
परिभाषा
C और D को श्रेणी (गणित) होने दें।C से D तक एक 'फ़नक्टर' F एक मैपिंग है[3]
- प्रत्येक वस्तु को संबद्ध करता है किसी वस्तु के लिए सी में डी में,
- प्रत्येक रूपांतरण को संबद्ध करता है सी में एक मॉर्फिज्म डी में ऐसा है कि निम्नलिखित दो शर्तें हैं:
- हर वस्तु के लिए सी में,
- सभी रूपों के लिए और सी।
अर्थात्, फंक्शनर्स को मॉर्फिज्म की रूपरेखा को संरक्षित करना चाहिए और मॉर्फिज़्म की फ़ंक्शन रचना।
सहसंयोजक और कॉन्ट्रैवेरियन
गणित में कई निर्माण हैं जो फंक्शनर होंगे लेकिन इस तथ्य के लिए कि वे आकारिकी को चारों ओर घुमाएंगे और संरचना को उल्टा कर देते हैं।हम तब एक कॉन्ट्रैवेरियनट फनक्टर f को C से D से एक मैपिंग के रूप में परिभाषित करते हैं
- प्रत्येक वस्तु को संबद्ध करता है एक वस्तु के साथ C में डी में,
- प्रत्येक रूपांतरण को संबद्ध करता है एक मॉर्फिज्म के साथ सी में डी में ऐसा है कि निम्नलिखित दो शर्तें हैं:
- हर वस्तु के लिए सी में,
- सभी रूपों के लिए और सी।
ध्यान दें कि कॉन्ट्रैवेरिएंट फंक्शनर्स रचना की दिशा को उलटते हैं।
साधारण फंक्शनर्स को 'कोवेरिएंट फंक्शनर्स' भी कहा जाता है ताकि उन्हें कॉन्ट्रैवेरिएंट वाले से अलग किया जा सके।ध्यान दें कि कोई भी विपरीत श्रेणी में एक सहसंयोजक फ़नक्टर के रूप में एक कॉन्ट्रैवेरिएंट फंक्शनर को परिभाषित कर सकता है .[4] कुछ लेखक सभी अभिव्यक्तियों को सहसंयोजक रूप से लिखना पसंद करते हैं।अर्थात् कहने के बजाय एक कॉन्ट्रैवेरियनट फंक्टर है, वे बस लिखते हैं (या कभी -कभी ) और इसे एक फंक्शनर कहें।
कॉन्ट्रैवेरियनट फनक्रेटर्स को कभी -कभी कोफंक्टर भी कहा जाता है।[5] एक सम्मेलन है जो वैक्टर को संदर्भित करता है -आई।, वेक्टर क्षेत्र , वर्गों के स्थान के तत्व एक स्पर्शरेखा बंडल की —एएस कॉन्ट्रैवेरियन और कोवेक्टर्स के लिए-आई। एक cotangent बंडल की —एक सहसंयोजक।यह शब्दावली भौतिकी में उत्पन्न होती है, और इसके औचित्य का आइंस्टीन योग में सूचकांकों (ऊपर और नीचे) की स्थिति के साथ करना है जैसे के लिए या के लिए इस औपचारिकता में यह देखा गया है कि समन्वय परिवर्तन प्रतीक (मैट्रिक्स का प्रतिनिधित्व करना ) कोवेक्टर निर्देशांक पर उसी तरह से वैक्टर के आधार पर कार्य करता है: -उनस यह वेक्टर निर्देशांक पर विपरीत तरीके से कार्य करता है (लेकिन उसी तरह जैसे कि आधार पर कोवेक्टर्स: )।यह शब्दावली श्रेणी के सिद्धांत में उपयोग किए जाने वाले एक के विपरीत है क्योंकि यह कोवेक्टर्स है जिसमें सामान्य रूप से पुलबैक होते हैं और इस प्रकार कंट्रैथेरिएंट होते हैं, जबकि सामान्य रूप से वैक्टर सहसंयोजक होते हैं क्योंकि उन्हें आगे बढ़ाया जा सकता है।वैक्टर के सहसंयोजक और कॉन्ट्रैवेरियन भी देखें।
विपरीत फंक्शनक
हर फंक्टर विपरीत फंक्शनर को प्रेरित करता है , कहां और इसके विपरीत श्रेणी हैं और .[6] परिभाषा से, समान तरीके से वस्तुओं और आकारिकी को मानचित्र ।तब से के साथ मेल नहीं खाता है एक श्रेणी के रूप में, और इसी तरह के लिए , से प्रतिष्ठित है ।उदाहरण के लिए, रचना करते समय साथ , एक का उपयोग करना चाहिए या ।ध्यान दें कि, विपरीत श्रेणी की संपत्ति के बाद, ।
bifunctors और multipactors
एक bifunctor (जिसे बाइनरी फंक्शनर के रूप में भी जाना जाता है) एक फ़ंक्टर है जिसका डोमेन एक उत्पाद श्रेणी है।उदाहरण के लिए, सींग का फंक्टर प्रकार का है Cop × C → Set।इसे दो तर्कों में एक फ़ंक्टर के रूप में देखा जा सकता है।होम फंक्टर एक प्राकृतिक उदाहरण है;यह एक तर्क में विपरीत है, दूसरे में सहसंयोजक।
एक 'मल्टीफ़ंक्टर' एन चर के लिए फ़नक्टर अवधारणा का एक सामान्यीकरण है।तो, उदाहरण के लिए, एक bifunctor के साथ एक मल्टीफंक्टर है n = 2।
गुण
फंक्शनर स्वयंसिद्ध ों के दो महत्वपूर्ण परिणाम हैं:
- एफ सी में प्रत्येक कम्यूटेटिव आरेख को डी में एक कम्यूटेटिव आरेख में बदल देता है;
- यदि F C में एक समाकृतिकता है, तो F (f) D में एक आइसोमोर्फिज्म है।
एक फ़ंक्शनर्स की रचना कर सकता है, अर्थात् यदि F A से B तक एक फ़न्क्टर है और G B से C तक एक फ़न्क्टर है तो कोई समग्र फंक्शनर बना सकता है G ∘ F ए से सी से फंक्शनर्स की रचना साहचर्य है जहां परिभाषित किया गया है।फंक्शनर्स की रचना की पहचान पहचान फंक्शनर है।इससे पता चलता है कि फ़ंक्शनर्स को श्रेणियों की श्रेणियों में रूपांतरण माना जा सकता है, उदाहरण के लिए छोटी श्रेणियों की श्रेणी में।
एकल वस्तु के साथ एक छोटी श्रेणी एक मोनोइड के रूप में एक ही बात है: एक-वस्तु श्रेणी के रूपवाद को मोनोइड के तत्वों के रूप में माना जा सकता है, और श्रेणी में रचना को मोनोइड ऑपरेशन के रूप में माना जाता है।एक ऑब्जेक्ट श्रेणियों के बीच फंक्शनर्स मोनोइड समरूपता के अनुरूप हैं।तो एक अर्थ में, मनमानी श्रेणियों के बीच फंक्शनर्स एक से अधिक वस्तुओं के साथ श्रेणियों के लिए मोनोइड होमोमोर्फिज्म का एक प्रकार का सामान्यीकरण है।
उदाहरण
- आरेख (श्रेणी सिद्धांत)
- श्रेणियों सी और जे के लिए, सी में टाइप जे का एक आरेख एक सहसंयोजक फंक्टर है ।
- Presheaf (श्रेणी सिद्धांत) | (श्रेणी सैद्धांतिक) Presheaf
- C और J के लिए, C पर एक J-PRESHEAF एक कॉन्ट्रैवेरियन फंक्शनर है .विशेष मामले में जब j सेट किया जाता है, तो सेट और फ़ंक्शंस की श्रेणी, d को C पर एक presheaf (श्रेणी सिद्धांत) कहा जाता है।
- Presheaves (एक टोपोलॉजिकल स्पेस से अधिक)
- यदि x एक टोपोलॉजिकल स्पेस है, तो समावेश के तहत आंशिक रूप से ऑर्डर किए गए सेट ओपन ( x ) x में खुले सेट।हर आंशिक रूप से ऑर्डर किए गए सेट की तरह, ओपन ( x ) एक ही तीर जोड़कर एक छोटी श्रेणी बनाता है U → V अगर और केवल अगर ।ओपन (एक्स) पर कॉन्ट्रैवेरियनट फनक्रेटर्स को एक्स पर प्रेफ़ेफ़ कहा जाता है। उदाहरण के लिए, हर ओपन सेट यू को यू पर वास्तविक-मूल्यवान निरंतर कार्यों के साहचर्य बीजगणित को असाइन करके, एक एक्स पर बीजगणितों का एक प्रेसिफ़ प्राप्त करता है।
- लगातार फंक्टर
- फंक्शनर C → D जो सी की प्रत्येक वस्तु को डी में एक निश्चित ऑब्जेक्ट एक्स और सी में प्रत्येक रूपांतरण को एक्स पर पहचान मॉर्फिज़्म के लिए मैप करता है। इस तरह के फंक्शनल को एक निरंतर या चयन फंक्शनर कहा जाता है।
- Endofunctor
- एक फ़ंक्शन जो उसी श्रेणी में एक श्रेणी को मैप करता है;उदा।, बहुपद फंक्शनर।
- Identity functor
- श्रेणी सी में, लिखित 1C या आईडीC, अपने आप को एक वस्तु और खुद के लिए एक रूपांतरण मानते हैं।पहचान फ़ंक्शनर एक एंडोफंक्टर है।
- विकर्ण फंक्शनर
- विकर्ण फंक्शनर को फंक्शनर के रूप में डी से फंक्टर श्रेणी डी तक परिभाषित किया गया हैC जो उस ऑब्जेक्ट पर प्रत्येक ऑब्जेक्ट को D में निरंतर फ़ंक्शनर को भेजता है।
- फ़ंक्शन को सीमित करें
- एक निश्चित सूचकांक श्रेणी J के लिए, यदि प्रत्येक फ़ंक्टर J → C एक सीमा (श्रेणी सिद्धांत) है (उदाहरण के लिए यदि C पूरा हो गया है), तो सीमा फ़ंक्टर CJ → C प्रत्येक फ़ंक्टर को इसकी सीमा सौंपता है।इस फ़ंक्शनर के अस्तित्व को यह महसूस करके साबित किया जा सकता है कि यह आसन्न फंक्शनर्स है। विकर्ण फंक्शनर के लिए राइट-एडजॉइंट और Freyd Adjoint Functor Theorem का आह्वान कर रहा है।इसके लिए पसंद के स्वयंसिद्ध के एक उपयुक्त संस्करण की आवश्यकता होती है।इसी तरह की टिप्पणी Colimit Functor पर लागू होती है (जो अपने Colimit के प्रत्येक फ़ंक्टर को असाइन करती है, और सहसंयोजक है)।
- पावर सेट फ़न्टर
- पावर सेट फ़नक्टर P : Set → Set प्रत्येक सेट को अपने सत्ता स्थापित और प्रत्येक फ़ंक्शन के लिए मानचित्र उस नक्शे के लिए जो भेजता है इसकी छवि के लिए ।एक कॉन्ट्रैवेरियन पावर सेट फ़ंक्टर पर भी विचार कर सकता है जो भेजता है उस नक्शे के लिए जो भेजता है इसकी उलटा छवि के लिए उदाहरण के लिए, यदि तब ।मान लीजिए और ।फिर वह फ़ंक्शन है जो किसी भी सबसेट को भेजता है का इसकी छवि के लिए , इस मामले में जिसका अर्थ है , कहां के तहत मानचित्रण को दर्शाता है , तो यह भी लिखा जा सकता है ।अन्य मूल्यों के लिए, ध्यान दें कि नतीजतन तुच्छ टोपोलॉजी उत्पन्न करता है ।यह भी ध्यान दें कि हालांकि फ़ंक्शन इस उदाहरण में के पावर सेट पर मैप किया गया , यह सामान्य रूप से मामला नहीं है।
- Dual vector space
- वह नक्शा जो प्रत्येक सदिश स्थल को अपने दोहरे स्थान को सौंपता है और प्रत्येक रैखिक ऑपरेटर को इसके दोहरे या ट्रांसपोज़ में एक निश्चित क्षेत्र (गणित) पर सभी वेक्टर रिक्त स्थान की श्रेणी से एक कॉन्ट्रैवेरियनट फंक्टर है।
- मौलिक समूह
- नुकीले टोपोलॉजिकल रिक्त स्थान की श्रेणी पर विचार करें, अर्थात् प्रतिष्ठित बिंदुओं के साथ टोपोलॉजिकल रिक्त स्थान।वस्तुएं जोड़े हैं (X, x0), जहां एक्स एक टोपोलॉजिकल स्पेस और एक्स है0 एक्स में एक बिंदु है। एक रूपवाद से (X, x0) को (Y, y0) एक सतत फ़ंक्शन (टोपोलॉजी) मानचित्र द्वारा दिया गया है f : X → Y साथ f(x0) = y0. प्रतिष्ठित बिंदु x के साथ हर टोपोलॉजिकल स्पेस एक्स के लिए0, एक X पर आधारित मौलिक समूह को परिभाषित कर सकता है0, निरूपित π1(X, x0)।यह एक्स पर आधारित लूप के होमोटॉपी वर्गों का समूह (गणित) है0, कॉन्टेनेशन के समूह संचालन के साथ।यदि f : X → Y नुकीले स्थानों का एक रूपवाद है, फिर बेस पॉइंट एक्स के साथ एक्स में प्रत्येक लूप0 आधार बिंदु y के साथ y में एक लूप प्राप्त करने के लिए f के साथ बनाया जा सकता है0।यह ऑपरेशन होमोटोपी तुल्यता संबंध और छोरों की संरचना के साथ संगत है, और हमें एक समूह होमोमोर्फिज्म मिलता है π(X, x0) को π(Y, y0)।इस प्रकार हम समूहों की श्रेणी में नुकीले टोपोलॉजिकल रिक्त स्थान की श्रेणी से एक फ़ंक्टर प्राप्त करते हैं। टोपोलॉजिकल रिक्त स्थान (प्रतिष्ठित बिंदु के बिना) की श्रेणी में, कोई जेनेरिक घटता के होमोटॉपी वर्गों पर विचार करता है, लेकिन जब तक वे एक समापन बिंदु साझा नहीं करते हैं, तब तक उन्हें बनाया नहीं जा सकता है।इस प्रकार एक के पास मौलिक समूह के बजाय मौलिक समूह है, और यह निर्माण फंक्शनल है।
- निरंतर कार्यों का बीजगणित
- वास्तविक सहयोगी बीजगणित की श्रेणी के लिए टोपोलॉजी की श्रेणी (निरंतर नक्शे के रूप में) की श्रेणी से एक कॉन्ट्रैवेरियनट फंक्टर को हर टोपोलॉजिकल स्पेस 'एक्स' 'द बीजगणित सी (' 'एक्स' ') को असाइन करके दिया गया है।उस स्थान पर सभी वास्तविक-मूल्य वाले निरंतर कार्यों में से।हर निरंतर नक्शा f : X → Y एक बीजगणित समरूपता को प्रेरित करता है C(f) : C(Y) → C(X) नियम से C(f)(φ) = φ ∘ f प्रत्येक φ के लिए c (y) में।
- स्पर्शरेखा और cotangent बंडलों
- वह नक्शा जो अपने स्पर्शरेखा बंडल में हर अलग -अलग कई गुना को भेजता है और इसके व्युत्पन्न के लिए हर चिकनी नक्शा वेक्टर बंडल ों की श्रेणी में विभिन्न मैनिफोल्ड्स की श्रेणी से एक सहसंयोजक फंक्शनर है। इस कंस्ट्रक्शंस पॉइंटवाइज को करने स्पर्शरेखा स्थान अंतरिक्ष होता है, जो वास्तविक वेक्टर रिक्त स्थान की श्रेणी में नुकीले विभेदक कई गुना की श्रेणी से एक सहसंयोजक फ़न्टर देता है।इसी तरह, कोटजेंट स्पेस एक कॉन्ट्रैवेरियनट फंक्टर है, जो अनिवार्य रूप से ऊपर के #Dual वेक्टर स्पेस के साथ स्पर्शरेखा अंतरिक्ष की संरचना है।
- समूह क्रियाएं/अभ्यावेदन
- प्रत्येक समूह (गणित) जी को एक एकल वस्तु के साथ एक श्रेणी के रूप में माना जा सकता है, जिसका मॉर्फिज़्म जी के तत्व हैं। जी से 'सेट' तक एक फंक्शनर तब कुछ भी नहीं है, लेकिन जी की एक समूह कार्रवाई (गणित) जी पर कुछ भी नहीं है।एक विशेष सेट, यानी एक जी-सेट।इसी तरह, जी से वेक्टर रिक्त स्थान की श्रेणी में एक फंक्टर, 'वेक्ट'K, सामान्य रूप से जी का एक रैखिक प्रतिनिधित्व है, एक फंक्टर G → C श्रेणी C में किसी वस्तु पर G की कार्रवाई के रूप में माना जा सकता है। यदि C एक समूह है, तो यह कार्रवाई एक समूह समरूपता है।
- LIE ALGEBRAS
- हर वास्तविक (जटिल) को असाइन करना LIE समूह का वास्तविक (जटिल) LIE ALGEBRA एक फंक्शनर को परिभाषित करता है।
- टेंसर उत्पाद
- यदि C एक निश्चित क्षेत्र पर वेक्टर रिक्त स्थान की श्रेणी को दर्शाता है, तो रेखीय ऑपरेटर के रूप में मॉर्फिज्म के साथ, फिर टेंसर उत्पाद एक फ़ंक्टर को परिभाषित करता है C × C → C जो दोनों तर्कों में सहसंयोजक है।[7]
- भुलक्कड़ फंक्शनर्स
- फंक्टर U : Grp → Set जो अपने अंतर्निहित सेट के लिए एक समूह (गणित) को मैप करता है और सेट के अपने अंतर्निहित कार्य के लिए एक समूह समरूपता एक फंक्शनर है।[8] इन जैसे फंक्शन्स, जो कुछ संरचना को भूल जाते हैं, को भुलक्कड़ फंक्शनर्स कहा जाता है।एक अन्य उदाहरण फंक्टर है Rng → Ab जो अपने अंतर्निहित एडिटिव एबेलियन समूह के लिए एक अंगूठी (बीजगणित) को मैप करता है।आरएनजी (रिंग समरूपता ) में मॉर्फिज्म एबी (एबेलियन ग्रुप होमोमोर्फिज्म) में मॉर्फिज्म बन जाता है।
- फ्री फंक्शनर्स
- फोल्डफुल फंक्शनर्स के विपरीत दिशा में जाना मुफ्त फंक्शनर्स हैं।फ्री फंक्टर F : Set → Grp प्रत्येक सेट एक्स को एक्स द्वारा उत्पन्न मुफ्त समूह को भेजता है। फ़ंक्शंस को फ्री समूहों के बीच समूह होमोमोर्फिज्म के लिए मैप किया जाता है।संरचित सेटों के आधार पर कई श्रेणियों के लिए नि: शुल्क निर्माण मौजूद हैं।मुक्त वस्तु देखें।
- होमोमोर्फिज़्म समूह
- हर जोड़ी के लिए, समूह (गणित) के बी (गणित) एक एबेलियन ग्रुप होम (ए, बी) को ए से बी तक सभी समूह होमोमोर्फिज्म से मिलकर असाइन कर सकते हैंदूसरा तर्क, यानी यह एक फ़ंक्टर है Abop × Ab → Ab (जहां एबी समूह होमोमोर्फिज्म के साथ एबेलियन समूहों की श्रेणी को दर्शाता है)।यदि f : A1 → A2 और g : B1 → B2 एबी में मॉर्फिज्म हैं, फिर समूह समरूपतावाद Hom(f, g): Hom(A2, B1) → Hom(A1, B2) द्वारा दिया गया है φ ↦ g ∘ φ ∘ f।होम फंक्टर देखें।
- प्रतिनिधित्व योग्य फ़ंक्शन
- हम पिछले उदाहरण को किसी भी श्रेणी C के लिए सामान्य कर सकते हैं। Hom(X, Y) एक्स से वाई तक के रूपों में। यह एक फंक्शनर को 'सेट' करने के लिए परिभाषित करता है जो पहले तर्क में कंट्रैथेरिएंट है और दूसरे में सहसंयोजक, यानी यह एक फंक्शनर है Cop × C → Set।यदि f : X1 → X2 और g : Y1 → Y2 सी में मॉर्फिज्म हैं, फिर नक्शा Hom(f, g) : Hom(X2, Y1) → Hom(X1, Y2) द्वारा दिया गया है φ ↦ g ∘ φ ∘ f. इन जैसे फ़नक को प्रतिनिधित्व योग्य फ़नक्टर कहा जाता है।कई सेटिंग्स में एक महत्वपूर्ण लक्ष्य यह निर्धारित करना है कि क्या दिया गया फ़ंक्टर प्रतिनिधित्व योग्य है।
अन्य श्रेणीबद्ध अवधारणाओं से संबंध
C और D को श्रेणियां दें।C से D तक के सभी फ़नक्रेटर्स का संग्रह एक श्रेणी की वस्तुओं को बनाता है: फंक्शनर श्रेणी।इस श्रेणी में मॉर्फिज्म फंक्शनर्स के बीच प्राकृतिक परिवर्तन हैं।
फंक्शनर्स को अक्सर सार्वभौमिक संपत्ति द्वारा परिभाषित किया जाता है;उदाहरण टेंसर उत्पाद हैं, मॉड्यूल का प्रत्यक्ष योग और समूहों या वेक्टर रिक्त स्थान के प्रत्यक्ष उत्पाद , मुक्त समूहों और मॉड्यूल का निर्माण, प्रत्यक्ष सीमा और व्युत्क्रम सीमा सीमा।सीमा (श्रेणी सिद्धांत) की अवधारणाएं उपरोक्त में से कई को सामान्य करती हैं।
सार्वभौमिक निर्माण अक्सर आसन्न फंक्शनर्स के जोड़े को जन्म देते हैं।
कंप्यूटर कार्यान्वयन
फ़नक्टर कभी -कभी कार्यात्मक प्रोग्रामिंग में दिखाई देते हैं।उदाहरण के लिएकार्यात्मक प्रोग्रामन भाषा हास्केल (प्रोग्रामिंग भाषा) का एक प्रकार का वर्ग है Functor
जहां मानचित्र (उच्च-क्रम फ़ंक्शन) #Generalization |fmap
एक पॉलीटाइपिक फ़ंक्शन है जिसका उपयोग फ़ंक्शन (कंप्यूटर प्रोग्रामिंग) (HASK पर मॉर्फिज्म, Haskell प्रकारों की श्रेणी) के लिए किया जाता है[9] कुछ नए प्रकारों के बीच कार्यों के लिए मौजूदा प्रकारों के बीच।[10]
यह भी देखें
- फंक्शनर श्रेणी
- कान विस्तार
- स्यूडोफंक्चर
टिप्पणियाँ
- ↑ Mac Lane, Saunders (1971), Categories for the Working Mathematician, New York: Springer-Verlag, p. 30, ISBN 978-3-540-90035-1
- ↑ Carnap, Rudolf (1937). The Logical Syntax of Language, Routledge & Kegan, pp. 13–14.
- ↑ Jacobson (2009), p. 19, def. 1.2.
- ↑ Jacobson (2009), pp. 19–20.
- ↑ Popescu, Nicolae; Popescu, Liliana (1979). Theory of categories. Dordrecht: Springer. p. 12. ISBN 9789400995505. Retrieved 23 April 2016.
- ↑ Mac Lane, Saunders; Moerdijk, Ieke (1992), Sheaves in geometry and logic: a first introduction to topos theory, Springer, ISBN 978-0-387-97710-2
- ↑ Hazewinkel, Michiel; Gubareni, Nadezhda Mikhaĭlovna; Gubareni, Nadiya; Kirichenko, Vladimir V. (2004), Algebras, rings and modules, Springer, ISBN 978-1-4020-2690-4
- ↑ Jacobson (2009), p. 20, ex. 2.
- ↑ It's not entirely clear that Haskell datatypes truly form a category. See https://wiki.haskell.org/Hask for more details.
- ↑ See https://wiki.haskell.org/Category_theory/Functor#Functors_in_Haskell for more information.
संदर्भ
- Jacobson, Nathan (2009), Basic algebra, vol. 2 (2nd ed.), Dover, ISBN 978-0-486-47187-7.
इस पृष्ठ में गुम आंतरिक लिंक की सूची
- बीजगणित टोपोलॉजी
- सतत कार्य
- अंक शास्त्र
- मानचित्र (गणित)
- भाषा विज्ञान
- समारोह शब्द
- समारोह रचना
- 1 रूप
- कोटगेंट बंडल
- आइंस्टीन संक्षेप
- आक्रामक आरेख
- पूर्वाभास (श्रेणी सिद्धांत)
- आंशिक रूप से आदेशित सेट
- खुला सेट
- साहित्यिक बीजगणित
- पूर्वाभास
- बहुपतिस्म
- विकर्ण फंक्टर
- पसंद का स्वयंसिद्ध
- रैखिक प्रचालक
- दोहरी स्थान
- नुकीला टोपोलॉजिकल स्पेस
- सतत कार्य (टोपोलॉजी)
- नुकीला स्थान
- समूह समरूपता
- समतुल्यता संबंध
- ग्रुपॉइड
- बीजगणितता
- सुगम मानचित्र
- अलग -अलग गुना
- यौगिक
- वेक्टर स्थानों की श्रेणी
- समूह क्रिया (गणित)
- झूठ बीजगणित
- झूठ समूह
- भुलक्कड़ फंक्टर
- रिंग (बीजगणित)
- मुक्त समूह
- निरूपित फ़ंक्टर
- उलटा सीमा
- फ्य्युनेटर श्रेणी
- टाइप वर्ग
- पोलीटाइपिक फ़ंक्शन
- विस्तार कर सकते हैं
बाहरी कड़ियाँ
- "Functor", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- see functor at the nLab and the variations discussed and linked to there.
- André Joyal, CatLab, a wiki project dedicated to the exposition of categorical mathematics
- Hillman, Chris (2001). "A Categorical Primer". CiteSeerX 10.1.1.24.3264:
{{cite web}}
: Missing or empty|url=
(help) formal introduction to category theory. - J. Adamek, H. Herrlich, G. Stecker, Abstract and Concrete Categories-The Joy of Cats Archived 2015-04-21 at the Wayback Machine
- Stanford Encyclopedia of Philosophy: "Category Theory" — by Jean-Pierre Marquis. Extensive bibliography.
- List of academic conferences on category theory
- Baez, John, 1996,"The Tale of n-categories." An informal introduction to higher order categories.
- WildCats is a category theory package for Mathematica. Manipulation and visualization of objects, morphisms, categories, functors, natural transformations, universal properties.
- The catsters, a YouTube channel about category theory.
- Video archive of recorded talks relevant to categories, logic and the foundations of physics.
- Interactive Web page which generates examples of categorical constructions in the category of finite sets.