ट्राइबोइलेक्ट्रिक प्रभाव

From Vigyanwiki
Revision as of 00:35, 18 January 2023 by alpha>Indicwiki (Created page with "{{Short description|Type of contact electrification}} {{More citations needed|date=December 2022}} File:Cat demonstrating static cling with styrofoam peanuts.jpg|thumb|uprig...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
बिल्ली के फर से चिपक जाती है। ट्राइबोइलेक्ट्रिक प्रभाव बिल्ली की गतियों के कारण फर पर इलेक्ट्रोस्टैटिक चार्ज का निर्माण करता है। आवेशों के विद्युत क्षेत्र के परिणामस्वरूप आवेशित फर के लिए हल्के प्लास्टिक के टुकड़ों का थोड़ा सा आकर्षण होता है। ट्राइबोइलेक्ट्रिक प्रभाव भी कपड़ों में स्थिर चिपटना का कारण है।

ट्राइबोइलेक्ट्रिक प्रभाव (ट्राइबो[[ बिजली का आवेश ]]िंग के रूप में भी जाना जाता है) एक प्रकार का संपर्क विद्युतीकरण है, जिस पर कुछ सामग्री एक अलग सामग्री से अलग होने के बाद इलेक्ट्रिक चार्ज बन जाती है जिसके साथ वे संपर्क में थे। दो सामग्रियों को एक दूसरे से रगड़ने से उनकी सतहों के बीच संपर्क बढ़ता है, और इसलिए ट्राइबोइलेक्ट्रिक प्रभाव। उदाहरण के लिए, फर के साथ कांच को रगड़ना, या बालों के माध्यम से प्लास्टिक की कंघी, ट्राइबोइलेक्ट्रिकिटी का निर्माण कर सकती है। अधिकांश रोजमर्रा की स्थैतिक बिजली ट्राइबोइलेक्ट्रिक होती है। उत्पादित आवेशों की विद्युत ध्रुवता और शक्ति सामग्री, सतह खुरदरापन, तापमान, तनाव और अन्य गुणों के अनुसार भिन्न होती है।

त्रिकोणीय प्रभाव बहुत अप्रत्याशित है, और केवल व्यापक सामान्यीकरण किए जा सकते हैं। अंबर , उदाहरण के लिए, ऊन जैसी सामग्री के साथ संपर्क और पृथक्करण (या घर्षण) द्वारा एक विद्युत आवेश प्राप्त कर सकता है। यह संपत्ति सबसे पहले थेल्स द्वारा दर्ज की गई थी। बिजली शब्द की उत्पत्ति विलियम गिल्बर्ट (खगोलविद) के प्रारंभिक सिक्के, इलेक्ट्रा से हुई है, जो एम्बर के लिए ग्रीक भाषा के शब्द से उत्पन्न हुआ है, ēlektron. उपसर्गtribo-('रगड़' के लिए ग्रीक) 'घर्षण' को संदर्भित करता है, जैसा कि दूसरे दिन रेडियोलॉजी में है। सामग्रियों के अन्य उदाहरण जो एक साथ रगड़ने पर एक महत्वपूर्ण चार्ज प्राप्त कर सकते हैं, उनमें रेशम के साथ रगड़ा हुआ कांच और छाल के साथ कठोर रबड़ शामिल हैं।

एक बहुत ही परिचित उदाहरण आधुनिक कपड़ों में उपयोग किए जाने वाले कपास, ऊन, पॉलिएस्टर, या मिश्रित कपड़े जैसी लगभग किसी भी विशिष्ट सामग्री की आस्तीन पर प्लास्टिक की कलम की रगड़ हो सकती है। इस तरह का एक विद्युतीकृत पेन पेन के पास आने पर एक वर्ग सेंटीमीटर से कम कागज के टुकड़ों को आसानी से आकर्षित करेगा और उठाएगा। साथ ही, ऐसा पेन उसी तरह के विद्युतीकृत पेन को पीछे हटा देगा। यह प्रतिकर्षण दोनों कलमों को धागे पर लटकाने और उन्हें एक दूसरे के पास सेट करने के संवेदनशील सेटअप में आसानी से पता लगाने योग्य है। इस तरह के प्रयोग आसानी से दो प्रकार के मात्रात्मक विद्युत आवेश के सिद्धांत की ओर ले जाते हैं, एक प्रभावी रूप से दूसरे का ऋणात्मक होता है, जिसमें कुल आवेश देने वाले संकेतों का एक साधारण योग होता है। आवेशित प्लास्टिक पेन का कागज़ के अनावेशित टुकड़ों (उदाहरण के लिए) के लिए स्थिर वैद्युत आकर्षण कागज के भीतर विद्युत आवेशों के अस्थायी आवेश पृथक्करण (विद्युत ध्रुवीकरण या द्विध्रुव आघूर्ण) (या शायद स्थायी आणविक या परमाणु विद्युत द्विध्रुवों के संरेखण) के कारण होता है। एक शुद्ध बल तब उत्पन्न होता है जब द्विध्रुव के थोड़े निकट आवेश पेन से गैर-समान क्षेत्र में अधिक मजबूती से आकर्षित होते हैं जो दूरी के साथ कम हो जाता है। एक समान विद्युत क्षेत्र में, उदाहरण के लिए समानांतर संधारित्र प्लेटों के अंदर, कागज के छोटे टुकड़ों में अस्थायी ध्रुवीकरण होता है लेकिन शून्य शुद्ध आकर्षण के साथ।

ट्राइबोइलेक्ट्रिक प्रभाव को अब आसंजन की घटना से संबंधित माना जाता है, जहां विभिन्न अणुओं से बनी दो सामग्रियां विभिन्न अणुओं के बीच आकर्षण के कारण एक साथ चिपक जाती हैं।[citation needed] जबकि आसंजन परमाणुओं के बीच एक रासायनिक बंधन नहीं है, विभिन्न प्रकार के अणुओं के बीच इलेक्ट्रॉनों का आदान-प्रदान होता है, जिसके परिणामस्वरूप अणुओं के बीच इलेक्ट्रोस्टैटिक आकर्षण होता है जो उन्हें एक साथ रखता है। सामग्रियों का भौतिक पृथक्करण जो एक साथ पालन किया जाता है, सामग्री के बीच घर्षण का परिणाम होता है। क्योंकि विभिन्न सामग्रियों में अणुओं के बीच इलेक्ट्रॉन स्थानांतरण तुरंत प्रतिवर्ती नहीं होता है, एक प्रकार के अणु में अतिरिक्त इलेक्ट्रॉन पीछे रह जाते हैं, जबकि दूसरे में इलेक्ट्रॉनों की कमी होती है। इस प्रकार, एक सामग्री एक सकारात्मक या नकारात्मक चार्ज (स्थैतिक बिजली भी देखें) विकसित कर सकती है जो सामग्री के अलग होने के बाद फैल जाती है।[citation needed] ट्राइबोइलेक्ट्रिफिकेशन (या संपर्क-विद्युतीकरण) के तंत्र पर कई वर्षों से बहस चल रही है, जिसमें इलेक्ट्रॉन स्थानांतरण, आयन स्थानांतरण या सामग्री की प्रजातियों का स्थानांतरण शामिल है।[clarification needed] केल्विन जांच माइक्रोस्कोपी और ट्राइबोइलेक्ट्रिक नैनो जनरेटर का उपयोग करते हुए 2018 में हाल के अध्ययनों से पता चला है कि इलेक्ट्रॉन हस्तांतरण ठोस और ठोस के बीच ट्राइबोइलेक्ट्रिफिकेशन के लिए प्रमुख तंत्र है।[1][2] कार्य फलन मॉडल का उपयोग धातु और ढांकता हुआ के बीच इलेक्ट्रॉन हस्तांतरण को समझाने के लिए किया जा सकता है।[3][4] सतह राज्यों के मॉडल का उपयोग दो डाइलेक्ट्रिक्स के बीच इलेक्ट्रॉन हस्तांतरण को समझाने के लिए किया जा सकता है।[1][5][6] एक सामान्य मामले के लिए, चूंकि किसी भी सामग्री के लिए त्रिकोणीय विद्युतीकरण होता है, वैंग द्वारा एक सामान्य मॉडल प्रस्तावित किया गया है, जिसमें बॉन्डिंग लंबाई को छोटा करके कम अंतर-परमाणु संभावित बाधा के लिए दो परमाणुओं के बीच एक मजबूत इलेक्ट्रॉन क्लाउड ओवरलैप के कारण इलेक्ट्रॉन स्थानांतरण होता है।[7] मॉडल के आधार पर, ट्राइबोइलेक्ट्रिफिकेशन पर तापमान और फोटो उत्तेजना के प्रभाव की जांच की गई।[8][9] इस तरह के मॉडल को तरल-ठोस, तरल-तरल और यहां तक ​​कि गैस-तरल के मामलों में भी बढ़ाया जा सकता है।[10] फाइल: ट्राइबोइलेक्ट्रिक नैनोजेनरेटर.टीआईएफ का लेटरल स्लाइडिंग मोड। बिजली पैदा करने के लिए ट्राइबोइलेक्ट्रिक इफेक्ट का इस्तेमाल करते हुए थंब

ट्राइबोइलेक्ट्रिक श्रृंखला

Triboelectric series:
Most positively charged
+
Hair, oily skin
Nylon, dry skin
Glass
Acrylic, Lucite
Leather
Rabbit's fur
Quartz
Mica
Lead
Cat's fur
Silk
Aluminium
Paper (Small positive charge)
Cotton
Wool (No charge)
0
Steel (No charge)
Wood (Small negative charge)
Amber
Sealing wax
Polystyrene
Rubber balloon
Resins
Hard rubber
Nickel, copper
Sulfur
Brass, silver
Gold, platinum
Acetate, rayon
Synthetic rubber
Polyester
Styrene and polystyrene
Orlon
Plastic wrap
Polyurethane
Polyethylene (like Scotch tape)
Polypropylene
Vinyl (PVC)
Silicon
Teflon (PTFE)
Silicone rubber
Ebonite
Most negatively charged

एक त्रिकोणीय श्रृंखला सामग्री की एक सूची है, जो कुछ प्रासंगिक गुणों द्वारा आदेशित होती है, जैसे कि सामग्री सूची में अन्य सामग्रियों के सापेक्ष कितनी जल्दी चार्ज विकसित करती है। जोहान कार्ल विल्के ने 1757 में स्टैटिक चार्ज पर पहला पेपर प्रकाशित किया।[11][12] सामग्री को अक्सर आवेश पृथक्करण की ध्रुवता के क्रम में सूचीबद्ध किया जाता है जब उन्हें किसी अन्य वस्तु से स्पर्श किया जाता है। श्रृंखला के नीचे की ओर एक सामग्री, जब श्रृंखला के शीर्ष के पास की सामग्री को छुआ जाता है, तो अधिक नकारात्मक चार्ज प्राप्त होगा। श्रृंखला में दो सामग्रियां एक दूसरे से जितनी दूर होती हैं, उतना ही अधिक आवेश हस्तांतरित होता है। श्रृंखला में एक दूसरे के निकट की सामग्री किसी भी शुल्क का आदान-प्रदान नहीं कर सकती है, या यहां तक ​​कि सूची द्वारा निहित के विपरीत भी विनिमय कर सकती है। यह रगड़ने, संदूषक या ऑक्साइड , या अन्य चर के कारण हो सकता है। शॉ द्वारा श्रृंखला का और विस्तार किया गया[13] और हेनिकर[14] प्राकृतिक और सिंथेटिक पॉलिमर शामिल करके, और सतह और पर्यावरणीय परिस्थितियों के आधार पर अनुक्रम में परिवर्तन दिखाया। कुछ सामग्रियों के सटीक क्रम के अनुसार सूचियाँ कुछ हद तक भिन्न होती हैं, क्योंकि सापेक्षिक आवेश आस-पास की सामग्रियों के लिए भिन्न होता है। वास्तविक परीक्षणों से, धातुओं के बीच आवेश संबंध में बहुत कम या कोई औसत दर्जे का अंतर नहीं होता है, शायद इसलिए कि चालन इलेक्ट्रॉनों की तीव्र गति ऐसे अंतरों को रद्द कर देती है।[15] सामग्री के ट्राइबोइलेक्ट्रिक चार्ज घनत्व को मापने के आधार पर एक अन्य ट्राइबोइलेक्ट्रिक श्रृंखला को प्रोफेसर झोंग लिन वांग के समूह द्वारा मात्रात्मक रूप से मानकीकृत किया गया था।[16] विश्वसनीय मूल्यों को प्राप्त करने के लिए निश्चित तापमान, दबाव और आर्द्रता के साथ, अच्छी तरह से परिभाषित स्थितियों के तहत एक दस्ताना बॉक्स में तरल पारा के संबंध में परीक्षण सामग्री के ट्राइबोइलेक्ट्रिक चार्ज घनत्व को मापा गया था। प्रस्तावित विधि सामान्य सामग्रियों की सतह ट्राइबोइलेक्ट्रिफिकेशन को समान रूप से मापने के लिए प्रयोगात्मक सेट अप को मानकीकृत करती है।

परिमाणित ट्राइबोइलेक्ट्रिक श्रृंखला[16]

कारण

यद्यपि भाग 'ट्राइबो-' ग्रीक से रगड़ के लिए आता है, τρίβω (τριβή: घर्षण), दो सामग्रियों को केवल इलेक्ट्रॉनों के आदान-प्रदान के लिए संपर्क में आने की आवश्यकता होती है। संपर्क में आने के बाद, मोबाइल चार्ज अपनी विद्युत रासायनिक क्षमता को बराबर करने के लिए एक सामग्री से दूसरी सामग्री में जाते हैं। यही वह है जो वस्तुओं के बीच शुद्ध आवेश अंतर बनाता है। जब दोनों संपर्क सामग्री परावैद्युत होती हैं, तो गतिमान आवेश इलेक्ट्रॉन द्वारा नहीं, बल्कि एक आयन, जैसे H+ द्वारा वहन किया जाता है। असल में, यह प्रक्रिया एसिड-बेस प्रतिक्रिया के समान होती है, जब आधार वस्तु सकारात्मक रूप से चार्ज हो जाती है, और एसिड वस्तु नकारात्मक रूप से चार्ज हो जाती है। इसके अलावा, कुछ सामग्री भिन्न गतिशीलता के आयनों का आदान-प्रदान कर सकती हैं, या बड़े अणुओं के आवेशित टुकड़ों का आदान-प्रदान कर सकती हैं।

ट्राइबोइलेक्ट्रिक प्रभाव केवल घर्षण से संबंधित है क्योंकि दोनों में आसंजन शामिल है। हालांकि, सामग्री को एक साथ रगड़ने से प्रभाव बहुत बढ़ जाता है, क्योंकि वे कई बार स्पर्श करते हैं और अलग हो जाते हैं।[17] अलग-अलग ज्यामिति वाली सतहों के लिए, रगड़ने से प्रोट्रूशियंस का ताप भी हो सकता है, जिससे pyroelectricity चार्ज अलग हो सकता है जो मौजूदा संपर्क विद्युतीकरण में जोड़ सकता है, या जो मौजूदा ध्रुवीयता का विरोध कर सकता है। भूतल नैनो-प्रभावों को अच्छी तरह से समझा नहीं गया है, और परमाणु बल सूक्ष्मदर्शी ने भौतिकी के इस क्षेत्र में तेजी से प्रगति की है।

स्पार्क्स

चूँकि सामग्री की सतह अब विद्युत रूप से आवेशित है, या तो ऋणात्मक या धनात्मक रूप से, किसी अनावेशित प्रवाहकीय वस्तु के साथ या किसी वस्तु के साथ पर्याप्त रूप से भिन्न आवेश के कारण निर्मित स्थैतिक बिजली का विद्युत निर्वहन हो सकता है: एक विद्युत चिंगारी। एक व्यक्ति बस एक नायलॉन को हटाते हुए एक कालीन पर चल रहा है[citation needed] शर्ट या कार की सीट पर रगड़ने से भी हजारों वोल्ट का संभावित अंतर पैदा हो सकता है, जो एक मिलीमीटर या उससे अधिक लंबी चिंगारी पैदा करने के लिए पर्याप्त है।

इलेक्ट्रोस्टैटिक डिस्चार्ज नम स्थितियों में स्पष्ट नहीं हो सकता है क्योंकि सतह संक्षेपण सामान्य रूप से ट्राइबोइलेक्ट्रिक चार्जिंग को रोकता है।

इलेक्ट्रोस्टैटिक डिस्चार्ज (बिजली के अलावा जो बादलों के भीतर बर्फ और पानी की बूंदों के ट्राइबोइलेक्ट्रिक चार्जिंग से आता है) कम से कम नुकसान पहुंचाता है क्योंकि ऊर्जा (1/2वोल्टेज 2समाई ) चिंगारी की बहुत छोटी है; हालांकि, इस तरह की चिंगारी ज्वलनशील वाष्प को प्रज्वलित कर सकती हैं (देखें #जोखिम और प्रति-उपाय|जोखिम और प्रति-उपाय)। ऐसा तब नहीं होता जब किसी एक वस्तु की धारिता बहुत अधिक हो।

त्रिकोणीय विद्युतीकरण का तंत्र

परमाणुओं के बीच की बातचीत को समझने के लिए इंटरएटॉमिक इंटरैक्शन पोटेंशिअल को लागू किया जा सकता है। जब दो परमाणु संतुलन की स्थिति में होते हैं, एक संतुलन अंतर-परमाणु दूरी के साथ, इलेक्ट्रॉन बादल या तरंग कार्य आंशिक रूप से अतिव्याप्त होते हैं। एक ओर, यदि दो परमाणु बाहरी बल द्वारा दबाए जाने पर एक-दूसरे के करीब आते हैं, तो अंतर-परमाणु दूरी संतुलन दूरी से कम हो जाती है, इस प्रकार दो परमाणु एक-दूसरे को पीछे हटाते हैं क्योंकि इलेक्ट्रॉन क्लाउड ओवरलैप में वृद्धि होती है। यह इस क्षेत्र में है कि इलेक्ट्रॉन स्थानांतरण होता है। दूसरी ओर, यदि दो परमाणु एक दूसरे से इस तरह अलग हो जाते हैं कि उनके पास संतुलन दूरी की तुलना में अधिक अंतर-परमाणु दूरी होती है, तो वे लंबी दूरी की वैन डेर वाल्स बातचीत के कारण एक-दूसरे के साथ आकर्षित होंगे।

बाहरी बल द्वारा बंधन लंबाई को छोटा करने के रूप में इलेक्ट्रॉन हस्तांतरण को समझने के लिए दो परमाणुओं के बीच अंतर-परमाणु संपर्क क्षमता।

ट्राइबोइलेक्ट्रिफिकेशन के लिए एक एटॉमिक-स्केल चार्ज ट्रांसफर मैकेनिज्म (जेनेरिक इलेक्ट्रॉन-क्लाउड-पोटेंशियल मॉडल) प्रस्तावित किया गया था।[2][18] सबसे पहले, दो सामग्रियों के परमाणु-पैमाने के संपर्क से पहले, उनके इलेक्ट्रॉन बादलों के बीच कोई ओवरलैप नहीं होता है, और एक आकर्षक बल मौजूद होता है। इलेक्ट्रॉन विशिष्ट कक्षाओं में इतने कसकर बंधे होते हैं कि वे स्वतंत्र रूप से बाहर नहीं निकल सकते। फिर, जब दो पदार्थों में दो परमाणु संपर्क के करीब आते हैं, तो इलेक्ट्रॉन क्लाउड ओवरलैप द्वारा उनके बीच एक आयनिक या सहसंयोजक बंधन बनता है। एक बाहरी बल इंटरएटोमिक दूरी (बॉन्ड लंबाई) को और कम कर सकता है, और मजबूत इलेक्ट्रॉन क्लाउड ओवरलैप दोनों के बीच ऊर्जा अवरोध की गिरावट को प्रेरित करता है, जिसके परिणामस्वरूप इलेक्ट्रॉन स्थानांतरण होता है, जो ट्राइबोइलेक्ट्रिफिकेशन प्रक्रिया है। एक बार जब दो परमाणु अलग हो जाते हैं, तो स्थानांतरित इलेक्ट्रॉन बने रहेंगे क्योंकि इलेक्ट्रॉनों को वापस स्थानांतरित करने के लिए एक ऊर्जा की आवश्यकता होती है, जिससे सामग्री की सतहों पर इलेक्ट्रोस्टैटिक चार्ज बनते हैं।

ट्राइबोइलेक्ट्रिफिकेशन और चार्ज ट्रांसफर और दो सामग्रियों के बीच रिलीज की व्याख्या करने के लिए वैंग द्वारा प्रस्तावित जेनेरिक इलेक्ट्रॉन-क्लाउड-पोटेंशिअल-वेल मॉडल जिसमें अच्छी तरह से निर्दिष्ट ऊर्जा बैंड संरचना नहीं हो सकती है। यह मॉडल सामान्य सामग्री मामलों पर लागू होता है।

विमान और अंतरिक्ष यान में

विमान बूंदों और बर्फ के कणों के साथ टकराव के माध्यम से एक स्थिर आवेश विकसित करता है।[19] स्थैतिक निर्वहन या स्टैटिक विक्स के साथ स्टैटिक को डिस्चार्ज किया जा सकता है।

नासा एक त्रिकोणीय विद्युतीकरण नियम का पालन करता है जिसके तहत लॉन्च वाहन को कुछ प्रकार के बादलों से गुज़रने की भविष्यवाणी की जाती है तो वे लॉन्च को रद्द कर देंगे। उच्च-स्तरीय बादलों के माध्यम से उड़ने से पी-स्थैतिक (वर्षा के लिए पी) उत्पन्न हो सकता है, जो लॉन्च वाहन के चारों ओर स्थिर बना सकता है जो वाहन द्वारा या वाहन को भेजे गए रेडियो संकेतों में हस्तक्षेप करेगा। यह टेलीमेट्री को जमीन या वाहन में बाधित कर सकता है, विशेष रूप से उड़ान समाप्ति प्रणाली के लिए महत्वपूर्ण संकेत। जब ट्राइबोइलेक्ट्रिफिकेशन नियम के कारण एक होल्ड लगाया जाता है, तो यह 45वां स्पेस विंग तक बना रहता है और पर्यवेक्षक कर्मियों, जैसे कि टोही विमान में मौजूद लोग, यह संकेत देते हैं कि आसमान साफ ​​है।[20]


जोखिम और प्रति-उपाय

इग्निशन

निर्मित वस्तुओं की सुरक्षा और संभावित क्षति दोनों के संदर्भ में यह प्रभाव काफी औद्योगिक महत्व का है। धूल विस्फोट के खतरे के कारण अनाज को उठाने वाला में स्थैतिक निर्वहन एक विशेष खतरा है। उत्पादित चिंगारी ज्वलनशील वाष्प को प्रज्वलित करने में पूरी तरह से सक्षम है, उदाहरण के लिए, पेट्रोल , दिएथील ईथर के धुएं के साथ-साथ मीथेन गैस। थोक ईंधन वितरण और विमान ईंधन भरने के लिए टैंक खोलने से पहले वाहन और प्राप्त टैंक के बीच ग्राउंडिंग कनेक्शन बनाया जाता है। खुदरा स्टेशन पर ईंधन भरते समय गैस टैंक खोलने से पहले या नोज़ल को छूने से पहले कार पर धातु को छूने से ईंधन वाष्प के स्थिर प्रज्वलन का जोखिम कम हो सकता है।[citation needed]


कार्यस्थल में

अस्पताल ों में वाष्पशील तरल पदार्थ, ज्वलनशील गैसें, या ऑक्सीजन ले जाने वाली गाड़ियों से स्थैतिक निर्वहन के लिए साधन उपलब्ध कराए जाने चाहिए। यहां तक ​​कि जहां केवल एक छोटा सा चार्ज उत्पन्न होता है, वहां धूल के कण रगड़ी हुई सतह की ओर आकर्षित हो सकते हैं। कपड़ा निर्माण के मामले में यह एक स्थायी मैला निशान पैदा कर सकता है जहां कपड़ा स्थैतिक आवेश द्वारा जमा धूल के संपर्क में आता है। एक एंटीस्टेटिक एजेंट क्लीनिंग एजेंट के साथ इंसुलेटिंग सतहों का इलाज करके धूल के आकर्षण को कम किया जा सकता है।

इलेक्ट्रॉनिक्स को नुकसान

कुछ इलेक्ट्रॉनिक उपकरण , विशेष रूप से CMOS एकीकृत परिपथ और MOSFET s (ट्रांजिस्टर का एक प्रकार), गलती से उच्च-वोल्टेज स्थैतिक निर्वहन द्वारा नष्ट हो सकते हैं। ऐसे घटकों को आमतौर पर सुरक्षा के लिए एक प्रवाहकीय फोम में संग्रहित किया जाता है। असंबद्ध एकीकृत परिपथों को संभालते समय कार्यक्षेत्र को छूकर, या विरोधी स्थैतिक कलाई का पट्टा या पायल का उपयोग करके खुद को ग्राउंडिंग करना मानक अभ्यास है। उदाहरण के लिए, ऑपरेटिंग थिएटरों में प्रंगार काला लोडेड रबर मैट जैसी कंडक्टिंग सामग्री का उपयोग करके चार्ज को खत्म करने का एक और तरीका है।

संवेदनशील घटकों वाले उपकरणों को सामान्य उपयोग, स्थापना और वियोग के दौरान संरक्षित किया जाना चाहिए, जहाँ आवश्यक हो बाहरी कनेक्शनों पर डिज़ाइन-इन सुरक्षा द्वारा पूरा किया गया। डिवाइस के बाहरी इंटरफेस पर अधिक मजबूत डिवाइस या सुरक्षात्मक काउंटरमेशर्स के उपयोग के माध्यम से सुरक्षा हो सकती है। ये ऑप्टो आइसोलेटर , कम संवेदनशील प्रकार के ट्रांजिस्टर और वैरिस्टर जैसे स्थिर बाईपास डिवाइस हो सकते हैं।

शोर का स्रोत

मेडिकल केबल असेंबलियों और लीड तारों के भीतर, यादृच्छिक ट्राइबोइलेक्ट्रिक शोर उत्पन्न होता है जब विभिन्न कंडक्टर, इन्सुलेशन और फिलर्स एक दूसरे के खिलाफ रगड़ते हैं क्योंकि केबल आंदोलन के दौरान फ्लेक्स हो जाती है। एक केबल के भीतर उत्पन्न शोर को अक्सर हैंडलिंग शोर या केबल शोर कहा जाता है, लेकिन इस प्रकार के अवांछित सिग्नल को ट्राइबोइलेक्ट्रिक शोर के रूप में अधिक सटीक रूप से वर्णित किया जाता है। निम्न स्तर के संकेतों को मापते समय, केबल या तार में शोर समस्याग्रस्त हो सकता है। उदाहरण के लिए, एक विद्युतहृद्लेख या अन्य चिकित्सा संकेत में शोर सटीक निदान को कठिन या असंभव बना सकता है। ट्राइबोइलेक्ट्रिक शोर को स्वीकार्य स्तर पर रखने के लिए सावधानीपूर्वक सामग्री चयन, डिजाइन और प्रसंस्करण की आवश्यकता होती है क्योंकि केबल सामग्री निर्मित होती है।[21]


यह भी देखें


संदर्भ

  1. 1.0 1.1 Xu C, Zi Y, Wang AC, Zou H, Dai Y, He X, et al. (April 2018). "On the Electron-Transfer Mechanism in the Contact-Electrification Effect". Advanced Materials. 30 (15): e1706790. doi:10.1002/adma.201706790. PMID 29508454. S2CID 3757981.
  2. 2.0 2.1 Xu C, Wang AC, Zou H, Zhang B, Zhang C, Zi Y, et al. (September 2018). "Raising the Working Temperature of a Triboelectric Nanogenerator by Quenching Down Electron Thermionic Emission in Contact-Electrification". Advanced Materials. 30 (38): e1803968. doi:10.1002/adma.201803968. PMID 30091484. S2CID 51940860.
  3. Zhou YS, Liu Y, Zhu G, Lin ZH, Pan C, Jing Q, Wang ZL (June 2013). "In situ quantitative study of nanoscale triboelectrification and patterning". Nano Letters. 13 (6): 2771–6. Bibcode:2013NanoL..13.2771Z. doi:10.1021/nl401006x. PMID 23627668.
  4. Zhou YS, Wang S, Yang Y, Zhu G, Niu S, Lin ZH, et al. (March 2014). "Manipulating nanoscale contact electrification by an applied electric field". Nano Letters. 14 (3): 1567–72. Bibcode:2014NanoL..14.1567Z. doi:10.1021/nl404819w. PMID 24479730.
  5. Castle GS, Schein LB (December 1995). "General model of sphere-sphere insulator contact electrification". Journal of Electrostatics. 36 (2): 165–173. doi:10.1016/0304-3886(95)00043-7.
  6. Xu C, Zhang B, Wang AC, Zou H, Liu G, Ding W, et al. (February 2019). "Contact-Electrification between Two Identical Materials: Curvature Effect". ACS Nano. 13 (2): 2034–2041. doi:10.1021/acsnano.8b08533. PMID 30707552. S2CID 73414247.
  7. Wang ZL, Wang AC (June 2019). "On the origin of contact-electrification". Materials Today. 30: 34–51. doi:10.1016/j.mattod.2019.05.016. S2CID 189987682.
  8. Lin S, Xu L, Xu C, Chen X, Wang AC, Zhang B, et al. (April 2019). "Electron Transfer in Nanoscale Contact Electrification: Effect of Temperature in the Metal-Dielectric Case". Advanced Materials. 31 (17): e1808197. doi:10.1002/adma.201808197. PMID 30844100. S2CID 73516230.
  9. Lin S, Xu L, Zhu L, Chen X, Wang ZL (July 2019). "Electron Transfer in Nanoscale Contact Electrification: Photon Excitation Effect". Advanced Materials. 31 (27): e1901418. doi:10.1002/adma.201901418. PMID 31095783. S2CID 157058869.
  10. Nie J, Wang Z, Ren Z, Li S, Chen X, Lin Wang Z (May 2019). "Power generation from the interaction of a liquid droplet and a liquid membrane". Nature Communications. 10 (1): 2264. Bibcode:2019NatCo..10.2264N. doi:10.1038/s41467-019-10232-x. PMC 6531479. PMID 31118419.
  11. A Natural History: Devin Corbin | The Owls
  12. Gillispie CC (1976). Dictionary of Scientific Biography. New York: Scribner. pp. 352–353.
  13. Fowle FE (1921). Smithsonian Physical Tables. Washington: Smithsonian Institution. p. 322.
  14. Henniker J (November 1962). "Triboelectricity in Polymers". Nature. 196 (4853): 474. Bibcode:1962Natur.196..474H. doi:10.1038/196474a0. S2CID 4211729.
  15. "The TriboElectric Series". Archived from the original on 5 April 2014. Retrieved 27 November 2012.
  16. 16.0 16.1 Zou H, Zhang Y, Guo L, Wang P, He X, Dai G, et al. (March 2019). "Quantifying the triboelectric series". Nature Communications. 10 (1): 1427. Bibcode:2019NatCo..10.1427Z. doi:10.1038/s41467-019-09461-x. PMC 6441076. PMID 30926850.
  17. Diaz AF, Felix-Navarro RM (2004). "A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties" (PDF). Journal of Electrostatics. 62 (4): 277–290. doi:10.1016/j.elstat.2004.05.005. ISSN 0304-3886. Retrieved 12 October 2018.
  18. Lowell J (1 December 1977). "The role of material transfer in contact electrification". Journal of Physics D: Applied Physics. 10 (17): L233–L235. Bibcode:1977JPhD...10L.233L. doi:10.1088/0022-3727/10/17/001. ISSN 0022-3727. S2CID 250774562.
  19. Nanevicz, Joseph E. (May 1982). "Static Charging and Its Effects on Avionic Systems". IEEE Transactions on Electromagnetic Compatibility. EMC-24 (2): 203–209. doi:10.1109/TEMC.1982.304031. ISSN 1558-187X.
  20. Kanigan, Dan (27 October 2009). "Flight Rules and Triboelectrification (What the Heck is That?) | Ares I-X Test Flight". NASA. Retrieved 31 January 2017.
  21. "Triboelectric Noise in Medical Cables and Wires". 29 August 2014.


आगे की पढाई


बाहरी कड़ियाँ