इलेक्ट्रोडायनामिक टीथर

From Vigyanwiki
Revision as of 19:20, 19 January 2023 by alpha>Radhamishra
मध्यम क्लोज़-अप दृश्य, जिसे 70 मिमी कैमरे से कैप्चर किया गया है, बंधा हुआ उपग्रह प्रणाली परिनियोजन दिखाता है।

विद्युत्-गतिक टीथर (EDTs) लंबे समय तक चलने वाले तार होते हैं, जैसे कि एक टीथर उपग्रह से तैनात किया जाता है, जो [[ विद्युत जनित्र ]] के रूप में विद्युत चुंबकत्व सिद्धांतों पर काम कर सकता है, अपनी गतिज ऊर्जा को विद्युत ऊर्जा में परिवर्तित करके, या विद्युत मोटर के रूप में, विद्युत ऊर्जा को गतिज ऊर्जा में परिवर्तित कर सकता है।[1] एक ग्रह के चुंबकीय क्षेत्र के माध्यम से इसकी गति से एक प्रवाहकीय तार पर विद्युत क्षमता उत्पन्न होती है।

कई मिशनों ने अंतरिक्ष में विद्युत्-गतिक टीथर्स का प्रदर्शन किया है, विशेष रूप से अंतरिक्ष टीथर मिशन#TSS-1 मिशन|TSS-1, अंतरिक्ष टीथर मिशन#TSS-1R मिशन|TSS-1R, और अंतरिक्ष टीथर मिशन#PMG (PMG) प्रयोग .

बांधने की रस्सी प्रणोदन

एक टीथर प्रणोदन प्रणाली के हिस्से के रूप में, अंतरिक्ष यान की कक्षाओं को बदलने के लिए शिल्प लंबे, मजबूत कंडक्टर (हालांकि सभी टीथर प्रवाहकीय नहीं हैं) का उपयोग कर सकते हैं। इसमें अंतरिक्ष यात्रा को काफी सस्ता करने की क्षमता है।[citation needed] जब दिष्ट धारा को तार पर लागू किया जाता है, तो यह चुंबकीय क्षेत्र के विरुद्ध एक लोरेंत्ज़ बल लगाता है, और तार वाहन पर एक बल लगाता है। इसका उपयोग या तो परिक्रमा करने वाले अंतरिक्ष यान को गति देने या ब्रेक करने के लिए किया जा सकता है।

2012 में स्टार टेक्नोलॉजी एंड रिसर्च को कक्षीय मलबे को हटाने के लिए एक टीथर प्रणोदन प्रणाली को अर्हता प्राप्त करने के लिए $1.9 मिलियन का अनुबंध दिया गया था।[2]


== ईडी टेथर == के लिए उपयोग करता है

वर्षों से, उद्योग, सरकार और वैज्ञानिक अन्वेषण में संभावित उपयोग के लिए विद्युत्-गतिक टेथर के लिए कई अनुप्रयोगों की पहचान की गई है। नीचे दी गई तालिका अब तक प्रस्तावित कुछ संभावित अनुप्रयोगों का सारांश है। इनमें से कुछ एप्लिकेशन सामान्य अवधारणाएं हैं, जबकि अन्य अच्छी तरह से परिभाषित प्रणाली हैं। इनमें से कई अवधारणाएँ अन्य क्षेत्रों में ओवरलैप करती हैं; हालाँकि, उन्हें इस तालिका के प्रयोजनों के लिए सबसे उपयुक्त शीर्षक के तहत रखा गया है। तालिका में उल्लिखित सभी अनुप्रयोगों को टीथर्स हैंडबुक में विस्तार से बताया गया है।[1]तीन मौलिक अवधारणाएँ जो टीथर के पास होती हैं, गुरुत्वाकर्षण प्रवणता, संवेग विनिमय और विद्युतगतिकी हैं। संभावित टीथर अनुप्रयोगों को नीचे देखा जा सकता है:

ELECTRODYNAMICS
Electrodynamic power generation Electrodynamic thrust generation
ULF/ELF/VLF communication antenna Radiation belt remediation
SPACE STATION
Microgravity laboratory Shuttle de-orbit from Space Station
Tethered Space Transfer Vehicle (STV) launch Variable/low gravity laboratory
Attitude stabilization and control ISS reboost
TRANSPORTATION
Generalized momentum scavenging spent stages Internal forces for orbital modification
Satellite boost from orbiter Tether Assisted Transportation System (TATS)
Tether re-boosting of decaying satellites Upper stage boost from Orbiter


आईएसएस रीबूस्ट

ईडीटी को आईएसएस कक्षा को बनाए रखने और रासायनिक प्रणोदक रिबॉस्ट के खर्च को बचाने के लिए प्रस्तावित किया गया है। [3] यह माइक्रोग्रैविटी स्थितियों की गुणवत्ता और अवधि में सुधार कर सकता है।[3]


विद्युत्-गतिक टीथर फंडामेंटल

EDT अवधारणा का चित्रण

विद्युत्-गतिक टीथर में उपयोग किए जाने वाले धातु के विद्युत कंडक्टर का चुनाव विभिन्न कारकों द्वारा निर्धारित किया जाता है। प्राथमिक कारकों में सामान्य रूप से उच्च विद्युत चालकता और कम घनत्व सम्मिलित होते हैं। आवेदन के आधार पर द्वितीयक कारकों में कीमत, शक्ति और गलनांक सम्मिलित हैं।

एक इलेक्ट्रोमोटिव बल (ईएमएफ) एक टेदर तत्व में उत्पन्न होता है क्योंकि यह एक चुंबकीय क्षेत्र के सापेक्ष चलता है। बल फैराडे के आगमन के नियम द्वारा दिया गया है:

व्यापकता के नुकसान के बिना, यह माना जाता है कि तार प्रणाली पृथ्वी की कक्षा में है और यह पृथ्वी के चुंबकीय क्षेत्र के सापेक्ष चलती है। इसी तरह, यदि टीथर तत्व में करंट प्रवाहित होता है, तो लोरेंत्ज़ बल समीकरण के अनुसार एक बल उत्पन्न किया जा सकता है

स्व-संचालित मोड (डीऑर्बिट मोड) में, इस ईएमएफ का उपयोग टीथर प्रणाली द्वारा टीथर और अन्य विद्युत भार (जैसे प्रतिरोधक, बैटरी) के माध्यम से करंट को चलाने के लिए किया जा सकता है, उत्सर्जक छोर पर इलेक्ट्रॉनों का उत्सर्जन, या विपरीत पर इलेक्ट्रॉनों को इकट्ठा करना . बूस्ट मोड में, ऑन-बोर्ड बिजली की आपूर्ति को विपरीत दिशा में करंट चलाने के लिए इस गतिमान EMF को पार करना होगा, इस प्रकार विपरीत दिशा में एक बल बनाना होगा, जैसा कि नीचे दिए गए आंकड़े में देखा गया है, और प्रणाली को बढ़ावा देना है।

उदाहरण के लिए, उपरोक्त आंकड़े में देखे गए नासा प्रोपलसिव स्मॉल एक्सपेंडेबल डिप्लॉयर प्रणाली (ProSEDS) मिशन को लें।[4][5][6][7][8] 300 किमी ऊंचाई पर, पृथ्वी का चुंबकीय क्षेत्र, उत्तर-दक्षिण दिशा में, ~40° झुकाव तक लगभग 0.18–0.32 गॉस (यूनिट) है, और स्थानीय प्लाज़्मा के संबंध में कक्षीय वेग लगभग 7500 m/s है। इसका परिणाम वीemf तार की 5 किमी लंबाई के साथ 35–250 वोल्ट/किमी की सीमा। यह EMF नंगे टीथर में संभावित अंतर को निर्धारित करता है जो नियंत्रित करता है कि इलेक्ट्रॉनों को कहाँ एकत्र किया जाता है और / या पीछे हटा दिया जाता है। यहां, प्रोएसईडीएस डी-बूस्ट टीथर प्रणाली को नंगे टीथर के सकारात्मक पक्षपाती उच्च ऊंचाई वाले खंड में इलेक्ट्रॉन संग्रह को सक्षम करने के लिए कॉन्फ़िगर किया गया है, और निचले ऊंचाई के अंत में आयनमंडल में वापस आ गया है। पृथ्वी के चुंबकीय क्षेत्र की उपस्थिति में टीथर की लंबाई के माध्यम से इलेक्ट्रॉनों का यह प्रवाह एक बल बनाता है जो एक ड्रैग थ्रस्ट पैदा करता है जो प्रणाली को डी-ऑर्बिट में मदद करता है, जैसा कि उपरोक्त समीकरण द्वारा दिया गया है। बूस्ट मोड डी-ऑर्बिट मोड के समान है, इस तथ्य को छोड़कर कि टीथर और उच्च सकारात्मक संभावित अंत के बीच टीथर प्रणाली के साथ श्रृंखला में एक उच्च विद्युत-दाब बिजली आपूर्ति (एचवीपीएस) भी डाली जाती है। बिजली आपूर्ति विद्युत-दाब ईएमएफ और ध्रुवीय विपरीत से अधिक होना चाहिए। यह वर्तमान को विपरीत दिशा में चलाता है, जिसके कारण उच्च ऊंचाई का अंत नकारात्मक रूप से चार्ज होता है, जबकि कम ऊंचाई का अंत सकारात्मक रूप से चार्ज होता है (पृथ्वी के चारों ओर एक मानक पूर्व से पश्चिम की कक्षा मानते हुए)।

डी-बूस्टिंग घटना पर और जोर देने के लिए, नीचे दिए गए आंकड़े में बिना इन्सुलेशन (सभी नंगे) के बिना नंगे तार प्रणाली का एक योजनाबद्ध स्केच देखा जा सकता है।

जनित्र (डी-बूस्ट) मोड में काम कर रहे नंगे तार की वर्तमान और विद्युत-दाब प्लॉट बनाम दूरी।[9]

आरेख का शीर्ष, बिंदु A, इलेक्ट्रॉन संग्रह अंत का प्रतिनिधित्व करता है। टीथर के नीचे, बिंदु सी, इलेक्ट्रॉन उत्सर्जन अंत है। इसी प्रकार, और उनके संबंधित टीथर सिरों से प्लाज्मा तक संभावित अंतर का प्रतिनिधित्व करते हैं, और प्लाज्मा के संबंध में टीथर के साथ कहीं भी संभावित है। अंत में, बिंदु बी वह बिंदु है जिस पर तार की क्षमता प्लाज्मा के बराबर होती है। बिंदु बी का स्थान तार की संतुलन स्थिति के आधार पर अलग-अलग होगा, जो कि किरचॉफ के विद्युत-दाब कानून (केवीएल) के समाधान द्वारा निर्धारित किया जाता है।

और किरचॉफ का वर्तमान कानून (केसीएल)

तार के साथ। यहां , , और बिंदु A से B तक वर्तमान लाभ का वर्णन करें, बिंदु B से C तक समाप्त हुआ वर्तमान, और बिंदु C पर क्रमशः समाप्त हुआ वर्तमान।

चूँकि तार की नंगे लंबाई के साथ धारा निरंतर बदल रही है, तार की प्रतिरोधक प्रकृति के कारण संभावित नुकसान को इस रूप में दर्शाया गया है . तार के एक अतिसूक्ष्म खंड के साथ, प्रतिरोध वर्तमान से गुणा उस खंड में यात्रा करना प्रतिरोधी संभावित नुकसान है।

प्रणाली के लिए केवीएल और केसीएल का मूल्यांकन करने के बाद, परिणाम टीथर के साथ एक वर्तमान और संभावित प्रोफ़ाइल प्राप्त करेंगे, जैसा कि उपरोक्त आंकड़े में देखा गया है। यह चित्र दिखाता है कि, टीथर के बिंदु A से नीचे बिंदु B तक, एक सकारात्मक संभावित पूर्वाग्रह है, जो एकत्रित धारा को बढ़ाता है। उस बिंदु के नीचे, ऋणात्मक हो जाता है और आयन धारा का संग्रह शुरू हो जाता है। चूंकि आयन करंट (किसी दिए गए क्षेत्र के लिए) के समतुल्य मात्रा को एकत्र करने के लिए बहुत अधिक संभावित अंतर की आवश्यकता होती है, इसलिए टीथर में कुल करंट एक छोटी राशि से कम हो जाता है। फिर, बिंदु C पर, प्रणाली में शेष धारा प्रतिरोधक भार के माध्यम से खींची जाती है (), और एक इलेक्ट्रॉन उत्सर्जक उपकरण से उत्सर्जित (), और अंत में प्लाज्मा म्यान के पार (). KVL विद्युत-दाब लूप तब आयनमंडल में बंद हो जाता है जहां संभावित अंतर प्रभावी रूप से शून्य होता है।

नंगे ईडीटी की प्रकृति के कारण, प्रायः पूरे टीथर को खुला रखना वैकल्पिक नहीं होता है। प्रणाली की थ्रस्टिंग क्षमता को अधिकतम करने के लिए नंगे तार का एक महत्वपूर्ण हिस्सा अछूता होना चाहिए। यह इन्सुलेशन राशि कई प्रभावों पर निर्भर करती है, जिनमें से कुछ प्लाज्मा घनत्व, तार की लंबाई और चौड़ाई, परिक्रमा वेग और पृथ्वी के चुंबकीय प्रवाह घनत्व हैं।

जनित्र के रूप में टीथर

एक अंतरिक्ष वस्तु, यानी पृथ्वी की कक्षा में एक उपग्रह, या प्राकृतिक या मानव निर्मित कोई अन्य अंतरिक्ष वस्तु, शारीरिक रूप से टीथर प्रणाली से जुड़ी होती है। टीथर प्रणाली में एक डिप्लॉयर सम्मिलित होता है जिसमें से एक कंडक्टिव टीथर एक खाली खंड होता है जो अंतरिक्ष ऑब्जेक्ट से ऊपर की ओर फैलता है। टीथर का सकारात्मक रूप से पक्षपाती एनोड अंत आयनमंडल से इलेक्ट्रॉनों को इकट्ठा करता है क्योंकि अंतरिक्ष वस्तु पृथ्वी के चुंबकीय क्षेत्र में दिशा में चलती है। ये इलेक्ट्रॉन टीथर की प्रवाहकीय संरचना के माध्यम से पावर प्रणाली इंटरफेस में प्रवाहित होते हैं, जहां यह संबंधित भार को बिजली की आपूर्ति करता है, दिखाया नहीं गया है। इलेक्ट्रॉन तब नकारात्मक पक्षपाती कैथोड में प्रवाहित होते हैं जहां इलेक्ट्रॉनों को अंतरिक्ष प्लाज्मा में निकाल दिया जाता है, इस प्रकार विद्युत परिपथ को पूरा किया जाता है। (स्रोत: यू.एस. पेटेंट 6,116,544, विद्युत्-गतिक टीथर और उपयोग की विधि।)

एक इलेक्ट्रोडायनामिक तार एक वस्तु से जुड़ा होता है, तार वस्तु और एक चुंबकीय क्षेत्र वाले ग्रह के बीच स्थानीय ऊर्ध्वाधर के कोण पर उन्मुख होता है। तार के दूर के छोर को आयनमंडल के साथ विद्युत संपर्क बनाते हुए खुला छोड़ा जा सकता है। जब तार मैग्नेटोस्फीयर | ग्रह के चुंबकीय क्षेत्र को काटता है, तो यह एक करंट उत्पन्न करता है, और इस तरह परिक्रमा करने वाले पिंड की कुछ गतिज ऊर्जा को विद्युत ऊर्जा में परिवर्तित करता है। कार्यात्मक रूप से, इलेक्ट्रॉन अंतरिक्ष प्लाज्मा से प्रवाहकीय टीथर में प्रवाहित होते हैं, एक नियंत्रण इकाई में एक प्रतिरोधक भार के माध्यम से पारित होते हैं और एक इलेक्ट्रॉन उत्सर्जक द्वारा मुक्त इलेक्ट्रॉनों के रूप में अंतरिक्ष प्लाज्मा में उत्सर्जित होते हैं। इस प्रक्रिया के परिणामस्वरूप, एक विद्युतीय बल तार और संलग्न वस्तु पर कार्य करता है, जिससे उनकी कक्षीय गति धीमी हो जाती है। ढीले अर्थों में, इस प्रक्रिया की तुलना एक पारंपरिक पवनचक्की से की जा सकती है- एक प्रतिरोधक माध्यम (वायु या, इस मामले में, मैग्नेटोस्फीयर) के ड्रैग फोर्स का उपयोग सापेक्ष गति (हवा, या उपग्रह की गति) की गतिज ऊर्जा को परिवर्तित करने के लिए किया जाता है। ) बिजली में। सिद्धांत रूप में, कॉम्पैक्ट हाई-करंट टीथर पावर जनरेटर संभव हैं और, बुनियादी हार्डवेयर के साथ, दसियों, सैकड़ों, और हजारों किलोवाट प्राप्य प्रतीत होते हैं।[10]


विद्युत-दाब और करंट

नासा ने अंतरिक्ष में प्लाज्मा मोटर जेनरेटर (पीएमजी) टेथर के साथ कई प्रयोग किए हैं। एक शुरुआती प्रयोग में 500 मीटर के कंडक्टिंग टेदर का इस्तेमाल किया गया था। 1996 में, नासा ने 20,000 मीटर कंडक्टिंग टीथर के साथ एक प्रयोग किया। जब इस परीक्षण के समय तार को पूरी तरह से खोल दिया गया, तो परिक्रमा करने वाले तार ने 3,500 वोल्ट की क्षमता उत्पन्न की। इस कंडक्टिंग सिंगल-लाइन टेदर को पांच घंटे की तैनाती के बाद तोड़ दिया गया था। ऐसा माना जाता है कि विफलता पृथ्वी के चुंबकीय क्षेत्र के माध्यम से प्रवाहकीय तार के आंदोलन द्वारा उत्पन्न विद्युत चाप के कारण हुई थी।[11] जब एक तार को पृथ्वी के चुंबकीय क्षेत्र ('B') के समकोण पर वेग (v) पर ले जाया जाता है, तो तार के संदर्भ के फ्रेम में एक विद्युत क्षेत्र देखा जाता है। इसे इस प्रकार कहा जा सकता है:

'ई' = वी * 'बी' = वी'बी'

विद्युत क्षेत्र ('E') की दिशा तार के वेग (v) और चुंबकीय क्षेत्र ('B') दोनों के समकोण पर है। यदि तार एक चालक है, तो विद्युत क्षेत्र तार के साथ आवेशों के विस्थापन की ओर ले जाता है। ध्यान दें कि इस समीकरण में प्रयुक्त वेग टीथर का कक्षीय वेग है। पृथ्वी, या इसके कोर के घूमने की दर प्रासंगिक नहीं है। इस संबंध में, एकध्रुवीय जनित्र भी देखें।


कंडक्टर भर में विद्युत-दाब

लम्बाई L के लंबे चालक तार से तार में विद्युत क्षेत्र E उत्पन्न होता है। यह तार के विपरीत सिरों के बीच एक विद्युत-दाब 'वी' पैदा करता है। इसे इस प्रकार व्यक्त किया जा सकता है:

[12]

जहां कोण τ टीथर की लंबाई वेक्टर (L) और विद्युत क्षेत्र वेक्टर (E) के बीच है, वेग वेक्टर (v) के समकोण पर लंबवत दिशा में माना जाता है। ) विमान में और चुंबकीय क्षेत्र वेक्टर (बी) विमान से बाहर है।

कंडक्टर में करंट

एक विद्युत्-गतिक टीथर को thermodynamic रूप से ओपन प्रणाली (प्रणाली सिद्धांत) के एक प्रकार के रूप में वर्णित किया जा सकता है खुली प्रणाली । इलेक्ट्रोडायनेमिक तार परिपथों को केवल दूसरे तार का उपयोग करके पूरा नहीं किया जा सकता है, क्योंकि दूसरा तार समान विद्युत-दाब विकसित करेगा। सौभाग्य से, पृथ्वी का मैग्नेटोस्फीयर खाली नहीं है, और, निकट-पृथ्वी क्षेत्रों (विशेष रूप से पृथ्वी के वायुमंडल के पास) में अत्यधिक विद्युत प्रवाहकीय प्लाज्मा (भौतिकी) सम्मिलित हैं जो सौर विकिरण या अन्य उज्ज्वल ऊर्जा द्वारा आंशिक रूप से आयन ित होते हैं। इलेक्ट्रॉन और आयन घनत्व विभिन्न कारकों के अनुसार भिन्न होता है, जैसे स्थान, ऊंचाई, मौसम, सनस्पॉट चक्र और संदूषण स्तर। यह ज्ञात है कि एक सकारात्मक रूप से चार्ज किया गया नंगे कंडक्टर (सामग्री) प्लाज्मा से मुक्त इलेक्ट्रॉनों को आसानी से हटा सकता है। इस प्रकार, विद्युत परिपथ को पूरा करने के लिए, तार के ऊपरी, धनात्मक रूप से आवेशित सिरे पर बिना इंसुलेटेड कंडक्टर के एक पर्याप्त बड़े क्षेत्र की आवश्यकता होती है, जिससे वर्तमान को तार के माध्यम से प्रवाहित करने की स्वीकृति मिलती है।

हालांकि, तार के विपरीत (नकारात्मक) छोर के लिए मुक्त इलेक्ट्रॉनों को बाहर निकालना या प्लाज्मा से सकारात्मक आयनों को इकट्ठा करना अधिक कठिन होता है। यह प्रशंसनीय है कि, तार के एक छोर पर एक बहुत बड़े संग्रह क्षेत्र का उपयोग करके, प्लाज्मा के माध्यम से महत्वपूर्ण प्रवाह की स्वीकृति देने के लिए पर्याप्त आयन एकत्र किए जा सकते हैं। यह शटल ऑर्बिटर के TSS-1R मिशन के समय प्रदर्शित किया गया था, जब शटल को एक बड़े प्लाज्मा कॉन्टैक्टर के रूप में इस्तेमाल किया गया था ताकि वर्तमान में एक एम्पेयर प्रदान किया जा सके। अपेक्षाकृत अधिक अच्छेतरीकों में एक इलेक्ट्रॉन उत्सर्जक बनाना सम्मिलित है, जैसे थर्मिओनिक कैथोड , प्लाज्मा कैथोड, प्लाज्मा संपर्ककर्ता, क्षेत्र इलेक्ट्रॉन उत्सर्जन उत्सर्जन उपकरण। चूंकि तार के दोनों सिरे आसपास के प्लाज्मा के लिए खुले हैं, इलेक्ट्रॉन तार के एक छोर से बाहर निकल सकते हैं जबकि इलेक्ट्रॉनों का एक प्रवाह दूसरे छोर में प्रवेश करता है। इस फैशन में, टीथर के भीतर विद्युत चुम्बकीय रूप से प्रेरित विद्युत-दाब आसपास के अंतरिक्ष वातावरण के माध्यम से प्रवाहित हो सकता है, जो पहली नज़र में, एक इलेक्ट्रीक सर्किट के माध्यम से एक विद्युत सर्किट को पूरा करता है।

टीथर करंट

एक टीथर के माध्यम से प्रवाहित होने वाली धारा (I) की मात्रा विभिन्न कारकों पर निर्भर करती है। इनमें से एक सर्किट का कुल प्रतिरोध (आर) है। सर्किट के प्रतिरोध में तीन घटक होते हैं:

  1. प्लाज्मा का प्रभावी प्रतिरोध,
  2. टीथर का प्रतिरोध, और
  3. एक नियंत्रण चर रोकनेवाला।

इसके अतिरिक्त, एक परजीवी भार की जरूरत है। करंट पर लोड एक चार्जिंग डिवाइस का रूप ले सकता है, जो बदले में, बैटरी जैसे रिजर्व पावर स्रोतों को चार्ज करता है। बदले में बैटरी का उपयोग बिजली और संचार सर्किट को नियंत्रित करने के साथ-साथ टीथर के नकारात्मक छोर पर इलेक्ट्रॉन उत्सर्जक उपकरणों को चलाने के लिए किया जाएगा। इस तरह तैनाती और स्टार्टअप प्रक्रिया के लिए विद्युत शक्ति प्रदान करने के लिए बैटरी में प्रारंभिक चार्ज के अतिरिक्त, टीथर पूरी तरह से स्व-संचालित हो सकता है।

चार्जिंग बैटरी लोड को एक अवरोधक के रूप में देखा जा सकता है जो शक्ति को अवशोषित करता है, लेकिन इसे बाद में उपयोग के लिए संग्रहीत करता है (तुरंत गर्मी को खत्म करने के अतिरिक्त)। इसे नियंत्रण अवरोधक के भाग के रूप में सम्मिलित किया गया है। चार्जिंग बैटरी लोड को आधार प्रतिरोध के रूप में नहीं माना जाता है, क्योंकि चार्जिंग सर्किट को किसी भी समय बंद किया जा सकता है। बंद होने पर, बैटरी में संग्रहीत शक्ति का उपयोग करके संचालन बिना किसी रुकावट के जारी रखा जा सकता है।


एक ईडीटी प्रणाली के लिए वर्तमान संग्रह/उत्सर्जन: सिद्धांत और प्रौद्योगिकी

अधिकांश ईडीटी प्रणाली के लिए आसपास के परिवेश प्लाज्मा से इलेक्ट्रॉन और आयन वर्तमान संग्रह को समझना महत्वपूर्ण है। ईडीटी प्रणाली का कोई भी खुला संचालन अनुभाग निष्क्रिय रूप से ('निष्क्रिय' और 'सक्रिय' उत्सर्जन वांछित प्रभाव को प्राप्त करने के लिए पूर्व-संग्रहीत ऊर्जा के उपयोग को संदर्भित करता है) अंतरिक्ष यान की विद्युत क्षमता के आधार पर इलेक्ट्रॉन या आयन वर्तमान एकत्र कर सकता है। परिवेश प्लाज्मा के संबंध में शरीर। इसके अतिरिक्त, कंडक्टिंग बॉडी की ज्यामिति म्यान के आकार और इस प्रकार कुल संग्रह क्षमता में महत्वपूर्ण भूमिका निभाती है। नतीजतन, अलग-अलग संग्रह तकनीकों के लिए कई सिद्धांत हैं।

ईडीटी प्रणाली पर इलेक्ट्रॉन और आयन संग्रह को नियंत्रित करने वाली प्राथमिक निष्क्रिय प्रक्रियाएं थर्मल वर्तमान संग्रह, आयन रैम संग्रह प्रभाव, इलेक्ट्रॉन फोटो उत्सर्जन, और संभवतः माध्यमिक इलेक्ट्रॉन और आयन उत्सर्जन हैं। इसके अतिरिक्त, प्लाज्मा डेबी लंबाई के संबंध में भौतिक आकार के आधार पर इस मॉडल से कक्षीय गति सीमित (ओएमएल) सिद्धांत के साथ-साथ सैद्धांतिक व्युत्पन्नों का उपयोग करके एक पतली नंगे तार के साथ संग्रह का वर्णन किया गया है। ये प्रक्रियाएं पूरे प्रणाली की उजागर संचालन सामग्री के साथ होती हैं। पर्यावरण और कक्षीय पैरामीटर एकत्रित वर्तमान राशि को महत्वपूर्ण रूप से प्रभावित कर सकते हैं। कुछ महत्वपूर्ण मापदंडों में प्लाज्मा घनत्व, इलेक्ट्रॉन और आयन तापमान, आयन आणविक भार, चुंबकीय क्षेत्र की ताकत और आसपास के प्लाज्मा के सापेक्ष कक्षीय वेग सम्मिलित हैं।

फिर EDT प्रणाली में सक्रिय संग्रह और उत्सर्जन तकनीकें सम्मिलित हैं। यह खोखले कैथोड प्लाज्मा संपर्ककर्ता, थर्मिओनिक कैथोड और क्षेत्र उत्सर्जक सरणियों जैसे उपकरणों के माध्यम से होता है। इनमें से प्रत्येक संरचना के भौतिक डिजाइन के साथ-साथ वर्तमान उत्सर्जन क्षमताओं पर गहन चर्चा की गई है।

नंगे प्रवाहकीय तार

एक नंगे कंडक्टिंग टीथर के लिए वर्तमान संग्रह की अवधारणा को पहली बार सैनमार्टिन और मार्टिनेज-सांचेज़ द्वारा औपचारिक रूप दिया गया था।[9]वे ध्यान देते हैं कि सबसे अधिक क्षेत्र कुशल वर्तमान एकत्रित बेलनाकार सतह वह है जिसकी प्रभावी त्रिज्या ~ 1 डेबी लंबाई से कम है जहां वर्तमान संग्रह भौतिकी को एक टकराव रहित प्लाज्मा में कक्षीय गति सीमित (ओएमएल) के रूप में जाना जाता है। जैसे ही नंगे प्रवाहकीय टीथर का प्रभावी त्रिज्या इस बिंदु से आगे बढ़ता है, तब ओएमएल सिद्धांत की तुलना में संग्रह दक्षता में अनुमानित कमी होती है। इस सिद्धांत के अतिरिक्त (जो एक गैर-प्रवाहित प्लाज्मा के लिए व्युत्पन्न किया गया है), अंतरिक्ष में वर्तमान संग्रह एक बहने वाले प्लाज्मा में होता है, जो एक अन्य संग्रह प्रभाव का परिचय देता है। इन मुद्दों की नीचे और अधिक विस्तार से पड़ताल की गई है।

कक्षा गति सीमित (ओएमएल) सिद्धांत

इलेक्ट्रॉन डेबी लंबाई[13] प्लाज्मा में विशेषता परिरक्षण दूरी के रूप में परिभाषित किया गया है, और समीकरण द्वारा वर्णित है

यह दूरी, जहां प्रवाहकीय निकाय से उत्पन्न प्लाज्मा में सभी विद्युत क्षेत्र 1/e से गिर गए हैं, की गणना की जा सकती है। ओएमएल सिद्धांत[14] इस धारणा के साथ परिभाषित किया गया है कि इलेक्ट्रॉन डेबी की लंबाई वस्तु के आकार के बराबर या उससे बड़ी है और प्लाज्मा प्रवाहित नहीं हो रहा है। ओएमएल शासन तब होता है जब म्यान पर्याप्त रूप से मोटा हो जाता है जैसे कण संग्रह में कक्षीय प्रभाव महत्वपूर्ण हो जाते हैं। यह सिद्धांत कण ऊर्जा और कोणीय संवेग का हिसाब रखता है और उसका संरक्षण करता है। नतीजतन, मोटी म्यान की सतह पर गिरने वाले सभी कण एकत्र नहीं होते हैं। परिवेश प्लाज्मा, साथ ही परिवेश प्लाज्मा घनत्व और तापमान के संबंध में एकत्रित संरचना का विद्युत-दाब, म्यान के आकार को निर्धारित करता है। आने वाले कणों की ऊर्जा और गति के साथ संयुक्त यह त्वरित (या कम) विद्युत-दाब प्लाज्मा शीथ में एकत्रित वर्तमान की मात्रा निर्धारित करता है।

ऑर्बिटल-मोशन-लिमिट शासन तब प्राप्त होता है जब सिलेंडर त्रिज्या काफी छोटा होता है जैसे कि आने वाले सभी कण प्रक्षेपवक्र जो सिलेंडर की सतह पर समाप्त हो जाते हैं, पृष्ठभूमि प्लाज्मा से जुड़े होते हैं, भले ही उनकी प्रारंभिक कोणीय गति (यानी, कोई भी जुड़ा नहीं हो) जांच की सतह पर किसी अन्य स्थान पर)। चूंकि, अर्ध-तटस्थ टकराव रहित प्लाज्मा में, वितरण समारोह को कण कक्षाओं के साथ संरक्षित किया जाता है, जिसमें सभी "आगमन की दिशाएं" होती हैं, जो प्रति इकाई क्षेत्र (कुल वर्तमान नहीं) पर एकत्रित वर्तमान पर ऊपरी सीमा से मेल खाती हैं।[15] EDT प्रणाली में, किसी दिए गए टीथर द्रव्यमान के लिए सबसे अच्छा प्रदर्शन विशिष्ट आयनोस्फेरिक परिवेश स्थितियों के लिए एक इलेक्ट्रॉन डेबी लंबाई से छोटा चुना गया एक टीथर व्यास के लिए होता है (200 से 2000 किमी ऊंचाई सीमा में विशिष्ट आयनोस्फेरिक स्थिति, एक T_e रेंज होती है) 0.1 eV से 0.35 eV तक, और n_e 10^10 m^-3 से 10^12 m^-3 तक), इसलिए यह OML शासन के भीतर है। इस आयाम के बाहर टेदर ज्यामिति को संबोधित किया गया है।[16] विभिन्न नमूना टेदर ज्यामिति और आकारों के लिए वर्तमान संग्रह परिणामों की तुलना करते समय ओएमएल संग्रह का उपयोग आधार रेखा के रूप में किया जाएगा।

1962 में गेराल्ड हैरिस रोसेन | गेराल्ड एच। रोसेन ने उस समीकरण को व्युत्पन्न किया जिसे अब धूल चार्ज करने के ओएमएल सिद्धांत के रूप में जाना जाता है।[17] आयोवा विश्वविद्यालय के रॉबर्ट मेरलिनो के अनुसार, रोसेन किसी और से 30 साल पहले समीकरण पर पहुंचे हैं।[18]


एक गैर-प्रवाह वाले प्लाज्मा में ओएमएल सिद्धांत से विचलन

विभिन्न प्रकार के व्यावहारिक कारणों से, केवल EDT के लिए वर्तमान संग्रह सदैव OML संग्रह सिद्धांत की धारणा को संतुष्ट नहीं करता है। इन स्थितियों के लिए यह समझना महत्वपूर्ण है कि अनुमानित प्रदर्शन सिद्धांत से कैसे विचलित होता है। ईडीटी के लिए सामान्य रूप से प्रस्तावित दो ज्यामिति में एक बेलनाकार तार और एक फ्लैट टेप का उपयोग सम्मिलित है। जब तक बेलनाकार तार त्रिज्या में एक डेबी लंबाई से कम है, तब तक यह ओएमएल सिद्धांत के अनुसार एकत्रित होगा। हालाँकि, एक बार जब चौड़ाई इस दूरी से अधिक हो जाती है, तो संग्रह तीव्रता से इस सिद्धांत से विचलित हो जाता है। यदि टेदर ज्योमेट्री एक फ्लैट टेप है, तो सामान्यीकृत टेप की चौड़ाई को समकक्ष सिलेंडर त्रिज्या में परिवर्तित करने के लिए एक सन्निकटन का उपयोग किया जा सकता है। यह पहली बार Sanmartin और Estes द्वारा किया गया था[19] और हाल ही में Choiniere et al द्वारा 2-डायमेंशनल काइनेटिक प्लाज़्मा सॉल्वर (KiPS 2-D) का उपयोग करना।[15]


बहती प्लाज्मा प्रभाव

वर्तमान में, नंगे तार के सापेक्ष प्लाज्मा प्रवाह के प्रभावों के लिए कोई बंद-रूप समाधान नहीं है। हालाँकि, संख्यात्मक सिमुलेशन हाल ही में Choiniere et al द्वारा विकसित किया गया है। KiPS-2D का उपयोग करना जो उच्च पूर्वाग्रह क्षमता पर सरल ज्यामिति के लिए बहने वाले स्थितियो का अनुकरण कर सकता है।[20][21] ईडीटी पर लागू होने वाले इस प्रवाहित प्लाज्मा विश्लेषण पर चर्चा की गई है।[16] इस घटना की वर्तमान में हाल के काम के माध्यम से जांच की जा रही है, और इसे पूरी तरह से समझा नहीं गया है।

एंडबॉडी संग्रह

यह खंड प्लाज्मा भौतिकी सिद्धांत पर चर्चा करता है जो एक बड़े प्रवाहकीय निकाय के लिए निष्क्रिय वर्तमान संग्रह की व्याख्या करता है जिसे ईडी टीथर के अंत में लागू किया जाएगा। जब म्यान का आकार एकत्रित निकाय के त्रिज्या से बहुत छोटा होता है, तो टीथर की क्षमता और परिवेशी प्लाज्मा (वी - वीपी) के बीच अंतर की ध्रुवीयता के आधार पर, यह माना जाता है कि सभी प्लाज्मा म्यान में प्रवेश करने वाले आने वाले इलेक्ट्रॉनों या आयनों को प्रवाहकीय निकाय द्वारा एकत्र किया जाता है।[13][15] गैर-प्रवाहित प्लास्मा से संबंधित 'पतली आच्छद' सिद्धांत पर चर्चा की जाती है, और फिर प्रवाहित प्लाज्मा के लिए इस सिद्धांत में संशोधन प्रस्तुत किया जाता है। अन्य सम्मिलित संग्रह तंत्रों पर फिर चर्चा की जाएगी। ईडीटी मिशन के समय सामने आने वाली सभी स्थितियों को ध्यान में रखते हुए प्रस्तुत किए गए सभी सिद्धांतों का उपयोग वर्तमान संग्रह मॉडल को विकसित करने के लिए किया जाता है।

निष्क्रिय संग्रह सिद्धांत

बिना चुंबकीय क्षेत्र वाले गैर-प्रवाहित अर्ध-तटस्थ प्लाज्मा में, यह माना जा सकता है कि एक गोलाकार संवाहक वस्तु सभी दिशाओं में समान रूप से एकत्रित होगी। अंत-निकाय पर इलेक्ट्रॉन और आयन संग्रह तापीय संग्रह प्रक्रिया द्वारा नियंत्रित होता है, जो इथे और इथी द्वारा दिया जाता है।[22]


फ्लोइंग प्लाज्मा इलेक्ट्रॉन संग्रह मोड

वर्तमान संग्रह के लिए अधिक यथार्थवादी मॉडल विकसित करने में अगला कदम चुंबकीय क्षेत्र प्रभाव और प्लाज्मा प्रवाह प्रभाव सम्मिलित करना है। एक टक्कर रहित प्लाज्मा की कल्पना करते हुए, इलेक्ट्रॉन और आयन चुंबकीय क्षेत्र रेखाओं के चारों ओर चक्कर लगाते हैं क्योंकि वे चुंबकीय मिररिंग बलों और ढाल-वक्रता बहाव के कारण पृथ्वी के चारों ओर ध्रुवों के बीच यात्रा करते हैं।[23] वे अपने द्रव्यमान, चुंबकीय क्षेत्र की ताकत और ऊर्जा पर एक विशेष त्रिज्या और आवृत्ति निर्भरता पर चक्कर लगाते हैं। वर्तमान संग्रह मॉडल में इन कारकों पर विचार किया जाना चाहिए।

File:Fig28 plasma collection.PNG
TSS उपग्रह के निकट वातावरण में देखे गए भौतिक प्रभावों और विशेषताओं के जटिल सरणी का एक समग्र योजनाबद्ध।[24]

फ्लोइंग प्लाज्मा आयन संग्रह मॉडल

जब संवाहक निकाय प्लाज्मा के संबंध में नकारात्मक रूप से पक्षपाती होता है और आयन तापीय वेग से ऊपर यात्रा करता है, तो काम पर अतिरिक्त संग्रह तंत्र होते हैं। सामान्य निम्न पृथ्वी कक्षाओं (एलईओ) के लिए, 200 किमी और 2000 किमी के बीच,[25] एक गोलाकार कक्षा के लिए एक जड़त्वीय संदर्भ फ्रेम में वेग 7.8 km/s से 6.9 km/s तक होता है और वायुमंडलीय आणविक भार क्रमशः 25.0 amu (O+, O2+, और NO+) से 1.2 amu (अधिकतम H+) तक होता है।[26][27][28] यह मानते हुए कि इलेक्ट्रॉन और आयन का तापमान ~0.1 eV से 0.35 eV तक होता है, परिणामी आयन का वेग क्रमशः 200 किमी से 2000 किमी की ऊंचाई तक 875मी/सेक से 4.0किमी/सेकेंड होता है। पूरे LEO में इलेक्ट्रॉन लगभग 188 km/s की गति से यात्रा कर रहे हैं। इसका मतलब यह है कि परिक्रमा करने वाला शरीर आयनों की तुलना में तीव्रता से और इलेक्ट्रॉनों की तुलना में धीमी गति से यात्रा कर रहा है, या मेसोसोनिक गति से। इसका परिणाम एक अनूठी घटना में होता है जिससे परिक्रमा करने वाला पिंड प्लाज्मा में आसपास के आयनों के माध्यम से परिक्रमा करने वाले पिंड के संदर्भ फ्रेम में एक किरण जैसा प्रभाव पैदा करता है।

झरझरा endbodys

आदर्श रूप से एक समान वर्तमान संग्रह को बनाए रखते हुए झरझरा एंडबॉडी को एक एकत्रित एंडबॉडी के ड्रैग को कम करने के तरीके के रूप में प्रस्तावित किया गया है। वे प्रायः ठोस एंडबॉडी के रूप में प्रतिरूपित होते हैं, सिवाय इसके कि वे ठोस गोले के सतह क्षेत्र का एक छोटा प्रतिशत होते हैं। हालाँकि, यह अवधारणा का अत्यधिक सरलीकरण है। म्यान संरचना, जाल की ज्यामिति, एंडबॉडी के आकार और वर्तमान संग्रह से इसके संबंध के बीच की बातचीत के बारे में बहुत कुछ सीखना है। इस तकनीक में ईडीटी से संबंधित कई मुद्दों को हल करने की भी क्षमता है। कलेक्शन करंट और ड्रैग एरिया के साथ ह्रासमान रिटर्न ने एक सीमा निर्धारित की है जिसे झरझरा तार दूर करने में सक्षम हो सकता है। स्टोन एट अल द्वारा झरझरा क्षेत्रों का उपयोग करके वर्तमान संग्रह पर काम पूरा किया गया है।[29][30] और खज़ानोव एट अल।[31] यह दिखाया गया है कि द्रव्यमान और ड्रैग रिडक्शन की तुलना में ग्रिड क्षेत्र द्वारा एकत्रित अधिकतम वर्तमान का अनुमान लगाया जा सकता है। 80 से 90% की पारदर्शिता के साथ एक ग्रिड क्षेत्र के लिए एकत्रित धारा की प्रति यूनिट ड्रैग उसी त्रिज्या के ठोस क्षेत्र की तुलना में लगभग 1.2 - 1.4 गुना छोटा है। इसी तुलना के लिए द्रव्यमान प्रति इकाई आयतन में कमी 2.4 - 2.8 गुना है।[31]


अन्य सम्मिलित संग्रह के तरीके

इलेक्ट्रॉन थर्मल संग्रह के अतिरिक्त, अन्य प्रक्रियाएं जो EDT प्रणाली में वर्तमान संग्रह को प्रभावित कर सकती हैं, वे हैं फोटोमिशन, सेकेंडरी इलेक्ट्रॉन एमिशन और सेकेंडरी आयन एमिशन। ये प्रभाव ईडीटी प्रणाली पर सभी संवाहक सतहों से संबंधित हैं, न कि केवल अंत-निकाय।

प्लाज़्मा शीथ में अंतरिक्ष चार्ज की सीमा

किसी भी अनुप्रयोग में जहां निर्वात अंतराल में इलेक्ट्रॉनों का उत्सर्जन होता है, वहां इलेक्ट्रॉन बीम के आत्म प्रतिकर्षण के कारण दिए गए पूर्वाग्रह के लिए अधिकतम स्वीकार्य धारा होती है। यह शास्त्रीय 1-डी अंतरिक्ष चार्ज लिमिट (SCL) शून्य प्रारंभिक ऊर्जा के आवेशित कणों के लिए ली गई है, और इसे चाइल्ड-लैंगमुइर लॉ कहा जाता है।[32][33][34] यह सीमा उत्सर्जन सतह क्षेत्र, प्लाज्मा गैप में संभावित अंतर और उस गैप की दूरी पर निर्भर करती है। इस विषय की आगे की चर्चा मिल सकती है।[35][36][37][38]


इलेक्ट्रॉन उत्सर्जक

सामान्य रूप से EDT अनुप्रयोगों के लिए तीन सक्रिय इलेक्ट्रॉन उत्सर्जन तकनीकों पर विचार किया जाता है: हॉलो कैथोड प्लाज़्मा कॉन्टैक्टर्स (HCPCs), थर्मिओनिक कैथोड्स (TCs), और फील्ड एमिशन कैथोड्स (FEC), जो प्रायः फ़ील्ड एमिटर एरेज़ (FEAs) के रूप में होते हैं। प्रत्येक उपकरण के साथ-साथ सापेक्ष कीमत, लाभ और सत्यापन के लिए प्रणाली स्तर के विन्यास प्रस्तुत किए जाएंगे।

थर्मिओनिक कैथोड (टीसी)

थर्मिओनिक उत्सर्जन एक गर्म आवेशित धातु या धातु ऑक्साइड सतह से इलेक्ट्रॉनों का प्रवाह है, जो तापीय कंपन ऊर्जा के कारण कार्य फलन (इलेक्ट्रॉनों को सतह पर रखने वाले इलेक्ट्रोस्टैटिक बलों) पर नियंत्रण पाने के कारण होता है। थर्मिओनिक उत्सर्जन वर्तमान घनत्व, जे, बढ़ते तापमान के साथ तीव्रता से बढ़ता है, सतह के पास वैक्यूम में इलेक्ट्रॉनों की एक महत्वपूर्ण संख्या जारी करता है। समीकरण में मात्रात्मक संबंध दिया गया है

इस समीकरण को रिचर्डसन-दुश्मन या रिचर्डसन समीकरण कहा जाता है। (f लगभग 4.54 eV और AR ~120 A/cm2 टंगस्टन के लिए है)।[39] एक बार इलेक्ट्रॉनों को टीसी सतह से तापीय रूप से उत्सर्जित कर दिया जाता है, तो उन्हें अंतराल को पार करने के लिए त्वरण क्षमता की आवश्यकता होती है, या इस स्थिति में, प्लाज्मा शीथ। यदि एक त्वरित ग्रिड, या इलेक्ट्रॉन बंदूक का उपयोग किया जाता है, तो प्लाज्मा म्यान के एससीएल से बचने के लिए इलेक्ट्रॉन इस आवश्यक ऊर्जा को प्राप्त कर सकते हैं। समीकरण

दिखाता है कि डिवाइस में प्रवेश करने वाले एक निश्चित करंट को उत्सर्जित करने के लिए पूरे ग्रिड में किस क्षमता की आवश्यकता है।[40][41] यहाँ, η इलेक्ट्रॉन गन असेंबली (EGA) दक्षता है (~TSS-1 में ~ 0.97), ρ EGA की व्यापकता है (TSS-1 में 7.2 माइक्रोपर्व्स), ΔVtc ईजीए के त्वरित ग्रिड में विद्युत-दाब है, और It उत्सर्जित धारा है।[40] व्यापकता अंतरिक्ष चार्ज सीमित वर्तमान को परिभाषित करती है जिसे डिवाइस से उत्सर्जित किया जा सकता है। नीचे दिया गया आंकड़ा हीटवेव लैब्स इंक में उत्पादित थर्मिओनिक उत्सर्जकों और इलेक्ट्रॉन बंदूकों के व्यावसायिक उदाहरण प्रदर्शित करता है।

File:Fig213 Electron Gun.PNG
एक इलेक्ट्रॉन उत्सर्जक का उदाहरण a) थर्मिओनिक एमिटर और एक इलेक्ट्रॉन त्वरण b) इलेक्ट्रॉन गन असेंबली।[42]

टीसी इलेक्ट्रॉन उत्सर्जन दो अलग-अलग शासनों में से एक में होगा: तापमान या अंतरिक्ष प्रभार सीमित वर्तमान प्रवाह। तापमान सीमित प्रवाह के लिए प्रत्येक इलेक्ट्रॉन जो कैथोड सतह से बचने के लिए पर्याप्त ऊर्जा प्राप्त करता है, उत्सर्जित होता है, यह मानते हुए कि इलेक्ट्रॉन गन की त्वरण क्षमता काफी बड़ी है। इस स्थिति में, रिचर्डसन दुशमैन समीकरण द्वारा दी गई थर्मिओनिक उत्सर्जन प्रक्रिया द्वारा उत्सर्जन धारा को नियंत्रित किया जाता है। एससीएल इलेक्ट्रॉन धारा प्रवाह में कैथोड से इतने अधिक इलेक्ट्रॉन उत्सर्जित होते हैं कि उनमें से सभी को इलेक्ट्रॉन गन द्वारा अंतरिक्ष आवेश से बचने के लिए पर्याप्त त्वरित नहीं किया जाता है। इस स्थिति में, इलेक्ट्रॉन गन त्वरण क्षमता उत्सर्जन धारा को सीमित करती है। नीचे दिया गया चार्ट तापमान को सीमित करने वाली धाराओं और SCL प्रभावों को प्रदर्शित करता है। जैसे-जैसे इलेक्ट्रॉनों की बीम ऊर्जा बढ़ती है, कुल भागने वाले इलेक्ट्रॉनों में वृद्धि देखी जा सकती है। वक्र जो क्षैतिज हो जाते हैं वे तापमान सीमित स्थिति हैं।

File:Fig214 EGA Curve.PNG
विशिष्ट इलेक्ट्रॉन जेनरेटर असेंबली (ईजीए) वर्तमान विद्युत-दाब विशेषताओं को एक निर्वात कक्ष में मापा जाता है।

क्षेत्र उत्सर्जन कैथोड (FEC)

File:Fig217 Field Emission.PNG
फील्ड उत्सर्जन

फील्ड इलेक्ट्रॉन उत्सर्जन में, थर्मिओनिक उत्सर्जन या फोटोइमिशन के रूप में इससे बचने के अतिरिक्त इलेक्ट्रॉन एक संभावित बाधा के माध्यम से सुरंग बनाते हैं।[43] कम तापमान पर एक धातु के लिए, प्रक्रिया को नीचे दिए गए चित्र के रूप में समझा जा सकता है। धातु को एक संभावित बॉक्स माना जा सकता है, जो फर्मी स्तर तक इलेक्ट्रॉनों से भरा होता है (जो कई इलेक्ट्रॉन वोल्ट द्वारा वैक्यूम स्तर से नीचे होता है)। निर्वात स्तर बाहरी क्षेत्र की अनुपस्थिति में धातु के बाहर आराम पर एक इलेक्ट्रॉन की संभावित ऊर्जा का प्रतिनिधित्व करता है। एक मजबूत विद्युत क्षेत्र की उपस्थिति में, धातु के बाहर की क्षमता AB रेखा के साथ विकृत हो जाएगी, जिससे एक त्रिकोणीय अवरोध बनता है, जिसके माध्यम से इलेक्ट्रॉन सुरंग बना सकते हैं। फाउलर-नॉर्डहेम समीकरण द्वारा दिए गए वर्तमान घनत्व के साथ चालन बैंड से इलेक्ट्रॉनों को निकाला जाता है

File:Fig216 Field Emission.PNG
पूर्ण शून्य तापमान पर धातु से क्षेत्र उत्सर्जन के लिए ऊर्जा स्तर योजना।[43]

एएफएन और बीएफएन क्रमशः ए/वी2 और वी/एम की इकाइयों के साथ एफईए के मापन द्वारा निर्धारित स्थिरांक हैं। ईएफएन विद्युत क्षेत्र है जो इलेक्ट्रॉन उत्सर्जक टिप और इलेक्ट्रॉनों को आकर्षित करने वाली सकारात्मक पक्षपाती संरचना के बीच सम्मिलित है। स्पिंड्ट टाइप कैथोड के लिए विशिष्ट स्थिरांक में सम्मिलित हैं: एएफएन = 3.14 x 10-8 ए/वी2 और बीएफएन = 771 वी/एम। (स्टैनफोर्ड रिसर्च इंस्टीट्यूट डेटा शीट)। एक त्वरित संरचना सामान्य रूप से नीचे की आकृति के अनुसार उत्सर्जक सामग्री के साथ निकटता में रखी जाती है।[44] उत्सर्जक और गेट के बीच करीब (माइक्रोमीटर स्केल) निकटता, प्राकृतिक या कृत्रिम फोकसिंग संरचनाओं के साथ मिलकर, अपेक्षाकृत कम लागू विद्युत-दाब और शक्ति के साथ उत्सर्जन के लिए आवश्यक उच्च क्षेत्र की ताकत कुशलतापूर्वक प्रदान करती है।

एक कार्बन नैनोट्यूब फील्ड-एमिशन कैथोड का जापानी H-II ट्रांसफर व्हीकल पर KITE विद्युत्-गतिक टीथर प्रयोग पर सफलतापूर्वक परीक्षण किया गया।[45] फील्ड एमिशन कैथोड प्रायः फील्ड एमिटर एरेज़ (FEAs) के रूप में होते हैं, जैसे कि स्पिंड्ट एट अल द्वारा कैथोड डिज़ाइन। नीचे दिया गया चित्र एक स्पिंडट उत्सर्जक के नज़दीकी दृश्य चित्रों को प्रदर्शित करता है।[46][47][48]

File:Fig218 Field Emitter Array.PNG
एक क्षेत्र उत्सर्जक सरणी के आवर्धित चित्र (ARPA/NRL/NASA वैक्यूम माइक्रोइलेक्ट्रॉनिक पहल के लिए कैप स्पिंड्ट द्वारा विकसित एक SRI रिंग कैथोड की SEM तस्वीर)

क्षेत्र उत्सर्जक सरणियों के लिए विभिन्न प्रकार की सामग्री विकसित की गई है, जिसमें सिलिकॉन से सेमीकंडक्टर निर्मित मोलिब्डेनम युक्तियों को एकीकृत गेट्स के साथ यादृच्छिक रूप से वितरित कार्बन नैनोट्यूब की एक प्लेट के ऊपर एक अलग गेट संरचना के साथ निलंबित किया गया है।[44]वैकल्पिक इलेक्ट्रॉन उत्सर्जन विधियों की तुलना में क्षेत्र उत्सर्जन प्रौद्योगिकियों के लाभ हैं:

  1. एक उपभोज्य (गैस) के लिए कोई आवश्यकता नहीं है और दबाव वाले पोत को संभालने के लिए कोई परिणामी सुरक्षा विचार नहीं है
  2. एक कम बिजली की क्षमता
  3. आसपास के प्लाज्मा में इलेक्ट्रॉनों के उत्सर्जन में स्थान-प्रभारी सीमा के कारण मध्यम शक्ति प्रभाव होना।

क्षेत्र उत्सर्जकों के लिए विचार करने के लिए एक प्रमुख मुद्दा संदूषण का प्रभाव है। कम विद्युत-दाब पर इलेक्ट्रॉन उत्सर्जन को प्राप्त करने के लिए, फील्ड एमिटर ऐरे टिप्स को माइक्रोमीटर-स्तर के पैमाने के आकार पर बनाया गया है। उनका प्रदर्शन इन छोटी संरचनाओं के सटीक निर्माण पर निर्भर करता है। वे कम कार्य-कार्य वाली सामग्री के साथ निर्मित होने पर भी निर्भर हैं। ये कारक उपकरण को संदूषण के प्रति अधिकतम संवेदनशील बना सकते हैं, विशेष रूप से हाइड्रोकार्बन और अन्य बड़े, आसानी से पोलीमराइज़्ड अणुओं से।[44]ग्राउंड टेस्टिंग और आयनोस्फेरिक (जैसे अंतरिक्ष यान आउटगैसिंग) वातावरण में संदूषण की उपस्थिति से बचने, समाप्त करने या संचालन के लिए तकनीकें महत्वपूर्ण हैं। मिशिगन विश्वविद्यालय और अन्य जगहों पर शोध ने इस बहिर्गमन मुद्दे पर ध्यान केंद्रित किया है। सुरक्षात्मक बाड़ों, इलेक्ट्रॉन सफाई, मजबूत कोटिंग्स और अन्य डिजाइन सुविधाओं को संभावित समाधान के रूप में विकसित किया जा रहा है।[44] अंतरिक्ष अनुप्रयोगों के लिए उपयोग किए जाने वाले एफईए को अभी भी अंतरिक्ष अनुप्रयोगों के लिए उपयुक्त गेट क्षमता पर दीर्घकालिक स्थिरता, दोहराव और संचालन की विश्वसनीयता के प्रदर्शन की आवश्यकता होती है।[49]


खोखला कैथोड

खोखला कैथोड प्रभाव किसी गैस को पहले आयनित करके प्लाज्मा के घने बादल का उत्सर्जन करता है। यह एक उच्च घनत्व वाला प्लाज़्मा प्लम बनाता है जो आसपास के प्लाज़्मा के साथ संपर्क बनाता है। उच्च घनत्व वाले प्लम और आसपास के प्लाज्मा के बीच के क्षेत्र को डबल शीथ या डबल लेयर कहा जाता है। यह दोहरी परत अनिवार्य रूप से आवेश की दो आसन्न परतें हैं। पहली परत उच्च क्षमता वाले प्लाज्मा (संपर्ककर्ता प्लाज्मा क्लाउड) के किनारे पर एक सकारात्मक परत है। दूसरी परत कम संभावित प्लाज्मा (परिवेश प्लाज्मा) के किनारे पर एक नकारात्मक परत है। दोहरी परत घटना की आगे की जांच कई लोगों द्वारा की गई है।[50][51][52][53] एक प्रकार के खोखले कैथोड में एक धातु की ट्यूब होती है, जो सिंटर्ड बेरियम ऑक्साइड संसेचित टंगस्टन इंसर्ट से ढकी होती है, जो एक छोटे छिद्र वाली प्लेट द्वारा एक छोर पर छाया हुआ होता है, जैसा कि नीचे दी गई आकृति में दिखाया गया है।[54][55]थर्मिओनिक उत्सर्जन द्वारा बेरियम ऑक्साइड संसेचित डालने से इलेक्ट्रॉनों का उत्सर्जन होता है। एक महान गैस एचसी के सम्मिलन क्षेत्र में बहती है और उत्सर्जित इलेक्ट्रॉनों द्वारा आंशिक रूप से आयनित होती है जो छिद्र के पास एक विद्युत क्षेत्र द्वारा त्वरित होती है (क्सीनन एचसी के लिए उपयोग की जाने वाली एक सामान्य गैस है क्योंकि इसमें कम विशिष्ट आयनीकरण ऊर्जा (प्रति आयनीकरण क्षमता) होती है। इकाई द्रव्यमान)। ईडीटी उद्देश्यों के लिए, एक कम द्रव्यमान अधिक फायदेमंद होगा क्योंकि कुल प्रणाली द्रव्यमान कम होगा। यह गैस केवल चार्ज एक्सचेंज के लिए उपयोग की जाती है और प्रणोदन नहीं।)। कई आयनित क्सीनन परमाणु दीवारों में त्वरित होते हैं जहां उनकी ऊर्जा थर्मिओनिक उत्सर्जन तापमान को बनाए रखती है। आयनित क्सीनन भी छिद्र से बाहर निकलता है। इलेक्ट्रॉनों को सम्मिलित क्षेत्र से, छिद्र के माध्यम से कीपर तक त्वरित किया जाता है, जो सदैव अधिक सकारात्मक पूर्वाग्रह में होता है।

File:Fig221 Hollow Cathode.PNG
एक खोखले कैथोड प्रणाली की योजनाबद्ध।[54]

इलेक्ट्रॉन उत्सर्जन मोड में, कीपर के संबंध में परिवेशी प्लाज्मा सकारात्मक रूप से पक्षपाती है। संपर्ककर्ता प्लाज्मा में, इलेक्ट्रॉन घनत्व लगभग आयन घनत्व के बराबर होता है। उच्च ऊर्जा इलेक्ट्रॉन धीरे-धीरे विस्तार करने वाले आयन क्लाउड के माध्यम से प्रवाहित होते हैं, जबकि निम्न ऊर्जा इलेक्ट्रॉन कीपर क्षमता द्वारा क्लाउड के भीतर फंस जाते हैं।[55] उच्च इलेक्ट्रॉन वेग क्सीनन आयन धाराओं की तुलना में बहुत अधिक इलेक्ट्रॉन धाराओं की ओर ले जाते हैं। इलेक्ट्रॉन उत्सर्जन संतृप्ति सीमा के नीचे संपर्ककर्ता द्विध्रुवी उत्सर्जक जांच के रूप में कार्य करता है। एक इलेक्ट्रॉन द्वारा उत्पन्न प्रत्येक निवर्तमान आयन कई इलेक्ट्रॉनों को उत्सर्जित करने की स्वीकृति देता है। यह संख्या लगभग आयन द्रव्यमान के इलेक्ट्रॉन द्रव्यमान के अनुपात के वर्गमूल के बराबर है।

यह नीचे दिए गए चार्ट में देखा जा सकता है कि इलेक्ट्रॉन उत्सर्जन मोड में एक खोखले कैथोड के लिए एक विशिष्ट I-V वक्र कैसा दिखता है। एक निश्चित कीपर ज्योमेट्री (ऊपर की आकृति में रिंग जिसमें से इलेक्ट्रॉन बाहर निकलते हैं), आयन प्रवाह दर और Vp, I-V प्रोफ़ाइल निर्धारित की जा सकती है।[54][55][56] [111-113].

File:Fig222 Hollow Cathode Curve.PNG
खोखले कैथोड के लिए विशिष्ट I-V विशेषता वक्र।[56]

इलेक्ट्रॉन संग्रह मोड में एचसी के संचालन को प्लाज्मा संपर्क (या प्रज्वलित) ऑपरेटिंग मोड कहा जाता है। "प्रज्वलित मोड" को इसलिए कहा जाता है क्योंकि यह इंगित करता है कि प्लाज्मा संपर्ककर्ता पर विद्युत-दाब ड्रॉप का उपयोग करके बहु-एम्पीयर वर्तमान स्तर प्राप्त किया जा सकता है। यह अंतरिक्ष प्लाज्मा इलेक्ट्रॉनों को गति देता है जो संपर्ककर्ता से तटस्थ निष्कासन प्रवाह को आयनित करता है। यदि इलेक्ट्रॉन संग्रह धाराएँ उच्च हैं और / या परिवेशी इलेक्ट्रॉन घनत्व कम हैं, तो जिस आवरण पर इलेक्ट्रॉन वर्तमान संग्रह बना रहता है, वह तब तक फैलता या सिकुड़ता है जब तक कि आवश्यक धारा एकत्र नहीं हो जाती।

इसके अतिरिक्त, ज्यामिति एचसी से प्लाज्मा के उत्सर्जन को प्रभावित करती है जैसा कि नीचे की आकृति में देखा गया है। यहां यह देखा जा सकता है कि कीपर के व्यास और मोटाई और छिद्र के संबंध में इसकी दूरी के आधार पर, कुल उत्सर्जन प्रतिशत प्रभावित हो सकता है।[57]

File:Fig223 Hollow Cathode Geometry.PNG
एचसी उत्सर्जन ज्यामिति का विवरण देने वाली विशिष्ट योजनाबद्ध।[57]

प्लाज्मा संग्रह और उत्सर्जन सारांश

सभी इलेक्ट्रॉन उत्सर्जन और संग्रह तकनीकों को निम्नलिखित तालिका में संक्षेपित किया जा सकता है। प्रत्येक विधि के लिए एक विवरण है कि क्या प्लाज्मा के संबंध में अंतरिक्ष यान की क्षमता के आधार पर प्रणाली में इलेक्ट्रॉनों या आयनों में वृद्धि या कमी हुई है। इलेक्ट्रॉन (ई-) और आयन (आयन+) इंगित करते हैं कि इलेक्ट्रॉनों या आयनों की संख्या बढ़ रही है (↑) या कम हो रही है (↓)। साथ ही, प्रत्येक विधि के लिए कुछ विशेष शर्तें लागू होती हैं (यह कब और कहां लागू होती है, इस बारे में अधिक स्पष्टीकरण के लिए इस आलेख में संबंधित अनुभाग देखें)।

Passive e and ion emission/collection VVp < 0 VVp > 0
Bare tether: OML ions+ e
Ram collection ions+ 0
Thermal collection ions+ e
Photoemmision e e ↓,~0
Secondary electron emission e e
Secondary ion emission ions+ ↓,~0 0
Retardation regieme e ions+ ↑, ~0
Active e and ion emission Potential does not matter
Thermionic emission e
Field emitter arrays e
Hollow cathodes e e

EDT प्रणाली मॉडलिंग में उपयोग के लिए, प्रत्येक निष्क्रिय इलेक्ट्रॉन संग्रह और उत्सर्जन सिद्धांत मॉडल को पहले प्रकाशित समीकरणों और परिणामों को पुन: प्रस्तुत करके सत्यापित किया गया है। इन भूखंडों में सम्मिलित हैं: कक्षीय गति सीमित सिद्धांत,[15]राम संग्रह, और थर्मल संग्रह,[58] प्रकाश उत्सर्जन,[59] माध्यमिक इलेक्ट्रॉन उत्सर्जन,[60] और माध्यमिक आयन उत्सर्जन।[61][62][63][64]


विद्युत्-गतिक टीथर प्रणाली फंडामेंटल

सभी सबसे हालिया इलेक्ट्रॉन उत्सर्जकों, संग्राहकों और सिद्धांत को एक मॉडल में एकीकृत करने के लिए, EDT प्रणाली को पहले परिभाषित और व्युत्पन्न किया जाना चाहिए। एक बार यह पूरा हो जाने के बाद इस सिद्धांत को प्रणाली विशेषताओं के अनुकूलन का निर्धारण करने के लिए लागू करना संभव होगा।

ऐसी कई व्युत्पत्तियाँ हैं जो EDT प्रणाली में सम्मिलित क्षमता और धाराओं को संख्यात्मक रूप से हल करती हैं।[65][66][67][68] एक पूर्ण ईडीटी प्रणाली की व्युत्पत्ति और संख्यात्मक कार्यप्रणाली जिसमें एक नंगे टीथर अनुभाग सम्मिलित है, इन्सुलेट कंडक्टिंग टीथर, इलेक्ट्रॉन (और आयन) एंडबॉडी उत्सर्जक, और निष्क्रिय इलेक्ट्रॉन संग्रह का वर्णन किया गया है। इसके बाद सरलीकृत, सभी इंसुलेटेड टेदर मॉडल आता है। प्रायोगिक मिशन डेटा का उपयोग करते हुए विशेष EDT घटना और EDT प्रणाली मॉडल के सत्यापन पर चर्चा की जाएगी।

बेयर टीथर प्रणाली व्युत्पत्ति

एक ईडीटी व्युत्पत्ति से संबंधित एक महत्वपूर्ण नोट खगोलीय पिंड से संबंधित है जो कि टीथर प्रणाली की कक्षा में है। व्यावहारिकता के लिए, पृथ्वी की परिक्रमा करने वाले पिंड के रूप में उपयोग किया जाएगा; हालाँकि, यह सिद्धांत आयनमंडल और चुंबकीय क्षेत्र वाले किसी भी खगोलीय पिंड पर लागू होता है।

निर्देशांक पहली चीज है जिसे पहचाना जाना चाहिए। इस व्युत्पत्ति के प्रयोजनों के लिए, x- और y-अक्ष को क्रमशः पृथ्वी की सतह के संबंध में पूर्व-पश्चिम और उत्तर-दक्षिण दिशाओं के रूप में परिभाषित किया गया है। z-अक्ष को पृथ्वी के केंद्र से ऊपर-नीचे के रूप में परिभाषित किया गया है, जैसा कि नीचे की आकृति में देखा गया है। पैरामीटर - चुंबकीय क्षेत्र बी, तार की लंबाई एल, और कक्षीय वेग वीorb - वे सदिश हैं जिन्हें इस समन्वय प्रणाली के संदर्भ में व्यक्त किया जा सकता है, जैसा कि निम्नलिखित समीकरणों में है:

(चुंबकीय क्षेत्र वेक्टर),
(टीथर स्थिति वेक्टर), और
(कक्षीय वेग वेक्टर)।

चुंबकीय क्षेत्र के घटकों को सीधे अंतर्राष्ट्रीय भू-चुंबकीय संदर्भ क्षेत्र (IGRF) मॉडल से प्राप्त किया जा सकता है। यह मॉडल चुंबकीय क्षेत्र मॉडलर और दुनिया भर के उपग्रहों और वेधशालाओं और सर्वेक्षणों से चुंबकीय क्षेत्र डेटा एकत्र करने और प्रसारित करने में सम्मिलित संस्थानों के बीच एक सहयोगी प्रयास से संकलित किया गया है। इस व्युत्पत्ति के लिए, यह माना जाता है कि चुंबकीय क्षेत्र रेखाएँ टेथर की पूरी लंबाई में समान कोण हैं, और यह कि टीथर कठोर है।

कक्षा वेग वेक्टर

वास्तविक रूप से, अनुप्रस्थ विद्युत्-गतिक बल टीथर को झुकने और स्थानीय ऊर्ध्वाधर से दूर झूलने का कारण बनते हैं। ग्रेविटी ग्रेडिएंट फोर्स फिर एक रिस्टोरिंग फोर्स उत्पन्न करती है जो टीथर को वापस स्थानीय वर्टिकल की ओर खींचती है; हालाँकि, इसका परिणाम एक पेंडुलम जैसी गति में होता है (गुरुत्वाकर्षण प्रवणता बल भी ED बलों के बिना पेंडुलम गतियों में परिणत होता है)। बी दिशा बदलती है क्योंकि टीथर पृथ्वी की परिक्रमा करता है, और इस प्रकार ईडी बलों की दिशा और परिमाण भी बदलते हैं। यह पेंडुलम गति इन-प्लेन और आउट-ऑफ-प्लेन दोनों दिशाओं में जटिल लाइब्रेशन में विकसित हो सकती है। फिर, इन-प्लेन गति और अनुदैर्ध्य लोचदार दोलनों के बीच युग्मन के साथ-साथ इन-प्लेन और आउट-ऑफ-प्लेन गतियों के बीच युग्मन के कारण, एक स्थिर धारा पर संचालित एक विद्युत्-गतिक टीथर निरंतर लाइब्रेशन गतियों में ऊर्जा जोड़ सकता है। इस प्रभाव के बाद लाइब्रेशन एम्पलीट्यूड बढ़ने का मौका मिलता है और अंततः 'स्किप-रोप इफेक्ट' जैसे एक सहित जंगली दोलनों का कारण बनता है।[69] लेकिन वह इस व्युत्पत्ति के दायरे से बाहर है। एक गैर-घूर्णन EDT प्रणाली (एक घूर्णन प्रणाली, जिसे मोमेंटम एक्सचेंज विद्युत्-गतिक रीबॉस्ट [एमएक्सईआर] कहा जाता है) में, पृथ्वी के साथ प्राकृतिक गुरुत्वाकर्षण ढाल संरेखण के कारण मुख्य रूप से जेड-दिशा में है।

व्युत्पत्ति

निम्नलिखित व्युत्पत्ति में सम्मिलित सभी वेक्टर मात्राओं के लिए प्रणाली लेखांकन के सटीक समाधान का वर्णन किया जाएगा, और फिर नाममात्र की स्थिति के साथ एक दूसरा समाधान होगा जहां चुंबकीय क्षेत्र, कक्षीय वेग और टीथर अभिविन्यास सभी एक दूसरे के लंबवत हैं। नाममात्र स्थिति का अंतिम समाधान केवल इलेक्ट्रॉन घनत्व, n_e, प्रति इकाई लंबाई, R_t, और उच्च विद्युत-दाब बिजली आपूर्ति की शक्ति, P_hvps की शक्ति के संदर्भ में हल किया जाता है।

नीचे दिया गया आंकड़ा एक विशिष्ट ईडीटी प्रणाली का वर्णन करता है जिसमें एक श्रृंखला बायस ग्राउंडेड गेट कॉन्फ़िगरेशन है (विश्लेषण किए गए विभिन्न प्रकार के कॉन्फ़िगरेशन का और विवरण प्रस्तुत किया गया है)[16] नंगे तार के एक अतिसूक्ष्म खंड के विस्फोट के साथ। यह आंकड़ा सममित रूप से स्थापित है इसलिए किसी भी छोर को एनोड के रूप में इस्तेमाल किया जा सकता है। यह तार प्रणाली सममित है क्योंकि घूर्णन करने वाली तार प्रणालियों को इसके रोटेशन में किसी बिंदु पर दोनों सिरों को एनोड और कैथोड के रूप में उपयोग करने की आवश्यकता होगी। V_hvps का उपयोग केवल EDT प्रणाली के कैथोड अंत में किया जाएगा, और अन्यथा इसे बंद कर दिया जाएगा।

(ए) एक नंगे टीथर सेगमेंट का एक सर्किट आरेख (बी) एक समकक्ष ईडीटी प्रणाली सर्किट मॉडल श्रृंखला बायस ग्राउंडेड गेट कॉन्फ़िगरेशन दिखा रहा है।

इन-प्लेन और आउट-ऑफ-प्लेन दिशा प्रणाली के कक्षीय वेग वेक्टर द्वारा निर्धारित की जाती है। यात्रा की दिशा में एक इन-प्लेन बल है। यह कक्षा में ऊर्जा जोड़ेगा या हटाएगा, जिससे कक्षा को दीर्घवृत्त में परिवर्तित कर ऊंचाई में वृद्धि होगी। एक आउट-ऑफ़-प्लेन बल यात्रा के विमान के लंबवत दिशा में है, जो झुकाव में बदलाव का कारण बनता है। इसे अगले भाग में समझाया जाएगा।

इन-प्लेन और आउट-ऑफ-प्लेन दिशाओं की गणना करने के लिए, वेग और चुंबकीय क्षेत्र वैक्टर के घटकों को प्राप्त किया जाना चाहिए और बल मूल्यों की गणना की जानी चाहिए। यात्रा की दिशा में बल का घटक कक्षा बढ़ाने की क्षमताओं को बढ़ाने के लिए काम करेगा, जबकि थ्रस्ट के आउट-ऑफ-प्लेन घटक झुकाव को बदल देगा। नीचे दिए गए आंकड़े में, चुंबकीय क्षेत्र वेक्टर पूरी तरह से उत्तर (या वाई-अक्ष) दिशा में है, और परिणामी बलों को कक्षा में कुछ झुकाव के साथ देखा जा सकता है। बिना किसी झुकाव वाली कक्षा में इन-प्लेन दिशा में सारा जोर होगा।[70]

Description of an in-plane and out-of-plane force.
File:Fig35 Orbit Drag.PNG
Drag effects on an Electrodynamic Tether system.[69]

गुरुत्व प्रवणता के साथ टीथर के मिसलिग्न्मेंट को रोकने के लिए टीथर प्रणाली के लाइब्रेशंस को स्थिर करने के लिए काम किया गया है। नीचे दिया गया आंकड़ा एक ईडीटी प्रणाली को एक विशिष्ट कक्षा के लिए मिलने वाले ड्रैग प्रभावों को प्रदर्शित करता है। इन-प्लेन एंगल, α_ip, और आउट-ऑफ-प्लेन एंगल, α_op, प्रणाली के एंडमास को बढ़ाकर या फीडबैक तकनीक को नियोजित करके कम किया जा सकता है।[69] गुरुत्वाकर्षण संरेखण में किसी भी विचलन को समझना चाहिए, और प्रणाली डिज़ाइन में इसका हिसाब देना चाहिए।

इंटरस्टेलर यात्रा

स्थानीय बबल के स्थानीय इंटरस्टेलर माध्यम का उपयोग करके इंटरस्टेलर यात्रा के लिए ईडीटी प्रणाली के एक आवेदन पर विचार किया गया है और शोध किया गया है। प्रति व्यक्ति 12 किलोवाट की आवश्यकता के साथ 50 के चालक दल को ऑन-बोर्ड बिजली की आपूर्ति करने के लिए ईडीटी प्रणाली का उपयोग करना संभव पाया गया है। अंतरिक्ष यान की गतिज ऊर्जा की कीमत पर ऊर्जा उत्पादन प्राप्त किया जाता है। रिवर्स में ईडीटी प्रणाली का उपयोग त्वरण के लिए किया जा सकता है। हालाँकि, यह अप्रभावी पाया गया है। ईडीटी प्रणाली का उपयोग करके थ्रस्टलेस टर्निंग कोर्स सुधार और इंटरस्टेलर अंतरिक्ष में मिलन स्थल की स्वीकृति देना संभव है। हालांकि, यह 3.7 * 10 के एक बहुत बड़े मोड़ त्रिज्या के कारण एक स्टारशिप को एक पावर बीम में पुनः प्रवेश करने या कई सौर पास बनाने की स्वीकृति देने के लिए तीव्रता से थ्रस्टलेस चक्कर लगाने की स्वीकृति नहीं देगा।13 किमी (~3.7 प्रकाश-वर्ष)।[71]


यह भी देखें


संदर्भ

General information
  • Cosmo, M.L., and Lorenzini, E.C., "Tethers in Space Handbook," NASA Marchall Space Flight Center, 1997, pp. 274–1-274.
  • Mariani, F., Candidi, M., Orsini, S., "Current Flow Through High-Voltage Sheaths Observer by the TEMAG Experiment During TSS-1R," Geophysical Research Letters, Vol. 25, No. 4, 1998, pp. 425–428.
Citations
  1. 1.0 1.1 NASA, Tethers In Space Handbook, edited by M.L. Cosmo and E.C. Lorenzini, Third Edition December 1997 (accessed 20 October 2010); see also version at NASA MSFC; available on scribd
  2. Messier, Doug. "Company Gets $1.9 Million from NASA to Develop Debris Removal Spacecraft". Parabolic Arc. Retrieved 15 March 2012.
  3. 3.0 3.1 Johnson & Herrmann (1998). "International Space Station Electrodynamic Tether Reboost Study " (PDF).
  4. Fuhrhop, K.R., Gilchrist, B.E., Bilen, S.G., "System Analysis of the Expected Electrodynamic Tether Performance for the ProSEDS Mission," 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA, 2003, pp. 1–10.
  5. Johnson, L., Estes, R.D., Lorenzini, E.C., "Propulsive Small Expendable Deployer System Experiment," Journal of Spacecraft and Rockets, Vol. 37, No. 2, 2000, pp. 173–176.
  6. Lorenzini, E.C., Welzyn, K., and Cosmo, M.L., "Expected Deployment Dynamics of ProSEDS," 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA, 2003, pp. 1–9.
  7. Sanmartin, J.R., Charro, M., Lorenzini, E.C., "Analysis of ProSEDS Test of Bare-tether Collection," 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA, 2003, pp. 1–7.
  8. Vaughn, J.A., Curtis, L., Gilchrist, B.E., "Review of the ProSEDS Electrodynamic Tether Mission Development," 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA, 2004, pp. 1–12.
  9. 9.0 9.1 Sanmartin, J.R., Martinez-Sanchez, M., and Ahedo, E., "Bare Wire Anodes for Electrodynamic Tethers," Journal of Propulsion and Power, Vol. 9, No. 3, 1993, pp. 353–360
  10. Tether power generator for earth orbiting satellites. Thomas G. Roberts et al.
  11. Katz, I.; Lilley, J. R. Jr.; Greb, A. (1995). "Plasma Turbulence Enhanced Current Collection: Results from the Plasma Motor Generator Electrodynamic Tether Flight". J. Geophys. Res. 100 (A2): 1687–90. Bibcode:1995JGR...100.1687K. doi:10.1029/94JA03142.
  12. US Standard Patent 6116544, Forward & Hoyt, Electrodynamic tether and method of use, 1986
  13. 13.0 13.1 Lieberman, M.A., and Lichtenberg, A.J., "Principles of Plasma Discharges and Materials Processing," Wiley-Interscience, Hoboken, NJ, 2005, pp. 757.
  14. Mott-Smith, H.M., and Langmuir, I., "The Theory of Collectors in Gaseous Discharges," Physical Review, Vol. 28, 1926, pp. 727–763.
  15. 15.0 15.1 15.2 15.3 Choinere, E., "Theory and Experimental Evaluation of a Consistent Steady State Kinetic Model for 2-D Conductive Structures in Ionospheric Plasmas with Application to Bare Electrodynamic Tethers in Space," 2004, pp. 1–313.
  16. 16.0 16.1 16.2 Fuhrhop, K.R.P., “ Theory and Experimental Evaluation of Electrodynamic Tether Systems and Related Technologies,”University of Michigan PhD Dissertation, 2007, pp. 1-307. "Theory and Experimental Evaluation of Electrodynamic Tether Systems and Related Technologies" (PDF). Archived from the original (PDF) on 2011-08-14. Retrieved 2011-04-04.
  17. Rosen, G. (1962). "Method for removal of free electrons in a plasma". Phys. Fluids. 5 (6): 737. Bibcode:1962PhFl....5..737R. doi:10.1063/1.1706691.
  18. email from Robert Merlino to Gerald Rosen, Jan 22, 2010 Archived 2014-04-29 at the Wayback Machine
  19. Sanmartin, J.R., and Estes, R.D., "The orbital-motion-limited regime of cylindrical Langmuir probes," Physics of Plasmas, Vol. 6, No. 1, 1999, pp. 395–405.
  20. Choiniere, E., Gilchrist, B.E., Bilen, S.G., "Measurement of Cross-Section GeometryEffects on Electron Collection to Long Probes in Mesosonic Flowing Plasmas," 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA, 2003, pp. 1–13.
  21. Choiniere, E., and Gilchrist, B.G., "Investigation of Ionospheric Plasma Flow Effects on Current Collection to Parallel Wires Using Self-Consistent Steady-State Kinetic Simulations," 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA, 2005, pp. 1–13.
  22. Parker, L.W., "Plasmasheath-Photosheath theory for Large High-Voltage Space Structures," edited by H.B. Garrett and C.P. Pike, Space Systems and their Interactions with the Earth's Space Environment, AIAA Press, 1980, pp. 477–491.
  23. Gombosi, T.I., "Physics of Space Environments," Dessler, A.J. Houghton, J.T. and Rycroft, M.J. eds., Cambridge University Press, Cambridge, UK, 1998, pp. 1–339.
  24. Stone, N.H., and Bonifazi, C., "The TSS-1R mission: Overview and Scientific Context," Geophysical Research Letters, Vol. 25, No. 4, 1998, pp. 409–412.
  25. Gregory, F. D., "NASA Safety Standard Guidelines and Assessment Procedures for Limiting Orbital Debris," NASA, NSS 1740.14, Washington D.C., 1995
  26. Bilitza, D., "International Reference Ionosphere 2000," Radio Science, Vol. 36, No. 2, 2001, pp. 261–275.
  27. Bilitza, D., "International Reference Ionosphere – Status 1995/96," Advanced Space Research, Vol. 20, No. 9, 1997, pp. 1751–1754.
  28. Wertz, J.R., and Larson, W.J. eds., "Space Mission Analysis and Design," Microcosm Press & Kluwar Academic Publishers, El Segundo, CA, 1999, pp. 1–985.
  29. Stone, N.H., and Gierow, P.A., "A Preliminary Assessment of Passive End-Body Plasma Contactors," 39th Aerospace Sciences Meeting and Exhibit, AIAA, 2001, pp. 1–6.
  30. Stone, N.H., and Moore, J.D., "Grid Sphere Electrodes used for Current Collection at the Positive Pole of Electrodynamic Tethers," 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, AIAA, 2004, pp. 1–7.
  31. 31.0 31.1 Khazanov, G.V., Krivorutsky, E., and Sheldon, R.B., "Solid and grid sphere current collectionin view of the tethered satellite systemTSS 1 and TSS 1R mission results," Journal of Goephysical Research, Vol. 110, 2005, pp. 1–10.
  32. Child, C.D., "Discharge From Hot CaO," Physical Review (Series I), Vol. 32, No. 5, 1911, pp. 492–511.
  33. Langmuir, I., "The Effect of Space Charge and Initial Velocities on the Potential Distribution and Thermionic Current between Parallel Plane Electrodes," Physical Review, Vol. 21, No. 4, 1923, pp. 419–435
  34. Langmuir, I., "The Effect of Space Charge and Residual Gases on Thermionic Currents in High Vacuum," Physical Review, Vol. 2, No. 6, 1913, pp. 450–486.
  35. Luginsland, J.W., McGee, S., and Lau, Y.Y., "Virtual Cathode Formation Due to Electromagnetic Transients," IEEE Transactions on Plasma Science, Vol. 26, No. 3, 1998, pp. 901–904.
  36. Lau, Y.Y., "Simple Theory for the Two-Dimensional Child-Langmuir Law," Physical Review Letters, Vol. 87, No. 27, 2001, pp. 278301/1-278301/3.
  37. Luginsland, J.W., Lau, Y.Y., and Gilgenbach, R.M., "Two-Dimensional Child-Langmuir Law," Physical Review Letters, Vol. 77, No. 22, 1996, pp. 4668–4670.
  38. Humphries, S.J., "Charged Particle Beams," John Wiley & Sons, Inc., New York, 1990, pp. 834.
  39. Dekker, A.J., "Thermionic Emission," McGraw Hill Access Science Encyclopedia, Vol. 2004, No. 5 / 3, 2002, pp. 2.
  40. 40.0 40.1 Dobrowolny, M., and Stone, N.H., "A Technical Overview of TSS-1: the First Tethered-Satellite System Mission," Il Nuovo Cimento Della Societa Italiana Di Fisica, Vol. 17C, No. 1, 1994, pp. 1–12.
  41. Bonifazi, C., Svelto, F., and Sabbagh, J., "TSS Core Equipment I – Electrodynamic Package and Rational for System Electrodynamic Analysis," Il Nuovo Cimento Della Societa Italiana Di Fisica, Vol. 17C, No. 1, 1994, pp. 13–47.
  42. Gunther, K., "Hollow Cathode / Ion Source Quotation," HeatWave Labs, Inc., 3968, Watsonville, CA, 2006.
  43. 43.0 43.1 Gomer, R., "Field emission," McGraw Hill Access Science Encyclopedia, Vol. 2005, No. July 1, 2002, pp. 2.
  44. 44.0 44.1 44.2 44.3 Morris, D., "Optimizing Space-Charge Limits of Electron Emission into Plasmas in Space Electric Propulsion," University of Michigan, 2005, pp. 1–212.
  45. Ohkawa, Y., (December 2020). "Review of KITE - Electrodynamic tether experiment on the Japanese H-II Transfer Vehicle", Acta Astronautica, Vol. 177, pp. 750-758. https://doi.org/10.1016/j.actaastro.2020.03.014 Retrieved 16 July 2021.
  46. Spindt, C.A., Holland, C.E., and Rosengreen, A. Brodie, I., "Field-Emitter Arrays for Vacuum Microelectronics," IEEE Transactions on Electron Devices, Vol. 38, No. 10, 1991, pp. 2355–2363.
  47. Spindt, C.A., "Spindt Emitter Measurements," unpublished material Stanford Research Institute, 2001, pp. 1.
  48. Jensen, K.L., "Field emitter arrays for plasma and microwave source applications," Physics of Plasmas, Vol. 6, No. 5, 1999, pp. 2241–2253.
  49. Gilchrist, B.E., Gallimore, A.D., Jensen, K.L., "Field-Emitter Array Cathodes (FEACs) for Space-Based Applications: An Enabling Technology," Not Published, University of Michigan, 2001.
  50. Lapuerta, V., and Ahedo, E., " Dynamic model of a plasma structure with an intermediate double-layer, formed outside an anodic plasma contactor," Physics of Plasmas, Vol. 7, No. 6, 2000, pp. 2693–2703.
  51. Wells, A.A., "Current Flow Across a Plasma Double Layer in a Hollow Cathode Ion Thruster," AIAA 9th Electric Propulsion Conference, AIAA, 1972, pp. 1–15.
  52. Andrews, J.G., and Allen, J.E., "Theory of a Double Sheath Between Two Plasmas," Proceedings of the Royal Society of London Series A, Vol. 320, No. 1543, 1971, pp. 459–472.
  53. Prewett, P.D., and Allen, J.E., "The double sheath Associated with a Hot Cathode," Proceedings of the Royal Society of London Series A, Vol. 348, No. 1655, 1976, pp. 435–446.
  54. 54.0 54.1 54.2 Katz, I., Anderson, J.R., Polk, J.E., "One-Dimensional Hollow Cathode Model," Journal of Propulsion and Power, Vol. 19, No. 4, 2003, pp. 595–600.
  55. 55.0 55.1 55.2 Katz, I., Lilley, J. R. Jr., Greb, A., "Plasma Turbulence Enhanced Current Collection: Results from the Plasma Motor Generator Electrodynamic Tether Flight," Journal of Geophysical Research, Vol. 100, No. A2, 1995, pp. 1687–1690.
  56. 56.0 56.1 Parks, D.E., Katz, I., Buchholtz, B., "Expansion and electron emission characteristics of a hollow-cathode plasma contactor," Journal of Applied Physics, Vol. 74, No. 12, 2003, pp. 7094–7100.
  57. 57.0 57.1 Domonkos, M.T., "Evaluation of Low-Current Orificed Hollow Cathodes," University of Michigan PhD Dissertation,1999, pp. 1–173.
  58. Aguero, V.M., "A Study of Electrical Charging on Large LEO Spacecraft Using a Tethered Satellite as a Remote Plasma Reference," Stanford University, Space, Telecommunications and Radioscience Laboratory, 1996, pp. 1–192
  59. Whipple, E.C., "Potentials of Surfaces in Space," Report of Progress in Physics, Vol. 44, 1981, pp. 1197–1250.
  60. Hastings, D., and Garrett, H., "Spacecraft – Environment Interactions," Cambridge University Press, New York, NY, 1996, pp. 292.
  61. Siegel, M.W., and Vasile, M.J., "New wide angle, high transmission energy analyzer for secondary ion mass spectrometry," Review of Scientific Instrumentation, Vol. 52, No. 11, 1981, pp. 1603–1615.
  62. Benninghoven, A., "Developments in Secondary-Ion Mass Spectroscopy and Applications to Surface Studies," Surface Science, Vol. 53, 1975, pp. 596–625
  63. Benninghoven, A., "Surface Investigation of Solids by the Statistical Method of Secondary-Ion Mass Spectroscopy (SIMS)," Surface Science, Vol. 35, 1973, pp. 427–457.
  64. Benninghoven, A., and Mueller, A., "Secondary ion yields near 1 for some chemical compounds," Physics Letters, Vol. 40A, No. 2, 1972, pp. 169–170.
  65. Dobrowolny, M., "Electrodynamics of Long Metal Tethers in the Ionospheric Plasma," Radio Science, Vol. 13, No. 3, 1978, pp. 417–424.
  66. Arnold, D.A., and Dobrowolny, M., "Transmission Line Model of the Interaction of a Long Metal Wire with the Ionosphere," Radio Science, Vol. 15, No. 6, 1980, pp. 1149–1161.
  67. Dobrowolny, M., Vannaroni, G., and DeVenuto, F., "Electrodynamic Deorbiting of LEO satellites," Nuovo Cimento, Vol. 23C, No. 1, 2000, pp. 1–21.
  68. Dobrowolny, M., Colombo, G., and Grossi, M.D., "Electrodynamics of long conducting tethers in the near-earth environment," Interim Report Smithsonian Astrophysical Observatory, 1976, pp. 1–48.
  69. 69.0 69.1 69.2 Hoyt, R.P., "Stabilization of Electrodynamic Tethers," 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2002, pp. 1–9.
  70. Bonometti, J.A., Sorensen, K.F., Jansen, R.H., "Free Re-boost Electrodynamic Tether on the International Space Station," 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA, 2005, pp. 1–7.
  71. "Applications of the Electrodynamic Tether to Interstellar Travel" Gregory L. Matloff, Less Johnson, February, 2005


आगे की पढाई


बाहरी कड़ियाँ

Related patents
Publications
Other articles